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Abstract—In this work smoothness analysis of almost-periodic
signals is studied. Here, analogously to the case of L2(R) or finite
energy signals, the smoothness of the class of almost periodic
bounded power signals is characterized in terms of the decay
of its Gabor transform. Moreover, some results are given as
equivalence of norms between appropriate function spaces.

Index Terms—Almost-periodic Functions, Gabor Transform,
Smoothness

I. INTRODUCTION

Almost-periodic functions are a useful model of persistent
signals. In real life, the occurrence of almost-periodic oscilla-
tions is much more common than exact periodic ones. Almost-
periodic functions were extensively studied by H. Bohr, V.
Stepanov, N. Wiener, A.S. Besicovitch [3], [17] among other
renown scientists. Initially, this theory was concerned with the
study of the almost-periodicity of the solutions of differential
equations. As shown in [7], for example, if we consider the
wave equation

ux x = k2ut t ,

with the non-ideal boundary condition:

u(t, 0) = 0, ux(t, l) + hu(t, l) = 0, h > 0,

then we get almost-periodic solutions to the wave equation. A
possible physic interpretation could be the following: u(x, t)
describes the motion of a vibrating elastic string such that it
is fixed at x = 0 and whose end at x = l has its tension
ux(t, l) proportional to the elongation u(t, l). Apart from
mathematical physics, almost-periodic waves or oscillations
appear in other dynamical systems and Control Theory [13].
On the other hand, they are a subclass of functions to which
the Generalized Harmonic Analysis tools, first developed by
Wiener, can be applied to them [1]. As it is discussed in
[2], these tools are also well adapted for interpreting spectral
bio-electric data, where non-periodic and persistent rhythms
appear and the usual finite-energy techniques (i.e. L2(R))
of harmonic analysis cannot be applied. Finally, there has
been a substantial research in how some usual time-frequency
representations, i.e. Wavelets and Gabor transforms, can be
adapted to this scenery. Some positive answers about the
representation of almost-periodic signals were given in e.g.
[4], [11], [12], [14] and more recently in [5]. Gabor and

Wavelet Transform not only give, in some sense, optimal
representations of signals but also are useful signal analysis
tools, at least in the finite-energy context. We note, however,
that this fact it is not discussed, for the almost-periodic case, in
none of these referenced works. Here, we shall discuss some
of these facts for the Gabor (or Short Time Fourier Transform).
In the finite-energy context, smoothness or regularity analysis
is very well described in terms of decay of Gabor or Wavelet
coefficients or as equivalences of norms. Smoothness analy-
sis is of certain importance in the classification of signals.
In contrast to the L2(R) setup, here we will prove some
analogue results for the Gabor Transform of almost-periodic
signals. There exist several definitions of almost-periodicity
with increasing generality. Here will be concerned with the
Besicovitch class of almost-periodic signals. In particular,
these functions constitute a closed subspace of almost-periodic
signals included in the more general (Hilbert) vector space
of Bounded Quadratic Mean functions, i.e. Bounded Power
signals. The paper is organized as follows: first the Besicovitch
class of Almost Periodic signals is introduced. In Section
II-A time frequency-analysis of almost periodic functions is
discussed. Finally, the main results on smoothness analysis are
given in Section III. A brief practical and preliminar example
on biomedical time series is presented there.

II. THE BESICOVITCH CLASS OF ALMOST PERIODIC
SIGNALS AND FUNCTION SPACES.

As usual, for p ∈ [1,∞), we will denote the classical
Lebesgue function spaces with Lp(R). When p = 2, we denote
⟨f, g⟩ =

∫
R f(x)g(x)dx. With some abuse, we shall use the

same notation when this integral is well defined for functions
which not necessarily belong to L2(R). The Fourier Transform
of f ∈ L1(R) is given by:

Ff(λ) = f̂(λ) =

∫
R

f(x)e−i2πλ.xdx .

Analogously, if f̂ is integrable, f can be recovered by the
inverse Fourier Transform, (f̂)∨. By a density argument the
Fourier Transform can be defined for f ∈ L2(R). In fact, in
this case, one has the Plancherel identity:∥∥f̂ ∥∥2

L2(R) = 2π ∥f∥2L2(R)
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expressing the fact that the Fourier Transform, over L2(R), is
a unitary map up to a constant. Fourier transforms are also
defined for other classes of measures or functions. For more
details see for example [10], [15]. We shall need another class
of functions [1], [10]:

Definition II.1. The space AP (R) of almost periodic func-
tions is the set of continuous functions f : R −→ C with the
property that for every ϵ > 0, there exists L > 0, such that
every interval of the real line of length greater than L contains
a value τ satisfying sup

t∈R
|f(t+ τ)− f(t)| ≤ ϵ .

Recall that AP (R) coincides with the uniform norm closure
of the space of trigonometric polynomials

∑
j

C(j)eiλjt with

λj ∈ R and C(j) ∈ C.
In AP (R) one can introduce the inner product:

(f, g)AP (R) = lim
T−→∞

1

2T

T∫
−T

f(t)g(t)dt .

The norm ∥ f ∥AP (R) = lim
T−→∞

1
2T

T∫
−T

|f(t)|2dt induced

by this inner product makes AP (R) a non-complete, non-
separable space. The completion of AP (R) with respect to
this norm is the Hilbert space AP2(R) of Besicovitch almost
periodic functions. As an extension, its norm will be denoted
∥ f ∥AP (R). There, the complex exponentials (eiλt)λ∈R form a
complete orthonormal basis and the following analogue, due
to Wiener [10], of Plancherel identity holds:

∥ f ∥AP2(R) = ∥C(f) ∥L2(R,dc) , (1)

where

C(f)(λ) = lim
T−→∞

1

2T

T∫
−T

f(t)e−iλtdt

denotes the Bohr Transform of f and c denotes the counting
measure. Obviously, C(f)(λ) = 0 for all λ except for a finite
or countable subset of them. In the applied literature these
functions are referred as finite power signals in contrast to
the usual L2(R) space of finite energy signals. On the other
hand, for any T > 0, AP2(R) contains the class of T -periodic
signals L2(T ).

A. Gabor Transform and Time-Frequency Analysis of Almost
Periodic Signals.

First we recall the definition of the usual Gabor Transform
of a finite-energy L2(R) function.

1) Gabor Transform of L2(R) functions.: Let g ∈ L2(R)∩
L1(R), g ̸= 0, be fixed. For f ∈ L2(R), the Gabor (or
Windowed Fourier Transform) can be defined by [9]:

Gf(w, x) =
∫
R

f(t)g(t− x)e−2πiw(t−x)dt . (2)

Note that alternatively the following relations hold true:

Gf(w, x) = F(fg( . − x))(w) = ⟨f, gw,x⟩ ,

where gw,x = g(t− x)e−2πiw(t−x).
The key result for the Gabor Transform is the following

form of the Parseval formula:

∥Gf ∥2L2(R2) = ∥g ∥2L2(R) ∥f ∥2L2(R) (3)

It is of interest to find out for which other function spaces
equation (2) is still well defined as well as if some kind of
isometric relation, like (3), holds. In fact, (3) expresses that G
is a continuous linear operator with continuous inverse over
its range.

2) Gabor Transform of Persistent Signals: If f =∑
j

C(j)eiλjt is a trigonometric polynomial is immediate that

Gf exists and moreover, from the properties of the Fourier
Transform:

Gf(w, x) =
∑
j

C(j)ĝ(w − 2πλj)e
i2πλjx .

As the set of trigonometric polynomials is dense in AP2(R)
it is reasonable to try to define Gf for an arbitrary f ∈ AP2.
Supposing, in addition, that the function g of (2) verifies that∫
R |g(t)|2(1 + |t|2)dt < ∞ and recalling that if f ∈ AP2(R)

then
∫
R |f(t)|2(1+ |t|2)−1dt < ∞, we get that (2) is also well

defined for all f ∈ AP2(R), i.e. the integral defining Gf(w, x)
exists and is finite for every x,w. Once established that Gf is
well defined for f ∈ AP2(R), in [14] it is proved that:

THEOREM II.2. If f ∈ AP2(R) or f ∈ L∞(R) then Gf is
well defined and moreover:

1) If f ∈ L∞(R) then:

∥Gf ∥L∞(R2) ≤ ∥g ∥L1(R) ∥f ∥L∞(R) .

2) If f ∈ AP2(R) then:∫
R

∥Gf(w, . ) ∥2AP2(R) dw = ∥g ∥2L2(R) ∥f ∥2AP2(R) (4)

Note, that Gf is introduced in [14] but it is not enough
clear from their definition in which sense the integral defining
Gf has to be interpreted (i.e. as a limit in norm or point-
wise). Finally, we observe that the additional condition on
the window g,

∫
R |g(t)|2(1 + |t|2)dt < ∞ can be dropped.

However, in this case Gf must be defined by a density
argument. In both cases the following results hold true.

III. HÖLDER CONTINUITY AND SMOOTHNESS
MEASUREMENTS.

In this Section we present our original results.
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1) Some Definitions and Auxiliary Results: As usual
smoothness is described by the magnitude of the increments
of a function, or alternatively by the decay of its Fourier
transform, if this is defined in some specific sense. First,
if α ∈ (0,∞) let us recall that a measurable function
f : R −→ R is (uniformly) α-Hölder continuous [15], or
f ∈ Cα(R) for short, if there exists C > 0 such that

|f(t)− f(t′)| ≤ C|t− t′|α , (5)

for all t, t′ ∈ R. This allows to introduce the semi-norm
∥f ∥Cα(R) = sup

h∈(0,1)

1
hα ∥f( . + h)− f∥L∞ . Alternatively, if

f ∈ AP2(R), we can measure its quadratic regularity intro-
ducing the semi-norm:

∥f ∥APα
2 (R) = sup

h∈(0,1)

1

hα
∥f( . + h)− f∥AP2(R) .

We will say that f ∈ APα
2 (R) if ∥f ∥APα

2 (R) < ∞. For the
case of almost-periodic functions we can give an analogue
definition of Sobolev space. Recall the definition of the
Fourier-Bohr Transform of f of Section II, then we define:

H2,α
AP (R) =

{
f ∈ AP2(R) :

∑
λ

|λ|2α|C(f)(λ)|2 < ∞

}
.

Similarly to the case of the Lebesgue spaces L2(R) and the
ordinary Fourier Transform, one can prove that f ∈ H2,α

AP if
and only if ∥f ∥2H2,α

AP (R) =
∑
λ

(1+ |λ|2)α|C(f)(λ)|2 < ∞. We

can also prove the following useful Theorem on the inclusion
of these spaces:

THEOREM III.1. Let f ∈ AP2(R). Then:
1) There exists a positive constant K1(α) such that:

∥f ∥2APα
2 (R) ≤ K1(α)

∑
λ

|λ|2α|C(f)(λ)|2 .

2) There exists positive constant C2(α) such that:

∥f ∥APα
2 (R) ≤ K2(α) ∥f ∥Cα(R) .

3) If 0 < β < α and ∥f ∥APα
2 (R) < ∞ then there exists

K3(α, β) such that:∑
λ

|λ|2β |C(f)(λ)|2 ≤ K3(α, β)
(
∥f ∥2AP2(R)

) β
α+1

.

In particular, the following set inclusions hold:

Cα(R) ⊂ APα
2 (R)

and
H2,α

AP (R) ⊂ APα
2 (R) ⊂ H2,β

AP (R)

for any 0 < β < α.

The Fourier-Bohr Transform offers a spectral representation
for the class of persistent signals given by Besicovitch almost-
periodic functions. Note that these functions, as defined,
have discrete spectrum. This representation, analogously to
the ordinary Fourier transform offers a characterization of

the regularity of a function in terms of the decay of its
coefficients. However, this case of generalized harmonic
analysis has not any time-frequency localization. A first way
to introduce time-frequency analysis is by means of the Gabor
Transform. Let us present our main results on smoothness
using the Gabor transform as analysis tool.

2) Main Results: Recall that by Theorem II.2 -2) Gf is
well defined for any f ∈ AP2(R). First, we characterize the
spaces H2,α

AP (R) in terms of the Gabor Transform. We aim to
prove an analogue result to those of e.g. [8] (Chapters 2 and
9) , [15] (Chapter 6) or [16] for the L2(R)-Wavelet transform.
It so far we can prove the following:

THEOREM III.2. Let f ∈ AP2(R), α ≥ 0.
1) There exists a constant C1 > 0 such that:

C1 ∥f ∥2H2,α
AP (R) ≤

∫
R

∥Gf(w, . ) ∥2AP2(R) (1+ |w|2)αdw .

(6)
2) Let g be such that

∫
R |ĝ(λ)|2(1 + |λ|2)αdλ < ∞. Then

there exists C2 > 0 such that:

C2 ∥f ∥2H2,α
AP (R) ≥

∫
R

∥Gf(w, . ) ∥2AP2(R) (1+ |w|2)αdw .

(7)
3) Let g be as in statement (2). Then f ∈ H2,α

AP (R) if and
only if∫

R

∥Gf(w, . ) ∥2AP2(R) (1 + |w|2)αdw < ∞ .

Moreover, there exists positive constants C1 ≤ C2 such
that:

C1 ∥f ∥2H2,α
AP (R) ≤

∫
R

∥Gf(w, . ) ∥2AP2(R) (1 + |w|2)αdw

(8)
≤ C2 ∥f ∥2H2,α

AP (R) .

Observe that, in some sense, Theorem III.2 is a generaliza-
tion of Theorem II.2-2). In fact, for α = 0, it can be proved that
the constants can be adjusted so that C1 = C2. Combining our
Theorems III.1 and III.2 we get the following characterization
of quadratic regularity (in terms of the norm of increments of
f ) using the Gabor transform.

LEMMA III.3. Let f ∈ AP2(R) and α > 0.
1) If ∫

R

∥Gf(w, . ) ∥2AP2(R) (1 + |w|2)αdw < ∞ ,

then f ∈ APα
2 (R).

2) If f ∈ APα
2 (R) then∫

R

∥Gf(w, . ) ∥2AP2(R) (1 + |w|2)βdw < ∞ ,

for all 0 < β < α.
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A. An example.

A kind of persistent signal is given by the time series
recording of a human trait (Figure 1). The following graphics
(See at the end) illustrates the frequency domain behaviour of
such a signal (Figure 2). Figure 3 is the asymptotic decay
of its Bohr-Fourier transform. The global smoothness as a
rule of thumb is described in this way, however the Gabor
transform also retains this property and moreover in an stable
way as equation (8) shows. In fact, Figure 4 is an example of
this. These are the graphics of the Gabor or windowed Fourier
transform for three different time instants.

Figure1:  Human trait. Times series(16324 samples)

Figure2:  Human trait. Times series (FFT)
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Figure3:  .....
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IV. CONCLUSIONS

We proved that the Gabor Transform is a good analy-
sis tool for characterizing regularity of almost-periodic sig-
nals/functions. First we introduce some smoothness classes
of almost-periodic functions and analogously to the usual
L2(R) case, the smoothness is described in terms of the
eventual belonging of the signal to a given space of functions
with a certain prescribed regurality. The pertaining to one of
these function spaces is characterized by appropriate norm
equivalences involving the Gabor Transform of the analyzed
signal. Complete proofs and more experimental evidence will
be presented in further work elsewhere.
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