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We extend the use of Classification Without Labels for anomaly detection with a hypothesis test 
designed to exclude the background-only hypothesis. By testing for statistical independence of the two 
discriminating dataset regions, we are able to exclude the background-only hypothesis without relying 
on fixed anomaly score cuts or extrapolations of background estimates between regions. The method 
relies on the assumption of conditional independence of anomaly score features and dataset regions, 
which can be ensured using existing decorrelation techniques. As a benchmark example, we consider the 
LHC Olympics dataset where we show that mutual information represents a suitable test for statistical 
independence and our method exhibits excellent and robust performance at different signal fractions 
even in presence of realistic feature correlations.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The combination of increased experimental sensitivity and no 
clear leading theoretical guide for how physics beyond the stan-
dard model would manifest in current and future particle physics 
experiments has resulted in increased development of anomaly de-
tection techniques for collider applications, see Ref. [1] for a living 
review with a continuously updated list of references. These tech-
niques, which make use of state of the art unsupervised and/or 
weakly supervised algorithms, have the advantage of being sensi-
tive to a large variety of signals at the expense of losing statistical 
power in comparison to dedicated searches. However, appropri-
ately quantifying said sensitivity is still an open problem [2], with 
differing proposals, see e.g. Ref. [3]. An especially pressing ques-
tion is how to evaluate the null hypothesis exclusion sensitivity 
of an anomaly detection method. The current strategy is to per-
form cuts using the anomalous score and extrapolate a background 
model from a control region. This can be problematic for sev-
eral reasons. First, the use of the anomalous score itself to select 
events is not guaranteed to yield a robust method that disentan-
gles the underlying processes, see e.g. Ref. [4] for a recent dis-
cussion of how ambiguities in the data representation can lead 
to different notions of anomalous events which vary in their dis-
criminating power. Second, even if the anomaly score is an ap-
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propriate event selection tool, the use of cuts, which in an unsu-
pervised search cannot be optimized on a targeted signal model, 
necessarily introduces a loss in sensitivity by discarding possi-
ble signal events. Finally, the use of a control region potentially 
introduces additional biases when assuming the absence of sig-
nal in the control region and/or employing interpolation meth-
ods such as the fit to a monotonic mass spectrum in a Bump 
Hunt.

In this work we aim to address some of the shortcomings 
outlined above. In particular, we propose a null hypothesis sta-
tistical test for anomaly detection which does not rely on fixed 
anomaly score cuts nor requires background model extrapolations 
from control regions. We apply it to a specific anomaly detec-
tion technique, Classification Without Labels (CWoLa) introduced 
as a quark/gluon tagger in Ref. [5] and as an anomaly detection 
technique in Refs. [6,7], and its extension introduced in Ref. [8] in-
corporating simulation assisted decorrelation of features. We show 
that by testing for independence between the set of features used 
in the anomaly score, and those used to define signal and con-
trol regions, we can obtain a p-value which avoids false signal-
detection and is robust in presence of slight correlations between 
the two sets of features.

The work is structured as follows. In Section 2 we review
CWoLa and introduce the proposed statistical test. In Section 3 we 
apply our method to a LHC Olympics benchmark to demonstrate 
its power and limitations. We conclude in Section 4 where we also 
discuss possible future extensions and improvements. All the nec-
essary code to reproduce our results is available at GitHub [9].
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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2. Method

Introduced in Ref. [5], CWoLa is a weakly-supervised technique 
for anomaly detection which aims to learn a monotonic function 
of the Likelihood Ratio between Signal S and Background B pro-
cesses for a set of features of interest �x, LS/B(�x) = p(�x|S)/p(�x|B), 
with the help of an additional feature y uncorrelated with �x. The 
latter variable, often but not necessarily the invariant mass of the 
event, can be used to define two regions of interest: the signal 
region M1 and the control (or side-band) region M2, where the 
signal-to-background ratio is assumed to be higher in M1 than 
in M2. A weakly-supervised algorithm, CWoLa trains a classifier 
to distinguish between M1 and M2. The obtained output function 
s(�x) can then be mapped to LM1/M2 (�x) through the likelihood ra-
tio trick. The orthogonality of y and �x guarantees that LM1/M2 (�x)
is a monotonous function of LS/B (�x) and thus possesses in princi-
ple optimal statistical power.

Usual applications of CWoLa use the learned optimal classifier 
s(�x) to select events of interest and assign a certain significance 
to the difference in selected events in M1 and M2. The difference 
in the resulting selection efficiencies εM1,2 is a smoking-gun for 
the presence of signal in M1 (and also M2). However, this is only 
true in the limit of infinite statistics. In a realistic setting where 
the dataset is finite, quantifying the degree to which the difference 
in efficiencies relates to the presence of signal is non-trivial. One 
common strategy is to assume that there is no signal in M2 and 
assess the agreement between the selected events in M1 and a 
background extrapolation from M2.

Our method constitutes an alternative to assess how the 
learned output s(�x) encodes differences between M1 and M2

caused by the presence of a signal. To introduce it, we focus on 
the density estimation framing of CWoLa, which clearly defines 
a background-only or null hypothesis. At its heart, CWoLa is a 
mixture model where �x and y are assumed to be conditionally in-
dependent given the process label z = {S, B}. After defining M1

and M2 using y, the trained classifier output is a function s(�x)
that inherits the conditional independence with respect to y. The 
statistical model can be explicitly written as

p(s(�x), y|π) = (1 − π) p(s(�x)|B)p(y|B) + π p(s(�x)|S)p(y|S) ,

(1)

where π is the signal probability. The background-only hypothe-
sis is explicitly written as p(s(�x), y|π = 0) and corresponds to the 
case where the observed data shows independence between s(�x)
and y. This is the key observation for our strategy. For a given 
measured dataset of pairs {s( �xi), yi}, one can assess whether they 
are statistically independent. If statistical independence is ruled 
out, the background-only hypothesis is ruled out, provided condi-
tional independence holds. Conversely, if statistical independence 
cannot be ruled out, one has a clear statement about the incapa-
bility of CWoLa to discern whether any difference between M1 and 
M2 originates from the presence of a signal or is due to statistical 
fluctuations in the data.

Several tests of statistical independence exist for both discrete 
and continuous distributions, including mutual information [10], 
Hoeffding’s D independence test [11] and distance correlation [12]. 
For simplicity, in the present work we focus on the use of the 
estimated mutual information (MI) I of the measured probabil-
ity distribution. MI encodes the exact property we want to test 
as it measures the difference between the joint distribution and 
the marginals:

I(s, y) = DKL(p(s, y)||p(s)p(y)) (2)
2

=
∫

ds dy p(s, y) log
p(s, y)

p(s)p(y)
, (3)

where DKL(p, q) is the Kullback-Leibler divergence between two 
probability distributions, capturing how much information is lost 
when approximating the distribution p with the distribution q. The 
MI thus captures how well one can approximate the joint distribu-
tion by the product of its marginals and it is trivial to show that it 
vanishes for independent variables. Conditional Independence can 
then be expressed as a vanishing MI conditioned on a given pro-
cess

I(s, y|z) =
∫

ds dy p(s, y|z) log
p(s, y|z)

p(s|z)p(y|z) = 0 . (4)

On the other hand, for the full dataset the possible mixture be-
tween the two processes encoded in π ∈ [0, 1] results in

I(s, y) ≥ 0 , (5)

with the equality achieved when there is only one process or the 
two processes have the same probability distributions.

A very nice feature of the MI is that it has well behaved asymp-
totic properties in the limit of small MI and large sample size [13]. 
Thus, we can estimate it from the measured sample of N events 
and obtain the p-value of said estimator Î(s, y) under the null hy-
pothesis I(s, y) = 0. Assuming a two dimensional binning of (s, y)

with ds and dy the number of chosen bins per variable, the esti-
mator Î is a random variable that under the null hypothesis I = 0
follows a Gamma distribution with shape parameter (ds−1)(dy−1)

2
and scale parameter N .

To estimate Î we need to estimate p̂(s, y), with p̂(s) and 
p̂(y) obtained by marginalizing. We estimate p̂(s, y) through two-
dimensional histogram event counts with the aforementioned ds

and dy chosen bins. Because we are dealing with continuous vari-
ables, the use of binning introduces additional hyperparameters. 
In this work we bin s and y in such a way that each bin has a 
relative statistical uncertainty equal or lower than 1%. Other crite-
ria for statistical independence that deal explicitly with continuous 
variables such as Hoeffding’s D independence test or distance cor-
relation could be used to avoid the introduction of binning at the 
expense of increased computational cost. We choose MI as it is 
straightforward to implement with a general signal-blind binning 
criteria and it suffices to establish the relevance of the strategy de-
tailed in this work.

We emphasize that the role of CWoLa is to provide a one-
dimensional observable s(�x) which can then be combined with y
to test for statistical independence. Once s(�x) is obtained, the rest 
of the test relies only on data without the need to introduce addi-
tional cuts or labels. If testing for statistical dependence between 
�x and y directly was feasible, then one would not need to intro-
duce any learnable function. However, this is often not the case. 
One in general needs a high-dimensional �x to ensure discrimina-
tive power between possible signals and the background, which is 
in turn converted by our method into statistical power to exclude 
statistical independence. On the other hand working directly with 
a high-dimensional set of features renders any statistical test prob-
lematic either due to the test being designed for two variables, as 
is the case for Hoeffding’s D independence test and distance cor-
relation, or due to the necessary density estimation suffering from 
the course of dimensionality as is the case for the mutual informa-
tion test presented in this work.

The method relies on the assumption of conditional indepen-
dence between �x and y. In a realistic application this is not en-
sured, specially when considering highly-discriminative variables 
between the background and potential signals. The presence of 
correlation between �x and y will result in non-null MI for each 
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process separately. Thus, the p-value obtained from the MI esti-
mation will be merely testing for conditional independence, not 
the presence of a single process. In other words, the null hypoth-
esis ceases to be equal to the background-only hypothesis. This 
challenge is already present in current implementations of CWoLa, 
with correlations resulting in loss of classification power.

One possible strategy introduced in Ref. [8] is to ensure that 
s(�x) is agnostic to the correlation between �x and y through the 
addition of a simulated background dataset during the training 
stage. In this approach, named Simulation Assisted Classification 
Without Labels (SA-CWoLa), the loss function is modified with an 
additional term that incorporates the simulation dataset. Following 
Ref. [8], we define the loss function as

LSA-CWoLa[s] = −
⎛
⎜⎝ ∑

�xn∈Mdata
1

log s(�xn) +
∑

�xn∈Mdata
2

log
(
1 − s(�xn)

)
⎞
⎟⎠

− λ

⎛
⎜⎝ ∑

�xn∈Msim.
1

log
(
1 − s(�xn)

) +
∑

�xn∈Msim.
2

log s(�xn)

⎞
⎟⎠ ,

(6)

that inverts the labelling in the simulation so as to penalize 
learning background differences between M1 and M2, with λ the 
hyper-parameter that controls the relative importance of said pe-
nalization.1 Note that the specific choice of the loss function is 
not relevant as long as it ensures proper decorrelation. Similarly, 
the simulated dataset does not need to be perfect, it only needs 
to encode accurately enough the correlation between �x and y
for the background process. Learning to ignore the correlations 
in the background guarantees that excluding the null hypothesis 
I(s, y) = 0 corresponds to excluding the background-only hypoth-
esis p(s, y) = p(s, y|π = 0) and not merely excluding conditional 
independence p(s, y|B) = p(s|B)p(y|B). The main drawback of in-
troducing decorrelation is that the learned function s(�x) ceases to 
be optimal and looses classification power. Thus, one should tune 
λ with a given criteria that balances learning to decorrelate be-
tween �x and y for B and learning to distinguish between B and S
through discriminating between M1 and M2.

In this proof-of-principle, we are satisfied with presenting re-
sults for fixed λ that is large enough to ensure decorrelation in 
the simulation sample and at the same time small enough so that 
s(�x) is sensitive to the presence of signal in the measured sample 
and improves over the naive significance estimation S/

√
B . To ver-

ify that decorrelation is enforced, we follow Ref. [8] and compute 
the Area-Under-Curve (AUC) for the s(�x) classifier for the M1 and 
M2 samples in the simulation dataset. If the AUC is approximately 
0.5, we have a classifier that is not better than a random classifier 
and thus it has learned to ignore any possible correlations between 
�x and y. We emphasize that the sole purpose of the simulation 
dataset is to ensure decorrelation, and we never compare data to 
simulation to obtain a significance after training. This makes the 
test more robust against background mismodelling than other un-
supervised methods for anomaly detection which avoid the use of 
anomaly cuts at the expense of performing data-to-simulation hy-
pothesis tests such as Refs. [14–19]. This is only possible because 
we assume that the simulations are precise enough to capture 
qualitative correlations between features in data. The simulator 
precision needed for decorrelation to be effective is considerably 
less than what is needed for a full multivariate comparison with 

1 We always reweigh the events from both data and simulation during training 
in such a way that each of the four subset of events {Mdata

1 , Mdata
2 , Msim.

1 , Msim.
2 } has 

the same total weight.
3

measurements which often suffers both from systematic biases in 
the simulations and from the computational cost of achieving a 
given statistical precision.

3. Application: LHC Olympics

In order to demonstrate its power, we apply our method to the 
LHC Olympics R&D labelled dataset [20]. The dataset is comprised 
of dijet events from two different sources: SM quantum chromo-
dynamics (QCD) processes (background B), and the production of a 
hypothetical new resonance W ′ with mass mW ′ = 3.5 TeV, decay-
ing to two intermediate particles X and Y with masses mX = 500
GeV and mY = 100 GeV, which in turn both decay promptly to 
pairs of quarks producing two large-radius jets with a two-prong 
substructure (signal S). Our variable of interest y is the recon-
structed dijet invariant mass m jj of the two hardest (in pT ) jets in 
the event. Mimicking the selection criteria of Ref. [8], the selected 
events have a reconstructed dijet mass m jj ∈ [3.1, 3.9] TeV. To per-
form CWoLa [5], we define two orthogonal regions M1 ≡ {m jj ∈
[3.3, 3.7] TeV} and M2 ≡ {m jj ∈ [3.1, 3.3] TeV ∪ [3.7, 3.9] TeV}. In 
the following, we refer to S and B as the total number of Signal 
and Background events in M1 ∪ M2.

For anomaly score input features �x, we choose a set of vari-
ables based on the invariant masses and the first N-subjettiness 
ratios [21,22] of the two selected jets. Ordering the jets by mass, 
with j = 1 being the heavier jet, our variables are

�x = {m1 − m2,m2, τ21,1, τ21,2} . (7)

The correlation between �x and m jj is mostly concentrated in 
the correlations between {m1, m2} and m jj . To illustrate how im-
portant they are, we define

�ab
c (mbin

j j ) = E[mc|m jj ∈ mbin
j j ,a] −E[mc|b]

E[mc|b] , (8)

where a, b ∈ {B, S} and c ∈ {1, 2}. �ab
c (mbin

j j ) represents the relative 
difference between the average of mc in a given m jj bin mbin

j j for 
process a and the average of the same observable over the whole 
m jj range for process b. If a = b, this observable conveys the pres-
ence of a correlation between mc and m jj for a given process. For 
a 
= b, this observable conveys the difference in the mc probability 
distributions for the two processes and its dependence on m jj . By 
comparing �B B

c with (S/B)�S B
c we can check whether the corre-

lations between mc and m jj can obscure the differences between 
signal and background that CWoLa aims to learn. The prefactor 
S/B is introduced to account for the fact that the data contains 
less signal than background and originates from comparing the full 
data distribution to the background-only distribution and separat-
ing the signal and the background contributions:

�S+B,B
c = B

S + B
�B B

c + S

S + B
�S B

c ≈ �B B
c + (S/B)�S B

c .

We show in Fig. 1 the resulting distributions for m1 and m2, 
with the largest S/B considered in this work, S/B = 0.01. We ob-
serve how the correlation between features for the background 
process, as evidenced by the monotonic increase of �B B

c from neg-
ative to positive values towards larger m jj , is sizable and crucially 
more pronounced compared to the S/B weighted difference be-
tween S and B as traced by �S B

c . In other words, the correlation 
between mc and m jj in the background can easily mask the pres-
ence of a small signal. For lower S/B , the correlations become 
even more dominant and can lead to a strongly biased anomaly 
score. In addition, in our approach the correlations will also induce 
statistical dependence between s(�x) and M1,2 even in absence of 
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Fig. 1. Distribution of �ab
c defined in Eq. (8) comparing correlations between 

{m1, m2} and m jj to the differences between S and B for the largest S/B con-
sidered. Vertical error bars signify statistical uncertainties, while horizontal bars 
indicate m jj bin width. Vertical dashed lines denote boundaries between signal 
(M1) and side-band (M2) regions. See text for details.

a signal and thus jeopardize the validity of the null-hypothesis 
test.

In order to address this crucial issue, we follow Ref. [8] and 
incorporate a set of simulated events into the training stage. As 
simulation, we consider the background provided in the labelled 
version of the Black Box 1 (BB1) dataset. We use BB1 as simula-
tion to take advantage of the larger signal sample provided in the 
R&D dataset. Using the loss function defined in Eq. (6), the clas-
sifier is then trained to distinguish M1 and M2 in data but not 
in simulation, obtaining a s(�x) that is agnostic to correlations be-
tween �x and y for QCD. As a classifier, we use a very similar set-up 
as in Ref. [8]: we train a Neural Network composed of three hid-
den layers with 64 nodes each and ReLU activation function with 
a sigmoid function applied to the output to ensure s(�x) ∈ [0, 1]
for 20 epochs using the ADAM [23] optimizer. The Neural Network 
is implemented in PyTorch [24]. We have trained our classifier 
using k-fold cross-validation with k = 10 to avoid overfitting by 
ensuring that every s(�xn) is obtained by combining the data point 
�xn with a classifier which has not seen �xn during training. We 
also perform several random weight initializations to ensure bet-
ter convergence. At the end of training, we evaluate the AUC score 
between the M1 and M2 simulated samples to ensure that decor-
relation is achieved.

We show in Fig. 2 the learned s(�x) for different S/B with 
B = 250k and λ = {0.0, 1.0}. In each plot, the binning is chosen in 
such a way that each bin has a relative statistical uncertainty lower 
than or equal to 1%. This choice ensures good performance of the 
density estimation needed for the hypothesis test. We can appreci-
ate how as S/B increases, s(�x) goes from being mostly centered 
around s = 0.5 to yielding higher s values, indicating improved 
learning of signal features. However, the binning choice obscures 
somewhat how much the background and signal are separated 
(within the highest s bin), as the whole signal is grouped together 
with the necessary background events to obtain a 1% statistical un-
certainty. In absence of correlation mitigation (for λ = 0), anomaly 
score bias causes clearly unbalanced classification of events in M1
and M2 even in absence of any signal. The introduction of λ = 1
causes the events to be even more centered around 0.5, spe-
cially for low S/B . However, more importantly, λ ≥ 0 forces the 
training to ignore possible correlations between �x and y for (sim-
ulated) background and thus approaches a random classifier for 
S/B → 0.

As expected, the impact of λ is even more pronounced when 
testing for statistical independence. For each dataset of {s, m jj}
4

values, we estimate mutual information and obtain the p-value 
associated with the null hypothesis as detailed in Section 2. We 
show in Fig. 3 the resulting estimated Îdata and their correspond-
ing p-values. We also ran a series of pseudo-experiments to verify 
that the asymptotic limit is appropriate. We only present results 
for λ = 1 because for λ = 0 we are able exclude I(s, y) = 0 for all 
S/B with very high confidence (p-value < 10−14). This, as detailed 
in Section 2, is because we are excluding conditional independence 
in the background process due to correlations between �x and y. 
This is specially important for S/B = 0, where the effect of corre-
lations can mislead CWoLa to falsely exclude the background-only 
hypothesis.

We observe that for λ = 1 the proposed test has the required 
behavior: for S/B = 0 the test yields results consistent with statis-
tical independence, while an increase of S/B leads to an increas-
ingly strong exclusion of the null hypothesis. The use of SA-CWoLa

thus ensures that we can identify the null hypothesis with the 
background-only hypothesis. For S/B > 0, we also compute the 
discovery significance Z = �−1(1 − p), where � is the unit Gaus-
sian cumulative distribution function, and compare it to the naive 
counting significance Z0 = S/

√
B . We observe how our method 

presents an increased discovery significance even compared to the 
case of perfect (up to statistical fluctuation) knowledge of back-
ground yields.

Overall, Fig. 3 shows how Î can be used to infer whether the 
data presents a deviation from the null hypothesis, defined as the 
case where a single process (or an m jj independent mixture of 
processes) is present for which s and m jj are independent. This is 
the analogous to the p-value obtained using the Bump Hunt in a 
“traditional” implementation of CWoLa. However, contrary to ex-
isting approaches, here there is no selection cut to be optimized, 
and no extrapolation of the background into the signal region is 
required.

In principle the method could learn the likelihood-ratio be-
tween signal and background, which is the optimal test-statistic. 
However, the presence of the decorrelation term in Eq. (6) reduces 
the optimality of s and consequently Î . This can be seen by the 
decrease in Z/Z0 as S/B increases. When S/B is large enough, 
s(�x) will ignore the small correlations in each individual process 
even for λ = 0.0. A non-null λ will thus only worsen the perfor-
mance of the algorithm. However, as we are interested in low S/B
cases where anomaly detection is useful, a more conservative ap-
proach which is robust to correlations even when there is no signal 
present is warranted.

In the previous paragraphs, we have shown how the proposed 
method yields an appropriate test statistic which is different from 
existing approaches. In Table 1 we provide a significance compar-
ison of the proposed method to two traditional implementations 
of CWoLa which we denote as “Anomaly cuts” and “Bump Hunt”. 
The former, implemented e.g. in Ref. [25], assumes that no signal is 
present in the side-band region M2 and estimates the total num-
ber of background events in the signal region M1 through the use 
of cuts on the anomaly score. For a fixed efficiency in the side-
band region ε2, the estimated background event yield in signal 
region is ε2N1. If the measured efficiency in the signal region ε1 is 
larger than ε2, then there is an excess of events with a significance 
of

Z =
⎧⎨
⎩

(ε1−ε2)N1√
ε2(N1+N2)

, if ε1 ≥ ε2 ,

0, if ε1 < ε2 .

Similarly, the Bump Hunt method also assumes no signal is 
present in M2 but estimates the background event yield in M1
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Fig. 2. Anomaly score s(�x) probability density function (PDF) after training for different event labellings. Each row corresponds to a given S/B and each column to a given 
λ. Non-uniform binning ensures that when considering the full dataset each bin has a relative statistical uncertainty equal or lower than 1%, resulting in between 15 and 
25 bins per plot. The data is shown both labelled according to the (observable) values of m jj (defining M1 and M2) as well as according to the (unobservable) truth labels 
(background and signal).
differently. In this approach, the background m jj distribution is ex-
plicitly modelled and a Profile Likelihood Ratio fit of the number 
of signal events in M1 is performed. We follow Ref. [8] and model 
the background distribution for m jj ∈ [3.1, 3.9] TeV as
5

dσ

dm jj
=

p0

(
1 − m jj√

s

)p1

(
m jj√

s

)p2+p3 log
m jj√

s

,
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Fig. 3. PDFs of estimated mutual information, its numerical distribution under the null hypothesis estimated through resampling, and its asymptotic distribution under the 
null hypothesis, for different considered benchmark datasets. Each plot corresponds to a different choice of S/B with λ = 1. We combine the estimated Î with their asymptotic 
distribution to obtain the resulting p-values. When S/B > 0, we also compute the discovery significance Z = �−1(1 − p), where � is the unit Gaussian cumulative distribution 
function, and compare it to Z0 = S/

√
B .
where 
√

s is the center-of-mass energy and pi are parameters to 
be fitted from the m jj distribution with the signal region masked. 
Once the fit is performed, the expected number of background 
events in M1 b is estimated from the integral of the background 
distribution over the signal region. We define the Likelihood func-
tion in the signal region as

L(s, θ) = P(N1|s + b + θ)N (θ |0,σ ) ,

where P is the Poisson probability mass function of measuring 
N1 events, N is the Normal probability density, θ is a nuisance 
parameter for background mismodelling and σ is the background 
yield error propagated from the pi fit. From this Likelihood we 
build the usual test statistic

q0 =

⎧⎪⎨
⎪⎩

−2 Ln L(0,
ˆ̂
θ)/L(ŝ, θ̂ ), if ŝ ≥ 0 ,

0, if ŝ < 0 ,

where ŝ, θ̂ are the maximum likelihood estimates of s and θ and ˆ̂θ
is the maximum likelihood estimate of θ when keeping s fixed 
to 0. The resulting significance is Z = √

q0. We implement the 
Bump Hunt by itself and in conjunction with the use of cuts in 
the anomaly score to enhance the efficiency as would be done in 
a resonance search.

From Table 1 we observe how in every case the introduction 
of λ > 0 reduces the significance. However, it does not imply re-
silience against spurious signals for all strategies. Both traditional 
methods are highly dependent on the arbitrary ε2 choice, show-
ing the appearance of spurious significance at S/B = 0 for certain 
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values. In general, we observe that our method is better suited for 
smaller S/B than existing methods. This is mainly because it does 
not discard potential signal events. The Bump Hunt with no cuts 
also does this, but its significance is lower for non-null S/B (for 
the extreme S/B = 0.01, its significance is even lower than S/

√
B

due to the presence of the nuisance parameter). From this compar-
ison, we assess that without clear criteria for an optimal anomaly 
cut (ε2), the mutual information-based method performs better for 
low to null S/B whereas the cut and count based methods outper-
form the mutual information test for larger S/B .

Another benefit of our model compared to traditional searches 
is scalability with sample size. If decorrelation is ensured, the 
larger the sample size the more powerful the method. This is 
certainly not true for the Bump Hunt, where the background mod-
elling is an inherent approximation which necessarily introduces 
bias for large enough sample sizes. Conversely, for smaller datasets 
our method takes advantage of the full dataset in a better way 
than through the use of fixed anomaly cuts. The asymptotic ap-
proximation for the mutual information CDF, which is vital for 
the test, has been shown numerically [13] to be valid for N > 50
events and true mutual information I ≤ 0.14, conditions that we 
expect to always be satisfied in a realistic anomaly search at the 
LHC.

4. Discussions and outlook

In this work, we have presented a novel strategy to quantify the 
sensitivity of a specific anomaly detection technique, Simulation-
Assisted Classification Without Labels, by testing for statistical in-
dependence of the learned {s(�x), y} samples. We have shown that 



J.F. Kamenik and M. Szewc Physics Letters B 840 (2023) 137836

Table 1
Significances obtained with different strategies for different S/B ratios, see text for details.

Significance S/B = 0.0 S/B = 0.0025 S/B = 0.005 S/B = 0.01

S/
√

B 0.0 1.29 2.55 6.40

Mutual Info λ = 0.0 6.40 7.04 7.58 14.1
Mutual Info λ = 1.0 0.70 3.03 5.33 13.0

Anomaly cuts ε2 = 0.1, λ = 0.0 3.35 4.78 6.27 11.6
Anomaly cuts ε2 = 0.1, λ = 1.0 2.48 2.26 4.49 10.0

Anomaly cuts ε2 = 0.01, λ = 0.0 2.26 4.62 10.1 27.0
Anomaly cuts ε2 = 0.01, λ = 1.0 0.55 1.66 10.7 27.1

Anomaly cuts ε2 = 0.001, λ = 0.0 1.39 10.3 17.9 34.2
Anomaly cuts ε2 = 0.001, λ = 1.0 0. 0.57 13.6 37.0

Bump Hunt 0.95 1.97 2.74 5.30

Bump Hunt ε2 = 0.1, λ = 0.0 6.41 9.26 10.92 19.5
Bump Hunt ε2 = 0.1, λ = 1.0 3.81 4.35 6.93 16.0

Bump Hunt ε2 = 0.01, λ = 0.0 4.77 6.96 14.2 34.7
Bump Hunt ε2 = 0.01, λ = 1.0 0.97 2.53 14.0 35.0

Bump Hunt ε2 = 0.001, λ = 0.0 2.98 12.3 20.0 35.8
Bump Hunt ε2 = 0.001, λ = 1.0 0.29 1.60 15.9 38.7
as long as one can rely on SA-CWoLa to enforce conditional inde-
pendence of the background processes p(s, y|B) = p(s|B)p(y|B), 
the null hypothesis of statistical independence is equivalent to 
the background-only hypothesis. Thus, testing for statistical in-
dependence in the observed data corresponds to testing for the 
background-only hypothesis.

As a proof of principle, we have considered mutual information 
as a test statistic. MI has a known asymptotic distribution under 
the null hypothesis for binned data and has low computational 
cost. We have tested our method with LHC Olympics datasets 
and have shown that the test statistic yields the expected behav-
ior. Most importantly our proposed test statistic provides a clear 
statement on the presence of signal, i.e. is capable of correctly 
yielding a no-signal response. This opens the door to testing for 
new physics in LHC datasets without the need for anomaly score 
cuts, as well as reducing the need for accurate background mod-
elling.

Possible extensions of the present work could consider other 
tests for statistical independence such as Hoeffding’s D indepen-
dence test or distance correlation, which can be applied on un-
binned s(�x) and y, at the expense of increased computational cost. 
Similarly, other methods for anomaly score training and decorre-
lation of features could be explored. Employing the most suitable 
classification and decorrelation methods can be model and dataset 
dependent, and has not been the main focus of this work.

Another possibility is to assume that no signal populates the 
side-bands and identify p(ŝ|M2) = p(ŝ|z = 0). This opens the door 
for an optimal analysis since one can now perform a template fit in 
the signal region [26]. However, it also potentially introduces ad-
ditional uncertainties and/or biases due to background modelling 
that the present method avoids. We leave a more complete study 
in this direction for future work.

Regarding other physics applications, we emphasize that by dis-
pensing with the need for explicit functional background mod-
elling, our test is especially useful for anomaly detection appli-
cations that do not search for predetermined (modelled) signal 
shapes [2], such as invariant mass resonances as in e.g. Refs. [25,
27]. However, it could also be applied in supervised searches as 
an additional cross-check to control bias due to modelling at the 
expense of loss of optimality.
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