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Abstract

Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling the
position of the animal within an environment. Grid maps of cells belonging to the same
module share spacing and orientation, only differing in relative two-dimensional spatial
phase, which could result from being interconnected by a two-dimensional attractor guided
by path integration. However, this architecture has the drawbacks of being complex to
construct and rigid, path integration allowing for no deviations from the hexagonal pattern
such as the ones observed under a variety of experimental manipulations. Here we show that
a simpler one-dimensional attractor is enough to align grid cells equally well. Using
topological data analysis, we show that the resulting population activity is a sample of a
torus, while the ensemble of maps preserves features of the network architecture. The
flexibility of this low dimensional attractor allows it to negotiate the geometry of the
representation manifold with the feedforward inputs, rather than imposing it. More
generally, our results represent a proof of principle against the intuition that the architecture
and the representation manifold of an attractor are topological objects of the same
dimensionality, with implications to the study of attractor networks across the brain.

eLife assessment

In this valuable study, the authors use a computational model to investigate how
recurrent connections influence the firing patterns of grid cells, which are thought to
play a role in encoding an animal's position in space. The work suggests that a one-
dimensional network architecture may be sufficient to generate the hexagonal firing
patterns of grid cells, a possible alternative to attractor models based on recurrent
connectivity between grid cells. However, the support for this proposal was
incomplete, as some conclusions for how well the model dynamics are necessary to
generate features of grid cell organization were not well supported.
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Introduction

Grid cells in the medial entorhinal cortex and other brain areas provide a representation of the
spatial environment navigated by an animal, through maps of hexagonal periodicity that have
been compared to a system of Cartesian axes 1     -3     . While different mechanisms have been
proposed as the basis to make a neuron develop a collection of responsive fields distributed in
space with hexagonal periodicity, the alignment of axes of symmetry between neighboring, co-
modular neurons in most computational models occurs through local synaptic interactions
between them 4     -7     . In general, the network responsible for this communication can be thought
of as a two-dimensional continuous attractor 8     . Models tend to focus either on grid cells
performing path integration5     -7      or, as in the case of this work, on mapping of spatial inputs.

Attractor networks are among the clearest examples of unsupervised self-organization in the
brain. Point-like attractors emerge naturally in a network with dense recurrent connectivity
equipped with Hebbian plasticity, and can be used to store and retrieve discrete pieces of
information 9     . If a number of point-like attractors is set close enough to each other along some
manifold, a continuous attractor emerges. One-dimensional ring attractors have been used to
model head direction cells 10     ,11     , while two dimensional attractors have been used to model
population maps of space such as those of place cells or grid cells 6     ,12     ,13     . A common
underlying assumption is that the dimensionality of the network architecture mimics that of the
space that is being represented, which explains why the word ‘dimensionality’ applied to an
attractor is indistinctly used to refer to one or the other. However, the network activity does not
only depend on recurrent connections, but also on inputs, and the potential interplay between
these two sources has so far received little attention. Grid cells have been modeled using two-
dimensional attractors because they represent two-dimensional space, but a number of reasons
call for the exploration of alternatives. First, grid cells are also capable of representing one
dimensional variables such as space, time or the frequency of a sound, or three dimensional space,
exhibiting poor to no periodicity 14     -19     . Second, two dimensional attractors impose a rather
rigid constraint on the activity of neurons, but grid maps can suffer global or local modifications
in response to different experimental manipulations 20     -26     . While distortions do not
necessarily speak against attractor activity, they are difficult to explain from the point of view of
attractors purely guided by path integration. Third, the mechanisms behind the formation and
maintenance of such a complex and fine-tuned network are far from understood, and theoretical
proposals tend to involve as a prerequisite an independent functional representation of two-
dimensional space to serve as a tutor 27     ,28     . Fourth, a recent experiment shows that when
animals are trained to navigate deprived from sensory and vestibular feedback, entorhinal cells
tend to develop a surprising ring (1D) rather than toroidal (2D) population dynamic 29     .

Here we explore the possibility that grid cells are aligned by simpler, one-dimensional attractors,
which, as we show, have the potential to flexibly organize the population activity into a space with
a dimensionality that is negotiated with the inputs rather than pre-defined. Crucially, we show for
the first time with mathematical rigor that the architecture and representational space of an
attractor network can be two different topological objects. This proof of principle broadens the
spectrum of potential candidates for the recurrent architecture interconnecting grid cells, opening
the possibility of variability along animal development and maturation, or across the multiple
brain areas where grid cells have been described.

https://doi.org/10.7554/eLife.89851.2
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Results

Grid maps aligned by a one-dimensional attractor
To understand if grid maps can be aligned by an architecture of excitatory recurrent collateral
connections simpler than a two-dimensional attractor, we trained a model in which grid maps are
obtained from spatial inputs through self-organization 4     . In this model, a layer of spatially stable
inputs projects to a layer of grid cells through feedforward connections equipped with Hebbian
plasticity (Fig. 1a     ). Two factors, all-to-all inhibition and adaptation, force neurons in the grid
cell layer to take turns to get activated. This dynamic promotes selectivity in the potentiation of
afferent synapses to any given grid cell. As a virtual animal navigates an open-field environment,
modeled entorhinal cells self-organize, acquiring maps with hexagonal symmetry as a result of
Hebbian sculpting of the feedforward connectivity matrix. Previous work shows that these maps
are not naturally aligned unless excitatory recurrent collaterals are included 4     ,27     .

We performed 100 simulations of a simplified version of this self-organizing network (Methods),
including 225 input cells and NEC = 100 grid cells, in two otherwise identical setups. In the first
scenario (2D), we added to the grid cell layer a classical architecture of recurrent collateral
connections shaped as a torus (Fig. 1b     ). In the second scenario (1D), we used instead a much
simpler ring attractor architecture. At the end of the learning process, maps in both types of
simulation had hexagonal symmetry (Fig. 1c     ). The mean population autocorrelogram also had
hexagonal symmetry, indicating that individual maps within the network shared spacing and
orientation (Fig. 1d     ), which was further confirmed by the clustering into 6 well defined groups
of first order autocorrelogram maxima for the pool of all cells (Fig. 1e     ), with phases were
distributed in distinctive patterns for both conditions (Fig. A1). Similar alignment was obtained for
the 2D architecture, which was constructed ad hoc for this purpose, and for the much simpler 1D
architecture.

For a quantitative comparison of grid cell properties, we incorporated two additional conditions: a
stripe-like linear attractor (1DL), similar to 1D but with no periodic boundaries, and a condition
with no recurrent collaterals (No), in setups otherwise identical to those of 1D and 2D. We
compared across conditions the hexagonality of maps (through a gridness index), the spacing
between neighboring fields and the angular spread in axes of symmetry across the population,
indicative of alignement (Fig. 2a     ). We found marked differences only between the No condition
and the other three. Gridness was highest for 1D, followed closely by 2D and 1DL, while the No
condition exhibited markedly lower values. Spacing and spread were lowest for the 2D condition,
followed by a small margin by 1D and 1DL, with the No condition again presenting the largest
differences with the rest. These results suggest that attractor connectivity of all investigated types
not only aligns grid cells similarly but also has the effect of compressing maps in terms of spacing.
To visualize how individual maps varied across categories, we plotted the distribution of pooled
maxima (as in Fig. 1e     ) relative to the axis of the corresponding autocorrelogram presenting the
highest correlation value (Fig. 2b     ).

To address differences in the self-organization dynamics, we next inspected maps along the
learning process (Fig. 2c     ). We found that the mean gridness of cells initially increased at a
similar pace for all conditions, saturating early in this process only for the No condition. Further
increase in gridness was an emergent property only allowed by attractor dynamics, which in the
2D condition took a slightly slower start compensated later by an elbow toward plateauing
behavior at higher gridness values. For simulations with attractors, population gridness, while
always lower than mean individual gridness, increased steadily, with 2D exhibiting slightly higher
values most of the time, but no substantial increase was observed in the No condition given the
absence of alignment between maps. A similar lack of alignment was found for a condition in

https://doi.org/10.7554/eLife.89851.2
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Figure 1.

Attractors with a 2D or 1D architecture align grid maps.

a, Schematics of the network model, including an input layer with place cell-like activity (purple), feedforward all-to-all
connections with Hebbian plasticity and a grid cell layer (green) with global inhibition and a set of excitatory recurrent
collaterals of fixed structure. b, Schematics of the recurrent connectivity from a given cell (orange) to its neighbors (green) in
a 2D (top) or 1D (bottom) setup. c, Representative examples of maps belonging to the same 2D (top) or 1D (bottom) network
at the end of training. d, Average of all autocorrelograms in the same two simulations, highlighting the 6 maxima around the
center (black circles). e, Superposition of the 6 maxima around the center (as in d) for all individual autocorrelograms in the
same two simulations.

Figure 2.

Quantification of the alignment and contraction of grid maps by different attractor architectures.

a, Distribution of gridness (left), spacing (center) and spread (right) at the end of the learning process across conditions
(quartiles; identical simulations except for the architecture of recurrent collaterals). b, Smoothed distribution of maxima
relative to the main axis of the corresponding autocorrelogram. c, Mean evolution of gridness (top) and spacing (bottom) in
transient maps along the learning process, calculated from individual (left) or average (right) autocorrelograms. Individual
spacing negatively correlates with time for the 2D (R: -0.78, p: 10-84), 1D (R: -0.77, p: 10-79) and 1DL (R: -0.74, p: 10-71).
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which recurrent input weights were either too strong or too week compared with feedforward
weights, as well as for a condition in which recurrent inputs to a neuron where shuffled (Fig. A2).
The asymptotic behavior for both individual and population gridness was similar for all
conditions with attractors. Individual spacing in maps with attractors showed a decrease
throughout most of the learning process, more pronounced in the 2D condition, while the No
condition evidenced a steady increase toward an asymptote. A combination of progressive
increase in gridness and decrease in spacing across days has been observed in animals
familiarizing with a novel environment20     . Our results, although only qualitatively exhibiting
similar trends, point to the efficiency of excitatory collaterals in imposing constraints to the
population activity as a possible mechanism. This compression of maps resulting from experience,
also observable by turning off the attractor in a trained network (Fig. A3), was less evident in the
mean population spacing, obtained from average autocorrelograms, indicating that, at least in our
simulations, this phenomenon has a strong driver in the deviation of individual cells from the
coordinated population behavior, which would explain why the contraction is more marked for
the most rigid constraint (2D). Despite these subtle differences, gridness, spacing and spread
looked overall very similar across conditions with attractors, and markedly different in the No
condition.

Toroidal topology of the population activity space
Classical features such as gridness and spacing looked similar in maps obtained with different
attractor geometry. We next asked, more generally, if the topology of the population activity was
also the same for different conditions. Every pixel in the arena where the virtual animal runs is
associated with a vector containing the mean activity of each neuron in that position. These
vectors are the columns of the population matrix M, where the element Mij is the mean activity of
the ith neuron in the jth pixel. This set of vectors form a point cloud of size equal to the number of
pixels in a space of dimension NEC (the number of grid cells). It is commonly understood, given the
symmetry of grid maps, that this cloud should be a sample of a low dimensional structure
represented by a twisted torus and embedded in a high dimensional space 8     , as recently shown
in experimental data 13      (see Methods and Fig. S4     ).

The topology of a point cloud can in some cases be completely determined through a series of
methods in topological data analysis. The theorem of classification of closed surfaces states that if
the population activity space is a sample of a geometric object that (i) is locally two-dimensional,
(ii) has neither boundary nor singularities and (iii) is orientable, then its topology is determined by
its homology 30      (see Methods).

To understand whether and when this is true in our simulations, we first studied the local
dimension of the population activity space (i) for the different conditions. To avoid irregularities
sometimes found at the perimeter of the environment, we used for all further analyses the 60 cm
wide central square of each 1 m wide map, and our conclusions apply to this area. For every data
point, we extracted the principal components of a local neighborhood around it (Fig. S1     ). We
defined the local dimension at this point as the number of principal components for which an
elbow in the rate of explained variance in the local neighborhood was found. In all conditions,
most of the data points had a local dimensionality equal to 2 (more than 90 % in all conditions),
with eventual outliers that had some impact on the mean but not on the median (Fig. 3a     ). To
understand if these deviations were the result of noise or, in contrast, had a structure in the
physical space, we next plotted individual maps of local dimensionality (Fig. 3b     ) and their
average across simulations of the same condition (Fig. 3c     ). We only observed a structure in the
No condition, where mean values close to 3 were concentrated at the corners of the reduced map.
These results suggest that the population activity in all conditions with attractors is concentrated
around a structure with a local dimension of 2.

https://doi.org/10.7554/eLife.89851.2
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Figure 3.

The population activity in all attractor conditions is
locally 2-dimensional, with no boundary or singularities.

a, Distribution across conditions of the fraction of the data with local dimensionality of 2 (quartiles). b, Distribution of local
dimensionality across physical space in representative examples of 1D and 2D conditions. c, Average distribution of local
dimensionality for all conditions (same color code as in b). d-f, As a-c for but exploring deviations of the local homology H1
from a value of 1, the value expected away from borders and singularities.
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Next, to understand if the data had boundary or singularities (ii), we studied the local homology of
the underlying space by estimating the first Betti number β1 in an annulus neighborhood around
each data point 31      (Fig. 3d     ). Roughly, Betti numbers (β0, β1, β2) indicate the number of
connected components (β0), holes (β1), or voids (β2) in a point cloud. These numbers are estimated
from persistence diagrams, which aim to identify cycles in the point cloud that persist across a
wide range of typical distances (see Methods and Appendix I). In a sample of a locally 2-
dimensional manifold with neither boundary nor singularities, the data inside the annulus
neighborhood is expected to form a ring, with local β1 = 1, while points in the boundary are
characterized by β1 = 0 and singularities by β1 >1 (Fig. S1d     ). We observed that most of the data
points had β1 = 1, which was the case for more than 90% of data in conditions with attractors and
around 70% in the No condition. The No condition had not only the lowest fraction of data with β1
= 1, but also the lowest deviation in the distribution, pointing to a systematic decrease in β1. This
could be explained by examining individual maps of local β1 (Fig. 3e     ) and averages across
simulations (Fig. 3f     ). The conditions with attractors exhibited no structure in eventual
deviations from β1 = 1, but the average for the No condition had a value β1 = 0 in the pixels close to
the perimeter of the reduced map, indicating a non-empty boundary set in the population activity.

Put together, these results suggest that the population activity for simulations with attractors is
locally 2-dimensional, without boundary or singularities, forming a closed surface. In contrast,
data clouds in the No condition do not meet the first two conditions of the theorem of classification
of closed surfaces, and are compatible with a two-dimensional sheet exhibiting a boundary along
the edge of the space selected for analysis.

We next studied the orientability (iii) of the population activity space for the conditions with
attractors. For each simulation we obtained and compared persistence diagrams in Z2 and Z3. The
pooled distribution of such diagrams and the averages across 100 simulations of each type
(Methods) were almost identical for conditions 1D, 2D (Figs. 4a,b     ) and 1DL (Fig. S5     ),
indicating that the population activity in all cases is an orientable manifold.

Given that for simulations with attractors the three conditions posed by the theorem of
classification of closed surfaces were met, we were able to conclude that the topology of the
population activity is determined by its Betti numbers. From the average diagrams for all
conditions with attractors, Betti numbers could be qualitatively estimated as those of a torus: β0 =
1, β1 = 2 and β2 = 1 (Fig. 4a     ). This was the case not only for average persistence diagrams, but
also for most of the individual simulations, as shown in the plots of the distribution across
simulations of the difference in lifetime of consecutive generators ordered from largest to smallest
(Fig. 4c     ). When quantifying the Betti numbers for individual simulations using a common cutoff
value (Methods), 82 (out of 100) were classified as [1, 2, 1] in the 1D condition and 76 in the 2D
condition (Fig. 4d     ), with small deviations compatible with a noisy scenario for the rest of the
simulations.

In summary, our analyses show that different attractor architectures (torus, ring, stripe) similarly
constrain the population activity into a torus embedded in a high dimensional space. This is not
surprising for the 2D condition, where the architecture has itself the topology of a torus, but is an
unprecedented result in the case of the 1D and 1DL conditions, given that these simpler attractors
were not tailored to represent two-dimensional neighboring relations.

Features of network architecture in the spatial maps
Our analyses showed that all conditions with attractors had a population activity with the topology
of a torus, irrespective of the architecture of recurrent connections. We next asked if similar tools
could be used to unveil differences between conditions, following the intuition that the network
architecture could perhaps be reflected in the geometry of map similarity relationships across
neurons. We computed Betti numbers for the point cloud given by spatial maps of individual

https://doi.org/10.7554/eLife.89851.2


Sabrina Benas et al., 2024 eLife. https://doi.org/10.7554/eLife.89851.2 8 of 44Sabrina Benas et al., 2024 eLife. https://doi.org/10.7554/eLife.89851.2 8 of 44

Figure 4.

For 1D and 2D architectures, the population activity
is an orientable manifold with the homology of torus.

a, Smoothed density of pooled data (colored areas) and average across simulations (circles) of persistence diagrams with
coefficients in Z2 for H0 (grey), H1 (blue) and H2 (red) corresponding to simulations in the 1D (top) and 2D (bottom)
conditions. b, As a but with coefficients in Z3. Similarity with a implies that population activity lies within an orientable
surface. c, Distribution across simulations of lifetime difference between consecutive generators ordered for each simulation
from longest to shortest lifetime for 1D (left) and 2D (right). Maxima coincide with Betti numbers. d, Pie plot and table
indicating the number of simulations (out of 100 in each condition) classified according to their Betti numbers.

https://doi.org/10.7554/eLife.89851.2
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neurons, represented by a set of NEC = 100 points (the number of neurons) in a 625-dimensional
space (the number of pixels in the reduced map) (Fig. 5     ). This is equivalent to what was done in
the previous section, but with the transpose of the matrix M introduced there.

For the 2D condition, the mean diagram could qualitatively be described as having the Betti
numbers of a torus [1,2,1], which was also apparent in the difference between consecutive ordered
lifetimes (Fig. 5a,b     ). However, in individual persistence diagrams only 27 simulations had Betti
numbers [1,2,1], while 69 had Betti numbers [1,2,0] where the cavity could not be correctly
identified (Fig. 5c     ). The reason for this discrepancy, or the failure to find the cavity in individual
diagrams, is possibly related to the low number of datapoints used in this analysis (100 vs. 625 in
the previous case) taking the signal-to-noise ratio close to the limit of no detection. In contrast, 1D
simulations had an average persistence diagram similar to the majority of individual diagrams
(86%), characterized by the Betti numbers of a ring [1,1,0], while for 1DL simulations the average
diagram and 97% of individual diagrams had Betti numbers [1,0,0] compatible with a stripe.

In summary, the analysis on the matrix M showed that all conditions with attractors had a
population activity embedded in a torus, while the analysis on its transpose showed qualitative
differences across conditions, where in general the homology recapitulated that of the
architecture of recurrent connections.

Flexibility of one-dimensional attractors
Given that one-dimensional attractors are not constructed in an ad hoc way to guarantee the
correct organization of the population activity into a pre-defined configuration, we next asked
what kind of geometrical arrangement was found by our self-organizing model to allow covering
two-dimensional space with a one-dimensional arrangement of neurons. To visualize the
population activity in space, we colored neurons in the 1D ring attractor according to hue, so that
connected neurons along the ring were assigned similar colors. We then assigned to each pixel in
the virtual space the color that best described the mean population activity associated with it. This
allowed us to plot for each simulation a map in which color represented the mean population
activity (Fig. 6a     ). While all individual colors in these maps had hexagonal periodicity, as
expected from a population of aligned grid maps, the geometry of the attractor layout in physical
space allowed for a classification into 4 orders (O0 to O3) with different prevalence (Fig. 6b     ). A
way to understand these configurations is to imagine a cycle along the attractor. The cycle begins
and ends in the same color, but since in physical space any given color is constrained to have
hexagonal periodicity, the end has to lie either in the same place as it started (O0) or in an n-order
neighboring field (in our case n = 1 to 3; Fig. 6c     ). This conceptualization implies that, although
we only found 4 configurations for aligning grid cells with a 1D attractor, the constraint imposed
by hexagonal symmetry is compatible with a countably infinite number of them (as many as
orders of neighbors in a hexagonal grid), provided attractors are able to stretch enough in physical
space. We speculate that the number of neurons in the grid cell layer (NEC) could play a critical
role in determining to what extent the attractor can stretch and which configurations can be
achieved in practice by a given network. Simulations of the 1DL condition were classified into
categories following the same logic, by assessing the distance between the two extremes of the
attractor (colored black and white) in terms of neighboring order in a hexagonal grid (Figs. 6b     
and 6d     ).

These results show that the weak constraint imposed by one-dimensional flexible attractors allows
for many possible solutions to co-exist as local minima of the self-organization energy landscape.

Visualization of the twisted torus
Dimensionality reduction techniques are a popular way of visualizing high dimensional data, such
as the population activity in our simulations. It should be noted, however, that in general they
provide no guarantee of preserving the topology of the data cloud in the original high dimensional

https://doi.org/10.7554/eLife.89851.2
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Figure 5.

Features of the attractor architecture observed in the persistent homology of neural activity.

a, From top to bottom, diagrams as in Figure 4a      but for the point cloud of neurons in conditions 1D, 2D and 1DL. Each
panel shows smoothed density of pooled data (colored areas) and average (circles) persistence diagrams for H0 (gray), H1
(blue) and H2 (red) with coefficients in Z2. b, As in Figure 4c     , distribution of the difference between consecutive generators
ordered for each simulation from longest to shortest lifetime. c, Pie plots showing the percentage of simulations in which
each combination of Betti numbers was found.

https://doi.org/10.7554/eLife.89851.2
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Figure 6.

Multiple configurations for the alignment of grid maps by one-dimensional attractors.

a, Top: Population map for 4 representative examples of 1D simulations with increasing configuration order (indicated) from
left to right. Color indicates the region of the ring attractor best describing the mean population activity at each position.
Schematics of some of the frontiers, defined by abrupt changes in color (black), and hexagonal tiles maximally coinciding
with these frontiers (semi-transparent white) are included for visualization purposes. Bottom: Schematic representation of
the order of the solution as the minimum number of colors traversing the perimeter of the hexagonal tile or, equivalently,
the minimum number of hexagonal tiles whose perimeter is traversed by one cycle of the attractor. b, Table indicating the
number of simulations out of 100 in which each configuration order was found. c, Schematic representation of the ring
attractor extending in space from a starting point to different order neighbors in a hexagonal arrangement. d, As a but for
the 1DL condition. Gray scale emphasizes the lack of connections between extremes of the stripe attractor.

https://doi.org/10.7554/eLife.89851.2
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space. For our data, three-dimensional Isomap projections 32      allowed for the visualization of the
twisted torus in all conditions with attractors. In many simulations, the three-dimensional
reduction of the population activity looked like a tetrahedron (Fig. 7a     ). If data were grouped
using k-means clustering (k = 4) in the reduced Isomap space, a four-color checkerboard emerged
in physical space. The minimal tile containing all four colors was a square in which one pair of
opposite sides had simple periodicity while the other had a periodicity with a 180° twist, which is
the basic representation for the twisted torus (Fig. S1     ). Other times the same reduction
technique, with identical parameters, produced directly a torus-like shape, squeezed at two
opposite sides (Fig. 7b,c     ). While extreme solutions looked like the tetrahedron or the torus,
intermediate visualizations were also found which could not be clearly interpreted as one or the
other. The fact that the same procedure produced so different visualizations calls for a cautious
approach to interpreting the geometry of reduced data when using non-linear methods such as
Isomap. This technique does not aim to preserve the global geometry of the original point cloud,
but instead the relative distance between data points.

Our results show that there are multiple ways in which continuous attractors can align grid cells,
including simple architectures such as ring or stripe attractors. In topological terms the resulting
population activity is equivalent (homeomorphic), despite differences in the topology of the
architecture or in projections obtained through dimensionality-reduction techniques.

Discussion

Our main result is that the alignment of hexagonal axes in a model of grid cells can result from
interactions between neurons following a simple one-dimensional architecture, not constructed ad
hoc for representation of two-dimensional spaces. This possibility has not been assessed before in
modeling because a common assumption is that recurrent collateral architecture perfectly defines
the geometry of the manifold that the population activity is constrained to by the attractor. We
show for the first time that this seemingly reasonable assumption is wrong, providing two
counter-examples in which the representational space is a torus but the architecture, either a ring
or a stripe, has a different topology and even lower dimensionality. Crucially, if the attractor is
inactive, weak or shuffled, grid maps obtained under otherwise identical conditions exhibit
markedly lower levels of hexagonal symmetry and do not align, failing to constrain the population
activity into a torus. Our results open the way to considering the potential of simple flexible
attractors for a wide spectrum of modeling applications, given their capability of enacting on the
population activity a negotiated constraint, as opposed to rigid attractors with no such degrees of
freedom.

Advantages of flexible attractors are versatility and simplicity in network design. Grid cells, for
example, represent multiple geometries with individual characteristics in each case. Two-
dimensional maps of familiar environments are highly symmetric and periodic, but this is not the
case for maps in other dimensionalities. In one- and three-dimensional spatial tasks grid cells
exhibit multiple fields, as in two-dimensional navigation, but with larger and more irregular
spacing 16     -19     . In other one-dimensional tasks, involving the representation of frequency of a
sound or time, they much more often develop single response fields 14     ,15     . To properly model
this collection of scenarios with rigid attractors, one should consider a number of them embedded
on the same network architecture, each specialized for a single purpose, and possibly a
mechanism to select the attractor best suited for every situation. Alternatively, the same could
perhaps be achieved with a single architectonic principle. One-dimensional attractors are simple
enough to emerge independently of experience, as exhibited by head direction cells in rats prior to
eye-opening 33      or internally generated sequences in the hippocampus 34     . Future
computational explorations should include a wider range of architectures to assess whether even
simpler configurations than the ones used here, such as a collection of short fragmented
sequences, could align grid cells in a similar way.

https://doi.org/10.7554/eLife.89851.2
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Figure 7.

Two different visualizations of the twisted torus obtained with Isomap.

a, Top: Representative examples of dimensionality reduction into a structure resembling a tetrahedron for different
conditions (indicated). Data points are colored according to the distance to one of the four cluster centers obtained with k-
means (each one close to tetrahedron vertices; k = 4). Bottom: Same data and color code but plotted in physical space. The
white square indicates the minimal tile containing all colors, with correspondence between edges, indicated by arrows,
matching the basic representation of the twisted torus. b, Representative examples of dimensionality reduction into a torus
structure squeezed at two points, obtained in other simulations using identical Isomap parametrization. Hue (color) and
value (from black to bright) indicate angular and radial cylindrical coordinates, respectively. c, For the same two examples
(indicated), three dimensional renderings. To improve visualization of the torus cavity, color is only preserved for data falling
along the corresponding dashed lines in b.

https://doi.org/10.7554/eLife.89851.2
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Most grid cell models, in contrast to the one in this work, are focused on path integration, or the
capacity of spatial maps to persist in the absence of spatial inputs based on self-motion
information 6     ,7     ,28     . Experiments in which animals navigate in the dark support this
functionality for hippocampal and entorhinal maps, and it has been recently shown that the path
integrator can be recalibrated in an almost online fashion 35     . However, although from a
theoretical perspective grid cells are ideal candidates to implement path integration, the
involvement of some or all grid cells in this operation still needs to find direct experimental proof.
In contrast, a growing corpus of evidence suggests that grid cells can exhibit behaviors that
deviate from pure path integration. This includes local and global distortions of the two-
dimensional grid map in response to a variety of experimental manipulations 20     ,22     -26     , as
well as the progressive refinement in symmetry and decrease in spacing observed across days of
familiarization to a novel environment 21     ,36     . In our model, this last result could be understood
as an increase in the efficiency with which collateral connections impose their constraint. As
feedforward synaptic weights are modified, neurons become better tuned to the constraint and
individual deviation from the collective behavior decreases. More generally, understanding how
this heterogeneous set of experimental results could emerge from interactions between path
integration and mapping is a challenge for future work in which the concept of flexible attractors
could prove useful. Path integration is an operation that needs to be computed in the direction of
movement, which is at a given instant a one-dimensional space. Many grid cell models can be
thought of as employing several overlapping two-dimensional attractors, each specialized in one
direction of movement, to achieve path integration in all directions6     , a task that, we speculate,
one-dimensional attractors might be naturally suited for without loss of flexibility.

In a recent experiment, mice were trained to run head-fixed at a free pace on a rotating wheel, in
complete darkness and with no other sensory or behavioral feedback 37     . It could be expected
that in such a situation the population activity deprived of inputs is influenced to a greater extent
by its internal dynamics, so that this kind of experiment offers a window into the architecture of
the attractor. The experimenters observed that the entorhinal population dynamic engaged in
cycles, with a period of tens of seconds to minutes. These cycles, naturally occurring here but not
in other areas of the brain, point to the possibility of one-dimensional attractor arrangements,
modelled by either our 1D or 1DL conditions, as a prevailing organizational principle of the
entorhinal cortex. Future efforts should focus on whether or not a relationship exists between the
organization of grid cells within entorhinal cycles and their relative spatial phases in two-
dimensional open field experiments, contrasting the population map with configurations shown in
Figure 6     .

Grid cells were originally described in superficial layers of the medial entorhinal cortex, but were
later found also in other entorhinal layers and even in an increasing number of other brain areas
38     -40     . Our work points to the possibility that organizational principles simpler than previously
thought could act in some of these areas to structure grid cell population activity. In addition,
given that grid cell properties change substantially during the early life of rodents 41     ,42     ,
flexible attractors could also be taken into account as a potential intermediate stage toward the
formation of more complex architectures.

Our work shows that attractor networks have capabilities that so far have not been exploited in
modeling. Addressing the dimensionality of an attractor network, as is common practice to
describe it, becomes challenging from the perspective of our results, given that a single network
architecture can organize population activity into manifolds of diverse geometry, and the same
geometry can be achieved by architectures of different dimensionality. Generally speaking,
operations of cross-dimensional embedding achieved by flexible attractors could shed light on the
way we map a world of unknown complexity through our one-dimensional experience.

https://doi.org/10.7554/eLife.89851.2
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Methods

The model is inspired in a previous work that describes extensively the mechanism and reasons
why Hebbian learning sculpts hexagonal maps through self-organization (Kropff & Treves, 2008).
We here describe the main ingredients of the model and small modifications aimed to make it
simpler and computationally less expensive.

The network has an input layer of NI = 225 neurons projecting to a layer of NEC = 100 cells. While
the model works with arbitrary spatially stable inputs (Kropff & Treves, 2008), for simplicity we
use place cell like inputs. Input cells had Gaussian response fields with a standard deviation of 5.4
cm centered at preferred positions uniformly distributed across the 1 m arena.

The total field h received by grid cell i at time t is given by two terms. The first one includes the
contributions of the feedforward connections from input cells. The second one includes recurrent
contributions

where rj
I(t) and rk

EC(t) are the firing rate of input cell j and grid cell k, respectively. The
feedforward synaptic weight matrix WI is equipped with Hebbian plasticity, while for the
purposes of this paper the recurrent synaptic weigh WEC is fixed (see next section).

The field of the cell is inserted into a set of two equations with two internal variables, hact and
hinact and a parameter ! aimed to mimic adaptation or neural fatigue within the cell,

Once the value of hact is obtained for all grid cells, a threshold linear transfer function with gain G
is applied. A threshold T mimicking inhibition is established so that only the fraction A of cells
with highest hact values has non-zero firing rate, while a normalization, acting as an effective gain,
ensures that Hebbian plasticity does not get stuck at the beginning of the learning process due to
low post-synaptic activity. The activity of each cell is obtained as

where the operation |…|>0 represents a rectifying linear transformation and <…> denotes
averaging across all cells. This normalization is effectively equivalent to controlling the sparseness
of the network (Kropff & Treves, 2008) but is much more efficient computationally.

The update of the feedforward synaptic weight Wi,j
I is given by de Hebbian rule

https://doi.org/10.7554/eLife.89851.2
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where ε is a learning parameter and the computationally efficient temporal average operation

is used. Negative values of WI are set to zero and the vector of all presynaptic weights entering a
given postsynaptic grid cell is divided by its Euclidean norm to ensure that it remains inside a
hypersphere.

In our hands, the condition 2D was the one with the greatest sensibility to model parameters. For
this reason, they were fine-tuned using the 2D recurrent architecture, aiming to reduce as much as
possible the number of cells and thus optimize the computational cost. This was achieved by
reducing the grid cell layer to 100 cells, a number below which self-organization of the population
activity into a torus ceased to be consistent. We noticed that including a greater number of
neurons in the input layer had a substantial impact on the speed and stability of the learning
process, which led us to include 225 input cells. Once the 2D architecture simulations were
optimized, the other conditions were run using the same values for all parameters and initial
conditions, except for the parameters describing the recurrent collateral architecture itself. The
following are some important model parameters.

Parameters ensuring that the mean contributions of feed forward and recurrent inputs to a
neuron are of the same order of magnitude:

Gain A for otherwise normalized recurrent inputs: 2.
Gain G for feedforward inputs: 0.1.
Peak value for inputs rI: 20.
Grid cells allowed to have non-zero activity at any given time: 60 %.

Other parameters:

Adaptation parameter β: 0.04.
Average parameter δ: 0.5
Side of the square arena: 1 m.
Input field standard deviation: 5.4 cm.
Distance traveled in one simulation step: 0.6 cm.
Variation in direction at each step: normal distribution with 0º mean and 17º s.d.
Overall number of steps per simulation 2 107.

Recurrent collateral architectures

Toroidal architecture

For the purpose of designing the 2D architecture of recurrent collaterals, each neuron in a given
simulation was assigned a position, uniformly covering a 2D arena. The strength of connectivity
between a given pair of cells k and l was set to depend on their relative position x = [xk - xl, yk - yl],
through a function f(x) that was defined as the sum of three cosine functions in directions ki, 120º
and 240º from each other, i.e. an ideal grid map 4     ,

The spacing of this imaginary grid map (inverse to the modulus of k) could be varied along a wide
range of values without noticeable consequences on the simulations. For simulations included in
this work it was set to 60 cm.

https://doi.org/10.7554/eLife.89851.2
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Ring architecture

For the 1D condition, neurons were uniformly distributed along an imaginary ring, spaced by 3.6º.
The connection strength between any pair of neurons was defined as proportional to a 7.2º
standard deviation Gaussian function of the minimum angle between them.

Stripe architecture

For the 1DL condition, neurons were uniformly distributed along an imaginary stripe. The
connection strength between any pair of neurons was defined as proportional to Gaussian
function of the distance between them, with standard deviation equal to twice the distance
between consecutive neurons.

Fragmented architecture

To prove that characteristic organization of spatial phases is not a necessary outcome of flexible
attractors, a Fragmented 1D condition was used (Fig. A1). The architecture of connectivity was
constructed by repeating 20 times the process of randomly selecting 10 cells and adding to their
mutual weights those corresponding to a 1DL attractor connecting them. The resulting
architecture corresponds to the overlap of 20 short 1DL attractors. Such an architecture can be
understood as simpler to obtain from biological processes compared to other 1D architectures
studied here, but more difficult to fully characterize, which led us to restrict the analysis of this
architecture to demonstrating that flexible attractors do not necessarily require organized spatial
phases to align grid cells.

Rate Maps
Mean rate for each pixel in space was obtained from the instantaneous rate of each neuron
observed during visits to the pixel. To optimize memory usage, at any given time the pixel
currently traversed by the rat was identified and its mean rate for each neuron j, mj updated as

where rj is the instantaneous firing rate and τ is 0.03. The rest of the pixels of the map were not
modified at this step.

Autocorrelograms were obtained by correlating two copies of each map displaced relatively to one
another in all directions and magnitudes. To reduce the absolute value close to the borders, where
correlations can reach extreme values with poor statistical power, a 1 m circular hamming
window was applied to each autocorrelogram. Mean population autocorrelograms were obtained
by averaging the autocorrelogram across all neurons in a given simulation.

Quantification of grid properties

Spacing

Autocorrelograms were interpolated to a Cartesian grid in polar coordinates, so that correlation
could be analyzed for all angles at any fixed radius. Spacing was defined as the radius with
maximal 6-period Fourier component modulation of the correlation across angles.

Gridness

For the radius that defined spacing, gridness was defined as the mean autocorrelation at the six
60-degree spaced maxima minus that at the six 60-degree spaced minima.

https://doi.org/10.7554/eLife.89851.2
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Angular spread

For each cell in a given simulation, the six maxima around the center of the autocorrelogram were
identified. A k-means clustering algorithm was applied to the pool of all maxima in the simulation
(MATLAB kmeans() function, with k = 6, otherwise default parameters and 10 repetitions to avoid
local minima). The spread was defined as the mean absolute angle difference between pairs of
points belonging to the same cluster.

Metric Structure of the Population Activity
To study the topology of the population activity (Fig. 4     ), the central 60 cm of each map in a
simulation was considered. The population activity thus determines point clouds of 625 points —
the size of the arena, i.e., 25x25 — in , where NEC = 100 is the number of simulated grid cells.
For the purpose of capturing the intrinsic geometry of the underlying space determined by these
point clouds, and to avoid the effects of the ‘curse of dimensionality’, we endowed each point
cloud with an estimator of the geodesic distance. This estimator, known as the kNN-distance, is
defined as the length of the shortest path along the k-nearest neighbors graph, a graph with an
edge between every data point and each of its k-nearest neighbors with respect to the ambient
Euclidean distance. We set the value k = 10 for all our analyses but similar results could be
obtained for a range of similar values of k.

To recover network architecture features (Fig. 5     ), we studied the simultaneous spatial activity
of grid cells. The associated point cloud is a set of NEC = 100 vectors in R625 representing the
average activity of every grid cell on each pixel of the arena. This point cloud, when endowed with
the metric structure given by the Pearson correlation distance, shares geometric features with the
combinatorial architecture of the underlying neural network.

Persistent Homology
We aimed to robustly recover geometric information, such as the number of connected
components, cycles and holes of different dimensions, from the simulated data (Fig. S1a     ). To do
so we computed the persistent homology 43     -46      of each point cloud endowed with its respective
metric structure. As output we obtained persistence diagrams, graphical representations of the
evolution of the generators of the homology groups associated to each point cloud, for different
parameter scales (Fig. S1c     ). Each generator is described as a point whose first coordinate
represents its birth and the second coordinate, its lifetime. Generators with long lifetime indicate
topological features, while the ones with short lifetime are linked to noise. Note that persistent
homology at degree 0 encodes the evolution of connected components. It is always the case that a
single generator of H0 has an infinite lifetime, as a consequence of the compactness of the point
cloud. Its lifetime was set to an arbitrary value larger than generators associated to noise but with
a similar magnitude, to facilitate visualization. To summarize the information of the persistent
homology over all simulations, we computed both the average of the persistence diagrams as its
Frechet mean 47     ,48     , as well as the density associated with the distribution of points in the
diagrams (Fig. 4     ).

All the computations of persistence diagrams, related to both the population activity and the cross-
cell similarities, were performed with the Ripser package 49     , while the Frechet mean (or
barycenter of persistence diagrams) was obtained using the corresponding library in GUDHI 50     .

Automated quantification of individual persistence diagrams
Betti numbers are typically assessed from persistence diagrams in a qualitative way. Profiting
from the fact that we had 100 similar persistence diagrams for every condition, we designed an
automated procedure to determine cutoff values for each homology group and condition. A
histogram of lifetime with 100 bins between 0 and the maximum value was obtained for the pool
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of all cycles in all simulations belonging to the condition. The histogram was smoothed with a 3-
bin standard deviation gaussian window. Locations of minima in this smoothed histogram were
identified and the one representing the greatest fall from the previous maximum was set as the
cutoff lifetime value. Persistence diagrams for individual simulations were analyzed by counting
how many cycles had a lifetime greater than the corresponding cutoff value.

Local Principal Component Analysis
Local Principal Component Analysis (PCA) is a well-established procedure to detect the local
dimension of point clouds 51     . It is based on the popular method PCA of linear dimensionality
reduction, applied to local k-nearest neighborhoods of each data point (Fig. S1b     ). We employed
local neighborhoods of size k = 70 for all simulations of population activity with attractors and k =
20 for the ones in the No condition. These values were determined as the center of a range of k
values with stable outcomes.

For every local neighborhood, we computed the evolution of the rate of explained variance after
adding each principal component (in decreasing eigenvalue-order). An estimator of the local
dimension at a point is the number of dimensions at which there is a drop off (or ‘elbow’) in the
curve of explained variances (Fig S1b     ). For elbow detection we used the Python package kneed
52     .

Local Persistent Homology
Persistent homology can also be used to capture the topological structure around each data point.
Even though homology does not distinguish among local neighborhoods of different dimensions
(and hence, it is not useful to identify local dimensions), it is an appropriate method to detect
anomalies such as points in the boundary or singularities. The main idea is to identify the shape of
the region surrounding each point, by studying the persistent homology of an annular
neighborhood 31     .

We defined the annular local neighborhood of a point x as the set of points in the point cloud
(ordered according to the Euclidean distance to x) between the k1

th and the k2
th nearest neighbors,

with k1 = 50, k2 = 100 for the simulations with attractor, and k1 = 10, k2 = 30 for the ones in the No
condition (Fig. S1d     ). We used the Ripser package 49      for the computation of local persistent
homology.

Orientability
Orientability is the geometric property that ensures a consistent local coordinate system in a
manifold. In the special case of closed manifolds (compact connected manifolds without boundary)
this homeomorphism invariant can be detected by its homology.

We computed the persistence diagrams of the point clouds obtained from 100 simulations of the
population activity of grid cells in all conditions, using coefficients in both Z2 and Z3 (Fig. S1e     ).
A summary of the persistent homology over all the simulations (for every coefficient field) was
presented via the Frechet mean and the density of the distribution of the generators in the
persistent diagrams.

Note that for any closed manifold M of dimension 2, H2(M, Z2) ≠ 0. This is consistent with salient
generator in the (Frechet mean) persistence diagram for H2 that we can detect in all conditions
with attractors (Fig. 4     ). We also observe that the Frechet mean of persistence diagrams remains
unaltered after the change of coefficients from Z2 to Z3. This proves the orientability of the
underlying surfaces in all cases. If the sample belonged to a non-orientable surface, the salient
generator of the persistent diagram representing H2(M, Z2) should disappear when compared with
H2(M, Z3) (Fig. S1e     ). This should also be accompanied by the disappearance of a salient
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generator of H1(M, Z2) when contrasted with H1(M, Z3). This phenomenon of simultaneous
changes in homology is explained by the independence of the Euler characteristic on the choice of
field of coefficients.

Dimensionality Reduction
Among the most popular techniques in manifold learning are the procedures for dimensionality
reduction, that aim to project high-dimensional point clouds into a low-dimensional space while
preserving some properties of the original data.

Isomap is a celebrated (non-linear) dimensionality reduction method that assumes the data is a
sample of a low dimensional manifold embedded in a high dimensional Euclidean space. It
reduces the dimensionality by mapping the original data into a lower dimensional Euclidean
space while preserving geodesic distances on the manifold subjacent in the data. Since the
intrinsic distance in the underlying manifold is unknown, it estimates the geodesic distance by the
kNN graph distance, where the parameter k represents the number of nearest neighbors used in
the construction of the graph.

We performed Isomap projections of the population activity in all conditions 2D, 1D, 1DL and No
condition, with a parameter value of k = 10 (although comparable results are obtained for a range
of similar values). We employed the method Isomap from the Python library sklearn.manifold.

We remark that, even though dimensionality reduction procedures may serve as a useful tool for
data visualization and feature extraction as part of a machine learning pipeline, they do not
provide guarantee a priori to preserve the topology of the underlying manifold, so they do not
constitute in general a proof of structure of the original data neither an accurate preprocessing
method for a subsequent rigorous geometric analysis.

https://doi.org/10.7554/eLife.89851.2
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Figure S1.

Spatial phases present characteristic patterns for simple attractors, although
this is not a necessary feature for slightly more complex architectures.

For simulations (one per row) organized in groups of 3 for each condition (indicated) columns show from left to right:
evolution of individual and population gridness throughout learning (as in Fig. 2c     ), superposition of autocorrelation
maxima (as in Fig. 1e     ) and spatial phase along two grid axes. The conditions are 2D (top), 1D (center) and a recurrent
architecture with 20 overlapping 1DL attractors, each one recruiting 10 randomly selected cells among the 100 available
(Fragmented 1D). While all conditions reach high levels of alignment (slightly lower in the Fragmented 1D case), only 1D and
2D show characteristic organization patterns. The fact that the Fragmented 1D condition does not present any visible
organization pattern for spatial phases demonstrates that, although observable in the simplest cases, this phenomenon is
not a necessary outcome of flexible attractors.
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Figure S2.

Too weak, too strong or shuffled attractors fail to align grid cells.

a, Individual (left) or population (right) gridness (top) and spacing (bottom) for the 1D condition is repeated from Figure 2     
(grey; ratio arbitrarily defined as 1), together with the results of 10 simulations for each value of a range of ratios between
recurrent and feedforward synaptic strength (color code; ratios: 0.25, 0.5, 2 and 4 relative to the 1D condition). Note that
gridness decreases if the attractor is too strong or too weak, while spacing is inversely related to the stregth of the attractor.
b, Recurrent connectivity matrix for the 1D condition (top) and for a condition where the recurrent input weights for each
neuron are shuffled (bottom). c, Plots in Figure 2c      are repeated here but adding the average of 10 simulations in the
shuffled condition. d, Left: mean input feedforward (solid lines) and recurrent (dashed lines) fields throughout learning for
the 1D, 2D and shuffled conditions (color coded). Right: for the same conditions, feedforward to recurrent mean field ratio.

https://doi.org/10.7554/eLife.89851.2
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Figure S3.

Instant improvement in gridness by turning off recurrent collaterals is reverted by learning.

a, Individual (green) and population (black) gridness (top) and spacing (bottom) for a trained 1D network where feedforward
Hebbian learning has been turned off. At time t = 0 the attractor is also turned off, resulting in an improvement in gridness
and an increase in spacing. b, Similar to a but this time Hebbian learning is turned on at time = 0. While instantaneously
gridness and spacing increase, as in a, in the long run the network progresses toward the equilibrium corresponding to the
condition with no attractor, showing that learning is reversible and that the attractors plays a role in aligning and contracting
grid maps.

https://doi.org/10.7554/eLife.89851.2
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Figure S4.

Methods in topological data analysis and examples.

a, Basic representation of different geometries (indicated) and their corresponding Betti numbers. b, Local dimensionality of
a sphere (i) and a local neighborhood (ii), computed by obtaining its local principal components (iii) and finding and elbow on
the rate of explained variance (iv). c, Left, top: Birth and death of a generator in H1 (a cycle) for the same collection of
datapoints and increasing radius. Left, bottom: barcode diagram indicating the birth and death of all generators. Right:
Lifetime diagram indicating the birth and length of bars in b, distinctively indicating relevant generators and noise. d, Local
homology in different locations of a locally two-dimensional object. Deviations from the Betti number B1 = 1 can indicate
boundaries (B1 = 0) or singularities (B1 > 1) as exemplified. e, Orientable (top, torus) and non-orientable (bottom, Klein bottle)
objects with Betti numbers [1, 2, 1] in Z2 but different Betti numbers in Z3 (indicated).
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Figure S5.

Persistent homology and Betti numbers for condition 1DL.

a, Smoothed density of pooled data (colored areas) and average across simulations (circles) of persistence diagrams with
coefficients in Z2 for H0 (grey), H1 (blue) and H2 (red) corresponding to simulations in the 1DL condition. b, as a but in Z3. c,
Distribution across simulations of lifetime difference between consecutive generators ordered for each simulation from
longest to shortest lifetime. d, Pie plot and table indicating the number of simulations (out of 100) classified according to
their Betti numbers.
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Reviewer #1 (Public Review):

I'll begin by summarizing what I understand from the results presented, and where relevant
how my understanding seems to differ from the authors' claims. I'll then make specific
comments with respect to points raised in my previous review (below), using the same
numbering. Because this is a revision I'll try to restrict comments here to the changes made,
which provide some clarification, but leave many issues incompletely addressed.

As I understand it the main new result here is that certain recurrent network architectures
promote emergence of coordinated grid firing patterns in a model previously introduced by
Kropff and Treves (Hippocampus, 2008). The previous work very nicely showed that single
neurons that receive stable spatial input could 'learn' to generate grid representations by
combining a plasticity rule with firing rate adaptation. The previous study also showed that
when multiple neurons were synaptically connected their grid representations could develop
a shared orientation, although with the recurrent connectivity previously used this
substantially reduced the grid scores of many of the neurons. The advance here is to show
that if the initial recurrent connectivity is consistent with that of a line attractor then the
network does a much better job of establishing grid firing patterns with shared orientation.
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Beyond this point, things become potentially confusing. As I understand it now, the important
influence of the recurrent dynamics is in establishing the shared orientation and not in its
online generation. This is clear from Figure S3, but not from an initial read of the abstract or
main text. This result is consistent with Kropff and Treves' initial suggestion that 'a strong
collateral connection... from neuron A to neuron B... favors the two neurons to have close-by
fields... Summing all possible contributions would result in a field for neuron B that is a ring
around the field of neuron A.' This should be the case for the recurrent connections now
considered, but the evidence provided doesn't convincingly show that attractor dynamics of
the circuit are a necessary condition for this to arise. My general suggestion for the authors is
to remove these kind of claims and to keep their interpretations more closely aligned with
what the results show.

Major (numbered according to previous review)

(1) Does the network maintain attractor dynamics after training? Results now show that 'in a
trained network without feedforward Hebbian learning the removal of recurrent collaterals
results in a slight increase in gridness and spacing'. This clearly implies that the recurrent
collaterals are not required for online generation of the grid patterns. This point needs to be
abundantly clear in the abstract and main text so the reader can appreciate that the
recurrent dynamics are important specifically during learning.
(2) Additional controls for Figure 2 to test that it is connectivity rather than attractor
dynamics (e.g. drawing weights from Gaussian or exponential distributions). The authors
provide one additional control based on shuffling weights. However, this is far from
exhaustive and it seems difficult on this basis to conclude that it is specifically the attractor
dynamics that drive the emergence of coordinated grid firing.
(3) What happens if recurrent connections are turned off? The new data clearly show that the
recurrent connections are not required for online grid firing, but this is not clear from the
abstract and is hard to appreciate from the main text.
(4) This is addressed, although the legend to Fig. S2D could provide an explanation /
definition for the y-axis values.
(5) Given the 2D structure of the network input it perhaps isn't surprising that the network
generates 2D representations and this may have little to do with its 1D connectivity. The
finding that the networks maintain coordinated grids when recurrent connections are
switched off supports my initial concern and the authors explanation, to me at least, remain
confusing. I think it would be helpful to consider that the connectivity is specifically
important for establishing the coordinated grid firing, but that the online network does not
require attractor dynamics to generate coordinated grid firing.
(6) Clarity of the introduction. This is somewhat clearer, but I wonder if it would be hard for
someone not familiar with the literature to accurately appreciate the key points.
(7) Remapping. I'm not sure why this is ill posed. It seems the proposed model can not
account for remapping results (e.g. Fyhn et al. 2007). Perhaps the authors could just clearly
state this as a limitation of the model (or show that it can do this).

Previous review:

This study investigates the impact of recurrent connections on grid fields generated in
networks trained by adjusting the strength of feedforward spatial inputs. The main result is
that if the recurrent connections in the network are given a 1D continuous attractor
architecture, then aligned grid firing patterns emerge in the network following training.
Detailed analyses of the low dimensional dynamics of the resulting networks are then
presented. The simulations and analyses appear carefully carried out.

The feedforward model investigated by the authors (previously introduced by Kropff &
Treves, 2008) is an interesting and important alternative to models that generate grid firing
patterns through 2-dimensional continuous attractor network (CAN) dynamics. However,
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while both classes of model generate grid fields, in making comparisons the manuscript is
insufficiently clear about their differences. In particular, in the CAN models grid firing is a
direct result of their 2-D architecture, either a torus structure with a single activity bump (e.g.
Guanella et al. 2007, Pastoll et al. 2013), or sheet with multiple local activity bumps (Fuhs &
Touretzky, Burak & Fiete, 2009). In these models, spatial input can anchor the grid
representations but is not necessary for grid firing. By contrast, in the feedforward models
neurons transform existing spatial inputs into a grid representation. Thus, the two classes of
model implement different computations; CANs path integrate, while the feedforward models
transform spatial representations. A demonstration that a 1D CAN generates coordinated 2D
grid fields would be surprising and important, but its less clear why coordination between
grids generated by the feedforward mechanism would be surprising. As written, it's unclear
which of these claims the study is trying to make. If the former, then the conclusion doesn't
appear well supported by the data as presented, if the latter then the results are perhaps not
so unexpected, and the imposed attractor dynamics may still not be relevant.

Whichever claim is being made, it could be helpful to more carefully evaluate the model
dynamics given predictions expected for the different classes of model. Key questions that are
not answered by the manuscript include:

- At what point is the 1D attractor architecture playing a role in the models presented here? Is
it important specifically for training or is it also contributing to computation in the fully
trained network?

- Is an attractor architecture required at all for emergence of population alignment and
gridness? Key controls missing from Figure 2 include training on networks with other
architectures. For example, one might consider various architectures with randomly
structured connectivity (e.g. drawing weights from exponential or Gaussian distributions).

- In the trained models do the recurrent connections substantially influence activity in the
test conditions? Or after training are the 1D dynamics drowned out by feedforward inputs?

- What is the low dimensional structure of the input to the network? Can the apparent
discrepancy between dimensionality of architecture and representation be resolved by
considering structure of the inputs, e.g. if the input is a 2 dimensional representation of
location then is it surprising that the output is too?

- What happens to representations in the trained networks presented when place cells
remap? Is the 1D manifold maintained as expected for CAN models, or does it reorganise?

https://doi.org/10.7554/eLife.89851.2.sa1

Reviewer #3 (Public Review):

Summary:

The paper proposes an alternative to the attractor hypothesis, as an explanation for the fact
that grid cell population activity patterns (within a module) span a toroidal manifold. The
proposal is based on a class of models that were extensively studied in the past, in which grid
cells are driven by synaptic inputs from place cells in the hippocampus. The synapses are
updated according to a Hebbian plasticity rule. Combined with an adaptation mechanism,
this leads to patterning of the inputs from place cells to grid cells such that the spatial activity
patterns are organized as an array of localized firing fields with hexagonal order. I refer to
these models below as feedforward models.

It has already been shown by Si, Kropff, and Treves in 2012 that recurrent connections
between grid cells can lead to alignment of their spatial response patterns. This idea was
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revisited by Urdapilleta, Si, and Treves in 2017. Thus, it should already be clear that in such
models, the population activity pattern spans a manifold with toroidal topology. The main
new contributions in the present paper are (i) in considering a form of recurrent connectivity
that was not directly addressed before. (ii) in applying topological analysis to simulations of
the model. (iii) in interpreting the results as a potential explanation for the observations of
Gardner et al.

Strengths:

The exploration of learning in a feedforward model, when recurrent connectivity in the grid
cell layer is structured in a ring topology, is interesting. The insight that this not only align the
grid cells in a common direction but also creates a correspondence between their intrinsic
coordinate (in terms of the ring-like recurrent connectivity) and their tuning on the torus is
interesting as well, and the paper as a whole may influence future theoretical thinking on the
mechanisms giving rise to the properties of grid cells.

Weaknesses:

(1) In Si, Kropff and Treves (2012) recurrent connectivity was dependent on the head
direction tuning, in addition to the location on a 2d plane, and therefore involved a ring
structure. Urdapilleta, Si, and Treves considered connectivity that depends on the distance on
a 2d plane. The novelty here is that the initial connectivity is structured uniquely according to
latent coordinates residing on a ring.

(2) The paper refers to the initial connectivity within the grid cell layer as one that produces
an attractor. However, it is not shown that this connectivity, on its own, indeed sustains
persistent attractor states. Furthermore, it is not clear whether this is even necessary to
obtain the results of the model. It seems possible that (possibly weaker) connections with ring
topology, that do not produce attractor dynamics but induce correlations between neurons
with similar locations on the ring would be sufficient to align the spatial response patterns
during the learning of feedforward weights.

(3) Given that all the grid cells are driven by an input from place cells that span a 2d
manifold, and that the activity in the grid cell network settles on a steady state which is
uniquely determined by the inputs, it is expected that the manifold of activity states in the
grid cell layer, corresponding to inputs that locally span a 2d surface, would also locally span
a 2d plane. The result is not surprising. My understanding is that this result is derived as a
prerequisite for the topological analysis, and it is therefore quite technical.

(4) The modeling is all done in planar 2d environments, where the feedforward learning
mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning
curve. Under the scenario in which grid cell responses are aligned (i.e. all neurons develop
spatial patterns with the same spacing and orientation) it is already quite clear, even without
any topological analysis that the emerging topology of the population activity is a torus.

However, the toroidal topology of grid cells in reality has been observed by Gardner et al also
in the wagon wheel environment, in sleep, and close to boundaries (whereas here the
analysis is restricted to the a sub-region of the environment, far away from the walls). There
is substantial evidence based on pairwise correlations that it persists also in various other
situations, in which the spatial response pattern is not a hexagonal firing pattern. It is not
clear that the mechanism proposed in the present paper would generate toroidal topology of
the population activity in more complex environments. In fact, it seems likely that it will not
do so, and this is not explored in the manuscript.

(5) Moreover, the recent work of Gardner et al. demonstrated much more than the
preservation of the topology in the different environments and in sleep: the toroidal tuning
curves of individual neurons remained the same in different environments. Previous works,
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that analyzed pairwise correlations under hippocampal inactivation and various other
manipulations, also pointed towards the same conclusion. Thus, the same population activity
patterns are expressed in many different conditions. In the present model, this preservation
across environments is not expected. Moreover, the results of Figure 6 suggest that even
across distinct rectangular environments, toroidal tuning curves will not be preserved,
because there are multiple possible arrangements of the phases on the torus which emerge in
different simulations.

(6) In real grid cells, there is a dense and fairly uniform representation of all phases (see the
toroidal tuning of grid cells measured by Gardner et al). Thus, the highly clustered phases
obtained in the model (Fig. S1) seem incompatible with the experimental reality. I suspect
that this may be related to the difficulty in identifying the topology of a torus in persistent
homology analysis based on the transpose of the matrix M.

(7) The motivations stated in the introduction came across to me as weak. As now
acknolwledged in the manuscript, attractor models can be fully compatible with distortions
of the hexagonal spatial response patterns - they become incompatible with this spatial
distortions only if one adopts a highly naive and implausible hypothesis that the attractor
state is updated only by path integration. While attractor models are compatible with
distortions of the spatial response pattern, it is very difficult to explain why the population
activity patterns are tightly preserved across multiple conditions without a rigid two-
dimentional attractor structure. This strong prediction of attractor models withstood many
experimental tests - in fact, I am not aware of any data set where substantial distortions of
the toroidal activity manifold were observed, despite many attempts to challenge the model.
This is the main motivation for attractor models. The present model does not explain these
features, yet it also does not directly offer an explanation for distortions in the spatial
response pattern.

(8). There is also some weakness in the mathematical description of the dynamics.
Mathematical equations are formulated in discrete time steps, without a clear interpretation
in terms of biophysically relevant time scales. It appears that there are no terms in the
dynamics associated with an intrinsic time scale of the neurons or the synapses (a leak time
constant and/or synaptic time constants). I generally favor simple models without lots of
complexity, yet within this style of modelling, the formulation adopted in this manuscript is
unconventional, introducing a difficulty in interpreting synaptic weights as being weak or
strong, and a difficulty in interpreting the model in the context of other studies.

In my view, the weaknesses discussed above limit the ability of the model, as it stands, to
offer a compelling explanation for the toroidal topology of grid cell population activity
patterns, and especially the rigidity of the manifold across environments and behavioral
states. Still, the work offers an interesting way of thinking on how the toroidal topology might
emerge.

https://doi.org/10.7554/eLife.89851.2.sa0

Author response:

The following is the authors’ response to the original reviews.

Reviewer #1:

Reviewer #1 (Recommendations For The Authors):

Major
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(1) What is the evidence that, after training, the 1D network maintains its attractor
dynamics when feedforward inputs are active? If the claim is that it does then it's
important to provide evidence, e.g. responses to perturbations, or other tests. The
alternative is that after training the recurrent inputs are drowned out by the feed
forward spatial inputs.

We agree with the reviewer on the importance of this point. In our model, networks are
always learning, and the population activity represented by aligned grid maps in a trained
network is a dynamic equilibrium that emerges from the interplay between feedforward and
collateral constraints. If Hebbian learning is turned off, one gets a snapshot of the network at
that moment. We now show in Fig. S3 that in a trained network without feedforward
Hebbian learning the removal of recurrent collaterals results in a slight increase in gridness
and spacing. The expansion is due to the fact that, as we argue in the Results section, the
attractor has a contractive effect on grid maps, which could relate to observations in novel
environments (Barry et al, 2007). If Hebbian learning is turned on in the same situation, the
maps, no longer constrained by the attractor, drift toward the equilibrium solution of the ‘No
attractor’ condition, with significantly larger spacing, no alignment and lower individual
gridness. Thus, the attractor is the force preventing them to do so when feedforward Hebbian
learning is on.

These observations point to the key role played by the attractor not only in forming but also
in sustaining grid activity. The dynamic equilibrium framework fits well known properties of
the system, such as its capacity to recalibrate very fast (Jayakumar et al, 2019), although this
particular feature cannot be modeled with the current version of our model, that lacks path
integration capabilities.

(2) It would be useful to include additional control conditions for Figure 2 to test the
hypothesis that it is simply connectivity, rather than attractor dynamics, that drives
alignment.

This could be achieved by randomly assigning strengths to the recurrent connections,
e.g. drawing from exponential or Gaussian distributions.

We agree and have included Fig. S2b-d, showing that the same distribution of collateral input
weights entering each neuron, but lacking the 1D structure provided by the attractor, does
not align grid maps. This is achieved by shuffling rows in the connectivity matrix, while
avoiding self connections to make the comparison fair (self connections substantially alter
the dynamic of the network, making it much more rigid). We observed that individual grid
maps have very low gridness levels, even lower than in the no-attractor condition. In
contrast, they have levels of population gridness slightly higher than in the no-attractor
condition, but closer to 0 than to levels achieved with attractors. Our interpretation of these
results is that irregular connectivity achieves some alignment in a few arbitrary directions
and/or locations, which improves the coordination between maps at the expense of impairing
rather than improving hexagonal responses of individual cells. Such observations stand in
clear context to what is observed with continuous attractors with an orderly architecture.

These results suggest that it is the structure of the attractor that allows grid cells to be aligned
rather than the mere presence of recurrent collateral connections.

(3) It seems conceivable that once trained the recurrent connections would no longer be
required for alignment. Can this be evaluated by considering what happens if the
recurrent connections are turned off after training (or slowly turned off during training)?
Does the network continue to generate aligned grid fields?

https://doi.org/10.7554/eLife.89851.2
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This point has elements in common with point 1. As we argued in that response, the attractor
has two main effects on grid maps: it aligns them and it contracts them. If the attractor is
turned off, feedforward Hebbian learning progressively drives maps toward the solution
obtained for the ‘no attractor’ condition, characterized by maps with larger spacing, poorer
gridness and lack of alignment.

(4) After training what is the relative strength of the recurrent and feedforward inputs to
each neuron?

Both recurrent and feedforward synaptic-strength matrices are normalized throughout
training, so that the overall incoming synaptic strength to each neuron is invariant. Because
of this, although individual feed-forward and recurrent input fields vary dynamically, their
average is constant, with the exception of the very first instances of the simulation, before a
stable regime is reached in grid-cell activity levels. We have included Fig. S2d, showing the
dynamics of feedforward and recurrent mean fields throughout learning as well as their
ratio. In addition, Fig. S2a shows that the strength of recurrent relative to feedforward inputs
is an important parameter, since alignment is only obtained in an intermediate range of
ratios.

(5) It would be helpful to also evaluate the low dimensional structure of the input to the
network. Assuming it has a 2D structure, as it represents 2D space, can an explanation
be provided for why it is surprising that the trained network also encodes activity with a
2D manifold? It strikes me that the more interesting finding might relate to alignment of
the grids rather than claims about a 1D attractor encoding a 2D representation. Either
way, stronger evidence and clearer discussion would be helpful.

The reviewer is correct in assuming that the input has a 2D structure, that can be represented
by a sheet embedded in a high dimensional space and thus has the Betti numbers [1,0,0]. The
surprising element in our results is that we are showing for the first time that the population
activity of an attractor network is constrained to a manifold that results from the negotiation
between the architecture of the attractor and the inputs, and does not merely reflect the
former as previously assumed. In this sense, the alignment of grid cells by a 1D attractor is an
instance of the more general case that 1D attractors can encode 2D representations.

It is certainly the case that the 2D input is a strong constraint pushing population activity
toward a 2D manifold. However, the final form of the 2D manifold is strongly constrained by
the attractor, as shown by the contrast with the no-attractor condition (a 2D sheet, as in the
input, vs a torus when the attractor is present). The 1D attractor is able to flexibly adapt to the
constraint posed by the inputs while doing its job (as demonstrated in previous points), which
results in 2D grid maps aligned by a 1D attractor. Generally speaking, this work provides a
proof of principle demonstrating that the topology of the attractor architecture and the
manifold of the population activity space need not be identical, as previously widely assumed
by the attractor community, and need not even have the same dimensionality. Instead, a
single architecture can potentially be applied to many purposes. Hence, our work provides a
valuable new perspective that applies to the study of attractors throughout the brain.

(6) The introduction should be clearer about the different types of grid model and the
computations they implement. E.g. The authors' previous model generates grid fields
from spatial inputs, but if my understanding is correct it isn't able to path integrate. By
contrast, while the many 2D models with continuous attractor dynamics also generate
grid representations, they do so by path integration mechanisms that are
computationally distinct from the spatial transformation implemented by feedforward
models (see also general comments above).
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We agree with the reviewer and have made this point explicit in the introduction.

(7) A prediction from continuous attractor models is that when place cells remap the low
dimensional manifold of the grid activity is unaffected, except that the location of the
activity bump is moved. It strikes me as important to test whether this is the case for the
model presented here (my intuition is that it won't be, but it would be important to
establish either way).

We want to emphasize that our model is a continuous attractor model, so the question
regarding the difference between what our model and continuous attractor network models
predict is an ill-posed one. One of our main conclusions is precisely that attractors can work
in a wider spectrum of ways than previously thought.

In lack of a better definition, our multiple simulations could be thought of as training in
different arenas. It is true that in our model maps take time to form, but this is also the case
in novel environments (Barry et al, 2007 ), and continuous attractor models exclusively or
strongly guided by self motion cues struggle to replicate this phenomenon. We show that the
current version of our model accepts multiple solutions (in practice four but conceptually
infinite countable), all of them resulting in a torus for the population activity (i.e. the same
topology or low dimensional manifold). It is not clear to us how easy it would be to
differentiate between most of these solutions in experimental data, with only incomplete
information. This said, incorporating a symmetry-breaking ingredient to the model, for
example related to head direction modulation, could perhaps lead to the prevalence of a
single type of solution. We intend to explore this possibility in the future in order to add path-
integration capabilities to the system, as described in the discussion.

(8) The Discussion implies that 1D networks could perform path integration in a manner
similar to 2D networks. This is a strong claim but isn't supported by evidence in the study.
I suggest either providing evidence that this is the case for models of this kind or
replacing it with a more careful discussion of the issue.

The current version of our model has no path integration capabilities, as is now made explicit
in the Introduction and Discussion. In addition, we have now made clear that the idea that
path integration could perhaps be implemented using 1D networks is, although reasonable,
purely speculative.

Minor

(1) Introduction. 'direct excitatory communication between them'. Suggest rewording to
'local synaptic interactions', as communication can also be purely inhibitory (e.g. Burak
and Fiete, 2009) or indirect by excitation of local interneurons (e.g. Pastoll et al., Neuron,
2013).

We agree and have adopted this phrasing.

(2) The decision to focus the topology analysis on the 60 cm wide central square appears
somewhat arbitrary. Are the irregularities referred to a property of the trained networks
or would they also emerge with analysis of simulated ideal data? Can more justification
be expanded and supplementary analyses be shown when the whole arena is used?

In practical terms, a subsampling of the data to around half was needed because the
persistent homology packages struggle to handle large amounts of data, especially in the
calculation of H2. We decided to cut a portion of contiguous pixels in the open field at least
larger than the hexagonal tile representing the whole grid population period (as represented
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in Figure 6). Leaving the borders aside was a logical choice since it is known that the solution
at the borders is particularly influenced by the speed anisotropy of the virtual rat (see Si,
Kropff & Treves, 2012), in a way that mimics how borders locally influence grid maps in
actual rats (Krupic et al, 2015). The specific way in which our virtual rat handles borders is
arbitrary and might not generalize. A second issue around borders is that maps are
differently affected by incomplete smoothing, although this issue does not apply to our data
because we did not smooth across neighboring pixels. In sum, considering the central 60 cm
wide square was sufficient to contain the whole torus and a reasonable compromise that
would allow us to perform all analyses in the part of the environment less influenced by
boundaries.

(3) It could help the general reader to briefly explain what a persistence diagram is.

This is developed in the Appendix, but we have now added a reference to it and a brief
description in the main text.

(4) For the analyses in Figure 3-4, and separately for Figure 5, it might help the reader to
provide visualizations of the low dimensional point cloud.

All these calculations take place in the original high-dimensional point cloud. Doing them in a
reduced space would be incorrect because there is no dimensionality reduction technique
that guarantees the preservation of topology. In Figure 7 we reduce the dimensionality of
data but emphasize that it is only done for visualization purposes, not to characterize
topology. We also point out in this Figure that the same non-linear dimensionality reduction
technique applied to objects with identical topology yields a wide variety of visualizations,
some of them clear and some less clear. This observation further exemplifies why one cannot
assume that a dimensionality-reduction technique preserves topology, even for a low-
dimensional object embedded in a high-dimensional space.

(5) The detailed comparison of the dynamics of each model is limited by the number of
data points. Why not address this by new simulations with more neurons?

We are not sure we understand this comment. In Figure 2, the dynamics for each model are
markedly different. These are averages over 100 simulations. We are not sure what benefit
would be obtained from adding more neurons. Before starting this work we searched for the
minimal number of neurons that would result in convergence to an aligned solution in 2D
networks, which we found to be around 100. Optimizing this parameter in advance was
important to reduce computational costs throughout our work.

(6) Could the variability in Figure 7 also be addressed by increasing the number of data
points?

As we argued in a previous point, there is no reason to expect preservation of topology after
applying Isomap. We believe this lack of topology preservation to be the main driver of
variability.

(7) Page/line numbers would be useful.

We agree. However, the text is curated by biorxiv which, to our best knowledge, does not
include them.
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Reviewer 2:

Reviewer #2 (Recommendations For The Authors):

(1) I highly suggest that the author rewrite some parts of the Results. There are lots of
details which should be put into the Methods part, for example, the implementation
details of the network, the analysis details of the toroidal topology, etc. It will be better to
focus on the results part first in each section, and then introduce some of the key details
of achieving these results, to improve the readability of the work.

This suggestion contrasts with that of Reviewer #1. As a compromise, we decided to include in
the Results section only methodological details that are key to understanding the conclusions,
and describe everything else in the Methods section.

(2) 'Progressive increase in gridness and decrease in spacing across days have been
observed in animals familiarizing with a novel environment...' From Fig.2c I didn't see
much decrease. The authors may need to carry out some statistical test to prove this.
Moreover, even the changes are significant, this might be not the consequence of the
excitatory collateral constraint. To prove this, the authors may need to offer some direct
evidence.

We agree that the decrease is not evident in this figure due to the scale, so we are adding the
correlation in the figure caption as proof. In addition, several arguments, some related to
new analyses, demonstrate that the attractor contracts grid maps. First, the ‘no attractor’
condition has a markedly larger spacing compared to all other conditions (Fig. 2a). We also
now show that spacing monotonically decreases with the strength of recurrent relative to
feedforward weights, in a way that is rather independent of gridness (Fig. S2a). Second, as we
now show in Fig. S2b-d, simulations with a shuffled 1D attractor, such that the sum of input
synapses to each neuron are the same as in the 1D condition but no structure is present, lead
to a spacing that is mid-way between the ‘no attractor’ condition and the conditions with
attractors. Third, as we now show in Fig. S3a, turning off both recurrent connections and
feedforward learning in a trained network results in a small increase in spacing. Fourth, as
we now show in Fig. S3b, turning off recurrent connections while feedforward learning is
kept on increases grid spacing to levels comparable to those of the ‘no attractor’ condition. All
these elements support a role of the attractor in contracting grid spacing.

(3) Some of the items need to be introduced first before going into details in the paper,
for instance, the stipe-like attractor network, the Betti number, etc.

We have added in the Results section a brief description and references to full developments
in the Appendix.

Reviewer 3 (Public Review):

(1) It is not clear to me that the proposal here is fundamentally new. In Si, Kropff and
Treves (2012) recurrent connectivity was dependent on the head direction tuning and
thus had a ring structure. Urdapilleta, Si, and Treves considered connectivity that
depends on the distance on a 2d plane.

In the work of Si et al connectivity is constructed ad-hoc for conjunctive cells to represent a
torus, it depends on head-directionality but also on the distance in a 2D plane. The topology
of this architecture has not been assessed, but it is close to the typical 2D ‘rigid’ constraint. In
the work of Urdapilleta et al, the network is a simple 2D one. The difference with our work is
that we focus on the topology of the recurrent network and do not use head-direction

https://doi.org/10.7554/eLife.89851.2


Sabrina Benas et al., 2024 eLife. https://doi.org/10.7554/eLife.89851.2 39 of 44

modulation. In this context, we prove that a 1D network is enough to align grid cells and,
more generally, we provide a proof of principle that the topology of the architecture and the
representation space of an attractor network do not need to be identical, as previously
assumed by the attractor community. These two important points were neither argued,
speculated nor self-evident from the cited works.

(2) The paper refers to the connectivity within the grid cell layer as an attractor. However,
would this connectivity, on its own, indeed sustain persistent attractor states? This is not
examined in the paper. Furthermore, is this even necessary to obtain the results in the
model? Perhaps weak connections that do not produce an attractor would be sufficient
to align the spatial response patterns during the learning of feedforward weights, and
reproduce the results? In general, there is no exploration of how the strength of
collateral interactions affects the outcome.

The reviewer makes several important points. Local excitation combined with global
inhibition is the archetypical architecture for continuous attractors (see for example Knierim
and Zhang, Annual review of neuroscience, 2012). Thus, in the absence of feedforward input,
we observe a bump of activity. As in all continuous attractors, this bump is not necessarily
‘persistent’ and instead is free to move along the attractor.

We cannot prove that there is not a simpler architecture that has the same effect as our 1D or
1DL conditions, and we think that there are some interesting candidates to investigate in the
future. What we now prove in new Fig. S2b-d is that it is not the strength of recurrent
connections themselves, but instead the continuous attractor structure that aligns grid cells in
our model. To demonstrate this, we shuffle incoming recurrent connections to each neuron in
the 1D condition (while avoiding self-connections for fairness), and show that training does
not lead to grid alignment. We also show in Fig. S1 that an architecture represented by 20
overlapping 1DL attractors, each formed by concatenating 10 random cells, aligns grid cells to
levels slightly lower but similar to the 1D or 1DL attractors. This architecture can perhaps be
considered as simpler to build in biological terms than all the others, but it is still constituted
by continuous attractors.

The strength of recurrent collaterals, or more precisely the recurrent to feedforward ratio, is
crucial in our model to achieve a negotiated outcome from constraints imposed by the
attractor and the inputs. We now show explicit measures of this ratio in Fig. S2, as well as
examples showing that an imbalance in this ratio impairs grid alignment. When the ratio is
too high or too low, both individual and population gridness are low. Interestingly, grid
spacing behaves differently, decreasing monotonically with the relative strength of recurrent
connections.

(3) I did not understand what is learned from the local topology analysis. Given that all
the grid cells are driven by an input from place cells that spans a 2d manifold, and that
the activity in the grid cell network settles on a steady state that depends only on the
inputs, isn't it quite obvious that the manifold of activity in the grid cell layer would have,
locally, a 2d structure?

The dimensionality of the input is important, although not the only determinant of the
topology of the activity. The recurrent collaterals are the other determinant, and their
architecture is a crucial feature. For example, as we now show in Figure S2b-d, shuffled
recurrent synaptic weights fail to align grid cells. In the 1D condition, if feedforward inputs
were absent, the dynamics of the activity would be confined to a ring. The opposite condition
is our ‘no attractor’ condition, in which activity in the grid cell layer mimics the topology of
inputs, a 2D sheet (and not a torus). It is in the intermediate range, when both feedforward
and recurrent inputs are important, that a negotiated solution (a torus) is achieved.
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The analyses of local dimensionality and local homology of Figure 3 are crucial steps to
demonstrate toroidal topology. According to the theorem of classification of closed surfaces,
global homology is not enough to univocally define the topology of a point cloud, and thus
this step cannot be skipped. The step is aimed to prove that the point cloud is indeed a closed
surface.

(4) The modeling is all done in planar 2d environments, where the feedforward learning
mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning
curve. This, combined with the fact that all neurons develop spatial patterns with the
same spacing and orientation, implies even without any topological analysis that the
emerging topology of the population activity is a torus.

We cannot agree with this intuition. In the ‘no attractor’ condition, individual maps have
hexagonal symmetry with standardized spacing, but given the lack of alignment the
population activity is not a closed surface and thus not a torus. It can rather be described as a
2D sheet embedded in a high dimensional space, a description that also applies to the input
space.

While it is rather evident that an ad hoc toroidal architecture folds this 2D population activity
into a torus, it is less evident and rather surprising that 1D architectures have the same
capability. This is the main novelty in our work.

(5) Moreover, the recent work of Gardner et al. demonstrated much more than the
preservation of the topology in the different environments and in sleep: the toroidal
tuning curves of individual neurons remained the same in different environments.
Previous works, that analyzed pairwise correlations under hippocampal inactivation and
various other manipulations, also pointed towards the same conclusion. Thus, the same
population activity patterns are expressed in many different conditions. In the present
model, the results of Figure 6 suggest that even across distinct rectangular
environments, toroidal tuning curves will not be preserved, because there are multiple
possible arrangements of the phases on the torus which emerge in different simulations.

We agree with the reviewer in the main point, although the recently found ring activity in the
absence of sensory feedback (Gonzalo Cogno et al, 2023) suggests that what is happening in
the EC is more nuanced than a pre-wired torus. Solutions in Figure 6 are different ways of
folding a 1D strip into a torus, with or without the condition of periodicity in the 1D strip.
Whether or not these different solutions would be discernible from one another in a practical
setup is not clear to us. For example, global homology, as addressed in the Gardner paper, is
the same for all these solutions. Furthermore, while our solutions of up to order 3 are highly
discernable, higher order solutions, potentially achievable with other network parameters,
would be impossible to discern by eye in representations similar to the ones in Figure 6. In
addition, while we chose to keep our model in the simplest possible form as a clear proof of
principle, new elements introduced to the model such as head directionality could break the
symmetry and lead to the prevalence of one preferred solution for all simulation replicates.
We plan to investigate this possibility in the future when attempting to incorporate path-
integration capabilities to the model.

(6) In real grid cells, there is a dense and fairly uniform representation of all phases (see
the toroidal tuning of grid cells measured by Gardner et al). Here the distribution of
phases is not shown, but Figure 7 suggests that phases are non uniformly represented,
with significant clustering around a few discrete phases. This, I believe, is also the origin
for the difficulty in identifying the toroidal topology based on the transpose of the matrix
M: vectors representing the spatial response patterns of individual neurons are localized
near the clusters, and there are only a few of them that represent other phases.
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Therefore, there is no dense coverage of the toroidal manifold that would exist if all
phases were represented equally. This is not just a technical issue, however: there
appears to be a mismatch between the results of the model and the experimental reality,
in terms of the phase coverage.

As mentioned in the results section, Figure 7 is meant for visualization purposes only, and
serves more as cautionary tale regarding the imprevisible risks of non-linear dimensionality
reduction than as a proof of the organization of activity in the network. Isomap is a non-
linear transformation that deforms each of our solutions in a unique way so that, while all
have the topology of a torus embedded in a high dimensional space, only a few of them
exhibited one of two possible toroidal visualizations in a 3D Isomap reduction. Isomap, as
well as all other popular dimensionality reduction techniques, provide no guarantee of
topology invariance. A better argument to judge the homogenous distribution of phases is
persistent homology, which identifies relatively large holes (compared to the sampling
spacing) in the original manifold embedded in a high dimensional space. In our case,
persistent homology identified only two holes significantly larger than noise (the two cycles
of a torus) and one cavity in all conditions that included attractors. Regarding the specific
distribution of phases in different conditions, however, see our reply below.

(7) The manuscript makes several strong claims that incorrectly represent the relation
between experimental data and attractor models, on one hand, and the present model
on the other hand. For the latter, see the comments above. For the former, I provide a
detailed list in the recommendations to the authors, but in short: the paper claims that
attractor models induce rigidness in the neural activity which is incompatible with
distortions seen in the spatial response patterns of grid cells. However, this claim seems
to confuse distortions in the spatial response pattern, which are fully compatible with the
attractor model, with distortions in the population activity patterns, which would be
incompatible with the attractor model. The attractor model has withstood numerous
tests showing that the population activity manifold is rigidly preserved across conditions
- a strong prediction (which is not made, as far as I can see, by feedforward models). I
am not aware of any data set where distortions of the population activity manifold have
been identified, and the preservation has been demonstrated in many examples where
the spatial response pattern is disrupted. This is the main point of two papers cited in the
present manuscript: by Yoon et al, and Gardner et al.

First of all, we would like to note that our model is a continuous attractor model. Different
attractor models have different outcomes, and one of the main conclusions of our manuscript
is that attractors can do a wider range of operations than previously thought.

We agree with the reviewer that distortions in spatial activity (which speak against a purely
path-integration guided attractor) should not be confused with distortions in the topology of
the population activity (which would instead speak against the attractor dynamics itself). We
have rephrased these observations in the manuscript. In fact, we believe that the capacity of
grid cells to present distorted maps without a distortion of the population activity topology, as
shown for example by Gardner and colleagues, could result from a tension between
feedforward and recurrent inputs, the potential equilibriums of which our manuscript aims
to characterize.

(8) There is also some weakness in the mathematical description of the dynamics.
Mathematical equations are formulated in discrete time steps, without a clear interpretation
in terms of biophysically relevant time scales. It appears that there are no terms in the
dynamics associated with an intrinsic time scale of the neurons or the synapses, and this
introduces a difficulty in interpreting synaptic weights as being weak or strong. As
mentioned above, the nature of the recurrent dynamics within the grid cell network
(whether it exhibits continuous attractor behavior) is not sufficiently clear.
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We agree with the reviewer that our model is rather simple, and we value the extent to which
this simplicity allows for a deep characterization. All models are simplifications and the best
model in any given setup is the one with the minimum amount of complexity necessary to
describe the phenomenon under study. We believe that to understand whether or not a 1D
continuous attractor architecture can result in a toroidal population activity, a biophysically
detailed model, with prohibitive computational costs, would have been unnecessarily
complex. This argument does not intend to demerit biophysically detailed models, which are
capable of addressing a wider range of questions regarding, for example, the spiking
dynamics of grid cells, which cannot be addressed by our simple model.

Reviewer #3 (Recommendations For The Authors):

The work points to an interesting scenario for the emergence of toroidal topology, but
the interpretation of this idea should be more nuanced. I recommend reconsidering the
claims about limitations of the attractor theory, and acknowledging the limitations of the
present theory.

I don't see the limitations mentioned above as a reason to reject the ideas proposed in
this manuscript, for two main reasons: first, additional research might reveal a regime of
parameters where some issues can be resolved (e.g. the clustering of phases). In
addition, the mechanism described here might act at an early stage in development to
set up initial dynamics along a toroidal manifold, while other mechanisms might be
responsible for the rigidity of the toroidal manifold in an adult animal. But all this
implies that the novelty in the present manuscript is weaker than implied, the ability to
explain experimental observations is more limited than implied, and these limitations
should be acknowledged and discussed.

I recommend reporting on the distribution of grid cell phases and, if indeed clustered,
this should be discussed. It will be helpful to explore whether this is the reason for the
difficulty in identifying the toroidal topology based on the collection of spatial response
patterns (using the transpose of the matrix M).

Ideally, a more complete work would also explore in a more systematic and parametric
way the influence of the recurrent connectivity's strength on the learning, and whether a
toroidal manifold emerges also in non-planar, such as the wagon-wheel environment
studied in Gardner et al.

Part of these recommendations have been addressed in the previous points (public review).
Regarding the reason why the transpose of M does not fully recapitulate architecture with
our conservative classification criteria, we believe that there is no reason why it should in the
first place. We view the fact that the transpose of M recapitulates some features of the
architecture as a purely phenomenological observation, and we think it is important as a
proof that M is not exactly the same for the different conditions. We imagined that if M
matrices were exactly the same this could be due to poor spatial sampling by our bins.
Knowing that they are intrinsically different is important even if the reason why they have
these specific features is not fully clear to us.

Although we do not think that the distribution of phases is related to the absence of a cavity
in the transpose of M or to the four clusters found in Isomap projections, it remains an
interesting question that we did not explore initially. We are now showing examples of the
distribution of phases in Figure S1. We observed that in both 2D and 1D conditions phases are
distributed following rather regular patterns. Whether or not these patterns are compatible
with experimental observations of phase distribution is to our view debatable, given that so
far state-of-the-art techniques have only allowed to simultaneously record a small fraction of
the neurons belonging to a given module. This said, we think that it is important to note that
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ordered phase patterns are an anecdotal outcome of our simulations rather than a necessary
outcome of flexible attractors or attractors in general. To prove this point, we simulated a
condition with a new architecture represented by the overlap of 20 short 1DL attractors, each
recruiting 10 random neurons from the pool of 100 available ones.

The rest of the parameters of the simulations were identical to those in the other conditions.

By definition, the topology of this architecture has Betti numbers [20,0,0]. We show in Figure
S1 that this architecture aligns grid cells, with individual and population gridness reaching
slightly lower levels compared to the 1D condition. However, the distribution of phases of
these grid cells has no discernible pattern. This result is an arbitrary example that serves as a
proof-of-principle to show that flexible attractors can align grid cells without exhibiting
ordered phases, not a full characterization of the outcome of this type of architecture, which
we leave for future work. For the rest of our work, we stick to the simplest versions of 1D
architectures, which allow for a more in-depth characterization.

The wagon-wheel is an interesting case in which maps loose hexagonal symmetry although
the population activity lies in a torus, perhaps evidencing the tension between feedforward
and recurrent inputs and suggesting that grid cell response does not obey the single master of
path integration. If we modeled it with a 1D attractor, we believe the outcome would strongly
depend on virtual rat trajectory. If the trajectory was strictly linear, the population activity
would be locally one-dimensional and potentially represented by a ring. Instead, if the
trajectory allowed for turns, i.e. a 2D trajectory within a corridor-like maze, the population
activity would be toroidal as in our open field simulations, while maps would not have
perfect hexagonal symmetry, mimicking experimental results.

More minor comments:

Recurrent dynamics are modeled as if there is no intrinsic synaptic or membrane time
constant. This may be acceptable for addressing the goals of this paper, but it is a bit
unusual and it will be helpful to explain and justify this choice.

As mentioned above, we believe that the best model in a given setup is the one with the
lowest number of complexities that can still address the phenomenon under study. One does
not use general relativity to build a bridge, although it provides a ‘more accurate’ description
of the physics involved. All models are simplifications, and the more complex a model, the
more it has to be taken as a black box.

The Introduction mentions that in most models interaction between co-modular neurons
occurs through direct excitatory communication, but in quite a few models the
interaction is inhibitory. The crucial feature is that the interaction is strongly inhibitory
between neurons that differ in their tuning, and either less inhibitory or excitatory
between neurons with similar phases.

We agree that directed inhibition has been shown to be as efficient as directed excitation, and
we have modified the introduction to reflect this.

The Discussion claims that the present work is the first one in which the topology of the
recurrent architecture differs from the topology of the emergent state space. However,
early works on attractor models of grid cells showed how neural connectivity which is
arranged on a 2d plane, without any periodic boundary conditions, leads to a state
space that exhibits the toroidal topology. Therefore, this claim should be revised.

We agree, although the 2D sheet in this case acts as a piece of the torus, and locally the input
space and architecture are identical objects. It could be argued that architectures that
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represent a 2D local slice of the torus, the whole torus, or several cycles around the torus
form a continuous family parametrized by the extension of recurrent connections, and as a
consequence it is not surprising that these works have not made claims about the
incongruence between architecture and representation topologies. The 2D sheet connectivity
is still constructed ad hoc to organize activity in a 2D bump, and there is no negotiation
between disparate constraints because locally the constraints imposed by input and
architecture are the same. We believe this situation is conceptually different from our
flexible 1D attractors. We have adapted our claim to include this technical nuance.

Why are neural responses in the perimeter of the environment excluded from the
topological analysis? The whole point of the toroidal manifold analysis on real
experimental data is that the toroidal manifold is preserved regardless of the animal's
location and behavioral condition.

We agree, although experimental data needs to go through extensive pre-processing such as
dimensionality reduction before showing a toroidal topology. Such manipulations might
smooth away the specific effects of boundaries on maps, together with other sources of noise.
In our case, the original reason to downsample the dataset is related to the explosion in
computational time that we experience with the ripser package when using more than ~1000
data points. For a proof-of-principle characterization we were much more interested in what
happened in the center of the arena, where a 1D attractor could fold itself to confine
population activity into a torus. The area we chose was sufficiently large to contain the whole
torus. Borders do affect the way the attractor folds (they also affect grid maps in real rats). We
feel that these imperfections could be interesting to study in relation to the parameters
controlling how our virtual rat behaves at the borders, but not at this proof-of-principle stage.

The periodic activity observed in Ref. 29 could in principle provide the basis for the ring
arrangement of neurons. However, it is not yet clear whether grid cells participate in this
periodic activity.

We agree. So far it seems that entorhinal cells in general participate in the ring, which would
imply that all kinds of cells are involved. However, it could well be that only some functional
types participate in the ring and grid cells specifically do not, as future experiments will tell.
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