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1. Introduction

1.1. On the content of the paper

The Stefan problem has been extensively studied in the past decades. Despite
the number of articles and books published on this topic, [8–11], there are still
open problems left, see for instance [1,3]. One of the questions which requires
further attention is the long time behavior of the one-phase Stefan problem,
where the heat flux is specified at the fixed boundary, namely the Neumann
problem:

(i) ut(x, t) − uxx(x, t) = 0, t > 0, 0 < x < s(t),

(ii) −ux(0, t) =
h√

t + 1
, u(s(t), t) = 0, t > 0,

(iii) ṡ(t) = −ux(s(t), t), t > 0,
(iv) u(x, 0) = u0(x), 0 < x < s(0) = b0,

(1)

where we assume that h > 0.
We stress that this type of boundary condition is reasonable from the

modeling view point. Namely, the choice of h means that the water in the
container is heated at x = 0 that leads to ice melting at x = s(t). We choose
(1−ii), because it simple, yet it leads to non-trivial behavior of solutions.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-024-00950-7&domain=pdf


   56 Page 2 of 14 D. Hilhorst et al. NoDEA

The decay of data presented in (1−ii) is consistent with the parabolic
scaling, i.e. when we change variables by introducing η = x√

t+1
, then the first

condition in (1−ii) will be transformed to a constant in time, see the first
condition in (3−ii). Note that we have shifted the initial time by 1, in order
to avoid an artificial singularity at the initial time t = 0. Let us note that the
existence of a unique smooth solution (u, s) to Problem (1) has already been
established. We recall the assumptions of this result in Subsection 1.2. Here u
may be called the temperature and s is the position of the interface.

Our approach to study the long time behavior of Problem (1) follows
a general heuristics saying that the time asymptotics is determined by the
steady states (there is none for (1)) or special solutions such as self-similar
solutions or travelling waves. In fact, we show in Corollary 1 that there is
exactly one self-similar solution (v, σ), which has the form, v(x, t) = U

(
x√
t+1

)

and σ(t) = ω
√

t + 1 for some constant ω and a profile function U. Our main
result states that the self-similar solution is attracting.

Theorem 1. Suppose that (u0, b0) satisfies the conditions

0 ≤ u0 ∈ W 1,∞(0,+∞), 0 < u0(0) and u0(x) = 0 in [b0,∞). (2)

Let (u, s) be the corresponding solution of Problem (1). Then,
1) lim

t→∞ s(t)/
√

t + 1 = ω;

2) lim
t→∞ sup

x/
√

t+1∈[0,ω]

∣∣∣∣u(x, t) − U

(
x√

t + 1

)∣∣∣∣ = 0.

Our method of proof is based upon recent results obtained by [3,4], who
use the comparison principle in an essential way. The argument dwells on the
possibility of trapping a given solution to (1) between two solutions with known
time asymptotic behavior. In order to make this method work we transform
(1) to a problem on a bounded domain with the help of similarity variables.
The self-similar solution of (1) corresponds to the steady state solution of the
transformed system. Its uniqueness is of crucial importance for the proof.

Let us stress the main difference between [3,4] and the present article.
The authors of [3,4] present a quite technical proof to show that the space
derivative of the solution uniformly converges to its limit as t → ∞. Here, we
completely avoid such a claim, so that our proof is simpler and more direct,
which would make our method easier to adapt to a different setting.

We should point out that there are a number of results dealing with the
asymptotic behavior of solutions of Stefan problems, mainly in the case of
Dirichlet data on the fixed boundary. However, even for Dirichlet data, there
are not so many articles besides [3,4] simultaneously addressing the behavior
of the temperature profile u and the shape of the interface s.

1.2. Existence and uniqueness of the solution

Let us stress that (2) is our standing set of assumptions on the initial condi-
tions. Moreover, the condition u0(0) > 0 is necessary to construct proper lower
solutions, but is not needed in the Proposition below:



NoDEA Convergence of solutions of a one-phase Stefan problem Page 3 of 14    56 

Proposition 1. Assume that the initial condition u0 satisfies (2) and that h >
0. Then, there exists a unique classical solution (u, s) of Problem (1) for all
t > 0, in the following sense:

s ∈ C1((0,∞))∩C([0,∞)), u ∈ C2,1({(x, t) : t > 0, 0 < x < s(t)}),
u ∈ C({(x, t) : t ≥ 0, 0 ≤ x ≤ s(t)}), ux ∈ C({(x, t) : t > 0, 0 ≤ x ≤ s(t)}).

When we want to emphasize the dependence of (u, s) on the initial con-
ditions we will write u = u(·, ·, (u0, s0)), s = s(·, (u0, s0)).

We refer to [7, Chapter 8, Theorem 2] for the proof of this proposition.
Strictly speaking, the original statement in [7] required u0 to be of class

C1; however, we may relax this assumption in view of [2, Theorem 5.1].
The organization of this paper is as follows. In Sect. 2.1 we discuss the

existence and uniqueness of the self-similar solution. Subsection 2.2 is devoted
to the study of upper and lower solutions as well as to estimates following
from monotonicity. In the last Section, Section 3, we present the proof of the
convergence result which is based on the comparison principle.

2. Self-similar, lower and upper solutions

2.1. Self-similar solution

We start by re-expressing Problem (1) in terms of the self-similar variables. In
other words, we set

W (η, τ) = u(x, t) and b(τ) =
s(t)√
t + 1

,

where η =
x√

t + 1
and τ = ln(t + 1), to obtain the problem

(i) Wτ (η, τ) − Wηη(η, τ) − η

2
Wη(η, τ) = 0 τ > 0, 0 < η < b(τ),

(ii) −Wη(0, τ) = h, W (b(τ), τ) = 0 τ > 0,

(iii) ḃ(τ) +
b(τ)
2

= −Wη(b(τ), τ) τ > 0,

(iv) b(0) = b0 > 0, W (η, 0) = u0(η) 0 < η < b0.

(3)

Let us remark that the existence and uniqueness of the stationary solution of
problem (3) were given in [12].

Lemma 1. The associated stationary problem to (3), which is given by

(i) Wηη(η) +
η

2
Wη(η) = 0, 0 < η < ω,

(ii) −Wη(0) = h, W (ω) = 0,
(iii)

ω

2
= −Wη(ω).

(4)

admits a unique solution given by the pair (U, ω) such that

U(η) = h

∫ ω

η

e− s2
4 ds, η ∈ [0, ω] (5)

and ω is the unique positive solution of the equation h =
x

2
e

x2
4 .
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We immediately conclude from this result that

Corollary 1. If we set u(x, t) = U

(
x√

t + 1

)
and σ = ω

√
t + 1, then (u, σ) is

a solution to (1−i)–(1−iii).

2.2. Lower and upper solutions

Similarly as in [3] we define notions of lower and upper solutions of (3).

Definition 1. We say that a pair of smooth functions (W, b) (resp. (W, b)) is
a lower (resp. upper) solution of Problem (3) if

(i) Wτ (η, τ) − Wηη(η, τ) − η

2
Wη(η, τ) ≤ 0 (resp. ≥ 0), τ > 0, 0 < η < b(τ),

(ii) −Wη(0, τ) ≤ h (resp. ≥ h), τ > 0,
(iii) W (b(τ), τ) = 0 τ > 0,

(iv) ḃ(τ) +
b(τ)
2

≤ −Wη(b(τ, τ)) (resp. ≥ −Wη(b(τ, τ))) τ > 0,

(v) b(0) ≤ b0 (resp. b(0) ≥ b0)
(vi) W (η, 0) ≤ u0(η) (resp. W (η, 0) ≥ u0(η)) 0 < η < b(0).

(6)

The following comparison principle is a fundamental tool in our article.

Theorem 2. Let (W 1(η, τ), b1(τ)) (respectively, (W 2(η, τ), b2(τ))) be the exten-
sions by zero of the lower (respectively, upper solutions) of (3) corresponding
to the data (h1, u01, b01) (respectively, (h2, u02, b02)). If h1 ≤ h2, u01 ≤ u02

and b01 ≤ b02, then b1(τ) ≤ b2(τ) for every τ > 0 and W 1(η, τ) ≤ W 2(η, τ)
for every η ≥ 0 and τ ≥ 0.

Proof. The proof is rather similar to those presented by [6, Lemma 2.2 and Re-
mark 2.3] and [5, Lemma 3.5]. We omit it here. �

In fact, we will construct lower and upper solutions, which are indepen-
dent of time. For this purpose, we present the perturbed stationary problem

(i) Wηη(η) + 1
2ληWη(η) = 0 0 < η < bλ,

(ii) −Wη(0) = h̃, W (bλ) = 0,

(iii)
bλ

2
= −Wη(bλ),

(7)

whose solution is given by the pair (Uλ, bλ), where Uλ(η) = h̃
∫ bλ

η
e−λs2/4ds,

for given λ, and bλ is the unique solution to

h̃ =
bλ

2
eλb2λ/4. (8)

Remark 1. It is easy to see that for every λ > 0 and η in (0, bλ), Uλ ≥ 0,
(Uλ)η < 0 and (Uλ)ηη > 0. In particular, Uλ is a linear function for λ = 0, and
it is a strictly convex function if λ > 0.

Lemma 2. Let (Uλ, bλ) be a solution of (7). If h̃ ≤ h, then for all λ > 1 (Uλ, bλ)
is an independent of time lower solution to (3).
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Proof. First we show that if λ > 1 is sufficiently large, then solutions of (7)
are lower solutions. Indeed

−
{

(Uλ)ηη +
η

2
(Uλ)η

}
= −

{
(Uλ)ηη + λ

η

2
(Uλ)η

}
− η − λη

2
(Uλ)η

=
η(λ − 1)

2
(Uλ)η < 0, (9)

for all η ∈ (0, bλ). Now, from (8) and the inequality ex > x for all x > 0, it

holds that 0 < bλ = 2h̃e−λb2λ/4 ≤ 8h̃

λb2
λ

, which implies that bλ → 0 as λ → ∞;

thus we can choose λ large enough so that bλ < b0.
Next we show that we can choose λ such that Uλ ≤ u0. On the one hand

we have that

u0(η) = u0(0) +
∫ η

0

u′
0(s) ds ≥ u0(0) − Mη, for all 0 ≤ η ≤ b0.

On the other hand, for every 0 < η < bλ, we deduce from the strict convexity
of Uλ discussed in Remark 1 that

Uλ(η) < Uλ(0) +
Uλ(bλ) − Uλ(0)

bλ
η = Uλ(0) − Uλ(0)

bλ
η. (10)

Also we remark that

Uλ(0) = h̃

∫ bλ

0

e−λs2/4ds ≤ h̃bλ → 0, λ → ∞, (11)

and recall that by the hypothesis (2) u0(0) > 0. Thus, if we choose λ large

enough so that bλ <
u0(0)
M

and Uλ(0) < u0(0), it follows that

Uλ(η) ≤ u0(η) for all η ∈ [0, bλ]. (12)

We conclude that (Uλ, bλ) is a lower solution according to Definition 1. �

Now, we define the pair (Wλ, bλ) by

bλ = bλ and Wλ(η) :=

{
Uλ(η) if 0 ≤ η ≤ bλ,

0 if η > bλ.
(13)

Next we propose an upper solution which is a straight line on its support. It
is easy to verify that the pair (W, b) defined by

b ≥ b0 with b ≥ 2h and W (η) :=

⎧
⎨
⎩

b

2
(b − η), if 0 ≤ η ≤ b,

0 if η > b
(14)

is an upper solution. Next, we give an additional condition in order to ensure
that W ≥ u0 on the interval [0, b0]. Since

u0(η) ≤ M(b0 − η) for all η ∈ (0, b0),

we deduce that if b ≥ √
2Mb0, then

W (η) ≥ u0(η) for all η ∈ (0, b0).
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Figure 1. Lower and upper solutions

3. Convergence

Problems (1) and (3) are equivalent, because they are related by a non-singular
change of variables. Hence, we automatically have solutions to (3). In this
section the dependence of solutions on their data, (W0, b0), plays an important
role. Thus, we will write (W, b) = (W (·, ·, (W0, b0)), b(·, (W0, b0))) to emphasize
this dependence.

In this section, the pair (Wλ, bλ) is the lower solution for a fixed λ given
by (13) and (W, b) is the upper solution given in (14). We shall write

W (η, τ) := W (η, τ, (Wλ, bλ)), b(τ) = b(τ, (Wλ, bλ)) (15)

and
W (η, τ) := W (η, τ, (W, b)), b(τ) = b(τ, (W, b)) (16)

to denote solutions of (3) with initial conditions (Wλ, bλ) and (W, b).

Lemma 3. Positivity and boundedness

There holds:

0 ≤ Wλ(η) ≤ W (η, τ) ≤ W (η, τ, (u0, b0)) ≤ W (η, τ) ≤ W (η) ≤ b
2

2
,

and

0 ≤ bλ ≤ b(τ, (u0, b0)) ≤ b.

Proof. Repeatedly apply the comparison principle Theorem 2. �

Lemma 4. [3] Monotonicity in time

(a) The functions W (η, τ) and b(τ), are non-decreasing in time.
(b) The functions W (η, τ) and b(τ), are non-increasing in time.
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Proof. We only prove part a). From Theorem 2 we deduce that

W (η, s, (Wλ, bλ)) ≥ Wλ(η) and b(s, (Wλ, bλ)) ≥ bλ, for all s ≥ 0. (17)

Now, for a fixed s = σ, we consider the pair (Wσ, bσ) where

W σ(η) := W (η, σ, (W λ, bλ)) and bσ := b(σ, (Wλ, bλ)). (18)

In particular we have W σ(η) ≥ Wλ(η) and bσ ≥ bλ. Then we apply again
Theorem 2 to deduce that for every τ ≥ 0

W (η, τ, (Wσ, bσ) ≥ W (η, τ, (Wλ, bλ)) and b(τ, (W σ, bσ)) ≥ b(τ, (Wλ, bλ)).
(19)

Returning to (17), now consider s = τ + σ for τ ≥ 0. It holds that the pair
(W (η, τ + σ, (Wλ, bλ)), b(τ + σ, (Wλ, bλ))) is a solution to problem (3) for the
initial conditions (18) for every τ > 0. From the uniqueness of the solution we
deduce that for all τ ≥ 0 we have

W (η, τ, (Wσ, bσ) =W (η, τ + σ, (Wλ, bλ)) and

b(τ, (W σ, bσ)) =b(τ + σ, (Wλ, bλ)).
(20)

Substituting (20) in (19) we deduce that

W (η, τ + σ, (Wλ, bλ)) ≥W (η, τ, (Wλ, bλ)) and

b(τ + σ, (Wλ, bλ)) ≥b(τ, (Wλ, bλ)),
(21)

which completes the proof of part a). �

We remark that if (W, b) (resp. (W, b)) is defined in (15) (resp. (16)),
then the Lemmas 3 and 4 imply that for every λ > 0

0 < bλ ≤ lim
τ→∞ b(τ) = b∞ ≤ lim

τ→∞ b(τ) = b
∞ ≤ b.

In addition, the Lemmas 3 and 4 imply the convergence of W and W , namely

0 ≤ lim
τ→∞ W (η, τ) = W∞(η) ≤ b

2

2
, for all η ∈ [0, b∞]; (22)

and

0 ≤ lim
τ→∞ W (η, τ) = W

∞
(η) ≤ b

2

2
for all η ∈ [0, b

∞
). (23)

Finally we state and prove the main result of this paper, which in turn implies
the result of Theorem 1.

Theorem 3. Let (W (η, τ, (u0, b0)), b(τ, (u0, b0))) be the solution to the free bound-
ary problem (3) associated to the initial data (u0, b0). If (U, ω) is the unique
steady state of (3) given by Lemma 1, then
(a) lim

τ→∞ b(τ) = ω,

(b) W (·, τ) converges to U uniformly on [0, β] for any β ∈ (0, ω), when τ → ∞.
(c) At each time τ let us extend W to (0,∞) by the formula

W̃ (η, τ) =
{

W (η, τ) η ∈ [0, b(τ)],
0 η ∈ (b(τ),∞).
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Then, W̃ (·, τ) converges uniformly to W̃∞ on [0,∞), where

W̃∞(η) =
{

U, η ∈ [0, ω],
0, η ∈ (ω,∞).

Proof. Step 1. We have to identify the limits W∞ and W
∞

, and improve the
convergence. For this purpose, we shall show the estimate,

∫ T+1

T

∫ b(τ)

0

W 2
η (η, τ) dηdτ ≤ M1, (24)

where W = W or W = W are the functions defined in (15) and (16), respec-
tively.

Proposition 1 ensures existence and uniqueness of classical solutions.
When we want to restrict our attention to ΩT,1 := {(η, τ) : η ∈ (0, b(τ)), τ ∈
(T, T +1)}, then these solutions are understood as continous up the boundary
of ΩT,1 with the additional following properties Wη ∈ C(ΩT,1) and Wτ ,Wηη ∈
C(ΩT,1), but this does not guarentee that Wηη and Wτ are square integrable
over ΩT,1. This is why we set ψδ ∈ W 1,∞({(η, τ) : η ∈ (0, b(τ)), τ ∈ (0,∞)})

ψδ(η, τ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 η ∈ [0, δ),
1
δ (η − δ) η ∈ [δ, 2δ),
1 η ∈ [2δ, b(τ) − 2δ),
1 − 1

δ (η − b(τ) + 2δ) η ∈ [b(τ) − 2δ, b(τ) − δ),
0 η ∈ [b(τ) − δ,∞)

and φδ ∈ W 1,∞((0,∞)), where

φδ(τ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 τ ∈ [0, T + δ),
1
δ (τ − T − δ) τ ∈ [T + δ, T + 2δ),
1 τ ∈ [T + 2δ, T + 1 − 2δ)),
1 − 1

δ (τ − (T + 1 − 2δ)) τ ∈ [T + 1 − 2δ, T + 1 − δ),
0 τ ∈ [T + 1 − δ,∞).

Finally, we set ϕδ(η, τ) = ψδ(η, τ)φδ(τ). Now, let us multiply the equation
(3)−(i) by ϕδW and integrate over ΩT,1. We arrive at

Lδ
1(T ) :=

∫

ΩT,1

WWτϕδ dηdτ =
∫

ΩT,1

(
WWηη +

η

2
WηW

)
ϕδ dηdτ =: Rδ

1(T ).

We first analyze the left-hand-side, we see that integration by parts yields,

2Lδ
1(T ) =

∫

ΩT,1

ϕδ(W 2)τ dτdη = −
∫

ΩT,1

ϕδ
τ W 2 dτdη.

The boundary terms vanish, because the support of ϕδ does not intersect
∂ΩT,1. Now, we want to compute the limit L1(T ) = lim

δ→0+
Lδ

1(T ). We remark
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that

L1(T ) = lim
δ→0+

(
− 1

2δ

∫ T+1

T

∫ b(τ)−δ

b(τ)−2δ

ḃ(τ)φδ(τ)W 2(η, τ) dηdτ+

1
2δ

∫ T+1−δ

T+1−2δ

∫ b(τ)

0

ψδW 2 dηdτ − 1
2δ

∫ T+2δ

T+δ

∫ b(τ)

0

ψδW 2 dηdτ

)
.

For the limit in the first integral, note that from the continuity of the integrand,
we can apply the mean value property for integrals to obtain that

lim
δ→0+

1
2δ

∫ T+1

T

∫ b(τ)−δ

b(τ)−2δ

ḃ(τ)φδ(τ)W 2(η, τ) dηdτ =
1
2

∫ T+1

T

ḃ(τ)W 2(b(τ), τ) dτ.

Applying the condition at the moving boundary, we deduce that

lim
δ→0+

1
2δ

∫ T+1

T

∫ b(τ)−δ

b(τ)−2δ

ḃ(τ)φδ(τ)W 2(η, τ) dηdτ = 0.

As for the other terms, we proceed in a similar way to deduce that

lim
δ→0+

1
2δ

∫ T+1−δ

T+1−2δ

∫ b(τ)

0

ψδW 2 dηdτ =
1
2

∫ b(T+1)

0

W 2(η, T + 1) dη,

and that

lim
δ→0+

1
2δ

∫ T+2δ

T+δ

∫ b(τ)

0

ψδW 2 dηdτ =
1
2

∫ b(T )

0

W 2(η, T ) dη.

Hence, we conclude that

L1(T ) =
1
2

∫ b(T+1)

0

W 2(η, T + 1) dη − 1
2

∫ b(T )

0

W 2(η, T ) dη.

Next we consider the term Rδ
1(T ). We integrate by parts to obtain

Rδ
1(T ) = −

∫

ΩT,1

(W 2
η ϕδ + WWηϕδ

η +
1
4
W 2(ηϕδ

η + ϕδ)) dηdτ.

Again here, the boundary terms vanish, because the support of ϕδ is contained
in ΩT,1. We remark that the same argument as above leads us to

lim
δ→0+

∫

ΩT,1

WWηϕδ
η dηdτ

= lim
δ→0+

1
δ

∫ T+1

T

(∫ 2δ

δ

WWηφδ dηdτ −
∫ b(τ)−δ

b(τ)−2δ

WWηφδ dηdτ

)

=
∫ T+1

T

(−hW (0, τ) − W (b(τ), τ)Wη(b(τ), τ)) dηdτ

= −
∫ T+1

T

hW (0, τ) dηdτ,
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where we have also used the boundary condition (3−ii) as well as the condition
at the interface (3−iii). Similarly one can show that

lim
δ→0+

∫

ΩT,1

1
4
W 2(ηϕδ

η + ϕδ)) dηdτ =
1
4

∫

ΩT,1

W 2(η, τ) dηdτ.

Hence, we conclude

R1(T ) = lim
δ→0+

Rδ
1(T )

= −
∫

ΩT,1

W 2
η dτdη + h

∫ T+1

T

W (0, τ) dτ − 1
4

∫

ΩT,1

W 2 dτdη.

In view of Lemma 3 a possible choice of the constant in (24) M1 is given
by

M1 = h
b
2

2
+

b
5

8
.

Step 2. Applying the mean value theorem for integrals in (24) we deduce from
Step 1 that there exist two sequences of points τ ′

n, τ ′′
n ∈ [n, n + 1) such that

∫ b(τ ′
n)

0

W 2
η(η, τ ′

n) dη,

∫ b(τ ′′
n )

0

W
2

η(η, τ ′′
n ) dη ≤ M1. (25)

Since b
∞ ≤ b(τ ′′

n ), it follows that (25) implies the bound

‖W η(·, τ ′′
n )‖L2(0,b

∞
) ≤

√
M1.

Moreover, if we fix any β ∈ (0, b∞), then for all sufficiently large n we have
b(τ ′

n) ∈ (β, b∞). Hence, (25) implies the bound

‖W η(·, τ ′
n)‖L2(0,β) ≤

√
M1

for all β ∈ (0, b∞). Hence, we can select subsequences (not relabelled) such
that

W η(·, τ ′
n) ⇀ ψβ in L2(0, β) and W η(·, τ ′′

n ) ⇀ Ψ in L2(0, b
∞

).

Due to (22) and (23) the limits of W (·, τ ′
n) and W (·, τ ′′

n ) are uniquely defined,
so is the case for W η(·, τ ′

n) and W η(·, τ ′′
n ). Hence, we deduce that ψβ and

Ψ do not depend on the choice of the sequence τn and using (22) and (23)
we conclude that ψβ is the weak derivative W∞

η in every interval (0, β) and
that Ψ = W

∞
η . So that W∞χ(0,β) ∈ H1(0, β) for all β ∈ (0, b∞) and thus

W
∞ ∈ H1(0, b

∞
). In fact, W∞ ∈ H1(0, b∞). Indeed, in view of Lebesgue

monotone convergence theorem we have

lim
β→b∞

∫ b∞

0

(W∞
η )2(η)χ(0,β)(η) dη =

∫ b∞

0

(W∞
η )2(η) dη ≤ M1.

Step 3. We claim that (W∞, b∞) and (W
∞

, b
∞

) are both stationary solutions,
namely solutions of (4). Hence they are smooth and equal. Indeed, we multiply
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the equation (3−i) by ϕ ∈ C∞
c (R) such that ϕη(0) = 0 and we integrate on

ΩT,1. Proceeding as in step 2 we set

L2(T ) =
∫

ΩT,1

Wτϕdηdτ =
∫

ΩT,1

(
Wηηϕ +

η

2
Wηϕ

)
dηdτ = R2(T ).

L2(T ) =
∫

ΩT,1

Wτ (η, τ)ϕ(η) dηdτ

=
∫ b(T+1)

0

W (η, T + 1)ϕ(η) dη −
∫ b(T )

0

W (η, T )ϕ(η) dη,

where W = W or W = W . We then deduce from Lebesgue’s dominated
convergence theorem that limT→∞ L2(T ) = 0.

Next, we investigate the right-hand-side R2(T ). Integration by parts
yields

R2(T ) =
∫

ΩT,1

Wηηϕdηdτ +
∫

ΩT,1

η

2
Wηϕdηdτ

=
∫

ΩT,1

W

(
ϕηη − 1

2
(ηϕ)η

)
dηdτ −

∫ T+1

T

(
ḃ +

b

2

)
ϕ(b(τ)) + hϕ(0).

Now, we pass to the limit as T → ∞. It follows from Lebesgue’s dominated
convergence theorem that

lim
T→∞

∫

ΩT,1

W (η, τ)
(

ϕηη − 1
2
(ηϕ)η

)
dηdτ =

∫ b∞

0

W∞(η)
(

ϕηη − 1
2
(ηϕ)η

)
dη,

where (W∞, b∞) is either (W∞, b∞) or (W
∞

, b
∞

). Let us denote by Φ an
antiderivative of ϕ. Then,

lim
T→∞

∫ T+1

T

ḃϕ(b(τ)) dτ = lim
T→∞

(Φ(b(T + 1)) − Φ(b(T ))) = 0.

In addition,

lim
T→∞

∫ T+1

T

b

2
ϕ(b(τ)) dτ =

1
2
b∞ϕ(b∞).

Finally, we collect all the results concerning R2(T ), while keeping in mind that
limT→∞ L2(T ) = 0. This yields

0 = lim
T→∞

R2(T ) =
∫ b∞

0

W∞(η)
(

ϕηη − 1
2
(ηϕ)η

)
dη − b∞

2
ϕ(b∞) + hϕ(0),

(26)
for all smooth functions ϕ in R such that ϕη(0) = 0. In particular W∞ satisfies
the differential equation (4−i) in the sense of distributions.
Step 4. We recall that W∞ ∈ H1(0, b∞). It is easy to infer from (26) that
W∞

ηη = −η

2
W∞

η ∈ L2(0, b∞), which in turn implies that W∞ ∈ H2(0, b∞).
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Next we search for the boundary condition and the conditions on the moving
boundary satisfied by W∞. After integrating by parts twice in (26) we obtain,

0 =
∫ b∞

0

(
W∞

ηη +
η

2
W∞

η

)
ϕdη + W∞ϕη|η=b∞

η=0 − W∞
η ϕ|η=b∞

η=0

− b∞

2
ϕ(b∞)(W∞(b∞) + 1) + hϕ(0),

so that

0 =W∞(b∞)ϕη(b∞) − W∞
η (b∞)ϕ(b∞) + W∞

η (0)ϕ(0)

− b∞

2
ϕ(b∞)(W∞(b∞) + 1) + hϕ(0), (27)

for all smooth functions ϕ on R such that ϕη(0) = 0. Now, if we additionally
choose ϕ such that ϕ(b∞) = ϕη(b∞) = 0, then (27) reduces to

ϕ(0)(W∞
η (0) + h) = 0,

and since ϕ(0) is arbitrary, we deduce that

W∞
η (0) + h = 0.

Thus (27) becomes

0 = W∞(b∞)ϕη(b∞) − W∞
η (b∞)ϕ(b∞) − b∞

2
ϕ(b∞)(W∞(b∞) + 1). (28)

Next we suppose that ϕ(b∞) = 0, but ϕη(b∞) 
= 0. Then

W∞(b∞)ϕη(b∞) = 0,

and hence

W∞(b∞) = 0.

Then, (28) becomes

0 = −W∞
η (b∞)ϕ(b∞) − b∞

2
ϕ(b∞). (29)

Suppose that ϕ(b∞) 
= 0. Then (29) implies that

W∞
η (b∞) = −b∞

2
.

We deduce that the solution pair (W∞, b∞) coincides with the unique solution
of Problem (4), i.e. (W∞, b∞) = (U, ω) or in other words with the unique
steady state solution of the time evolution problem, Problem (3).
Step 5. We recall that, in view of step 4, W∞ ∈ H2(0, b∞) ⊂ C1, 12 ([0, b∞]).
Moreover, the convergence of W to W∞ (resp. W̃ to W∞) is monotone on
[0, b∞]. Hence, we deduce with the help of Dini’s Theorem that this convergence
is uniform.

Finally, since bλ ≤ b0 ≤ b and since Wλ ≤ u0 ≤ W , the comparison
principle implies that b(τ) ≤ b(τ) ≤ b(τ) and W̃ (η, τ) ≤ W̃ (η, τ) ≤ W (η, τ) ≤
W (η, τ) for all (η, τ). We conclude that b(τ) → b∞ and that W̃ (τ) converges
to W∞ uniformly on compact sets of [0,∞) as τ → ∞. �

Now, Theorem 1 easily follows from Theorem 3.
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