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This paper presents a stable switching control strategy for the parking problem of non-holonomic mobile

robots. First, it is proposed a positioning-orientation switching controller for the parking problem. With

this strategy robot backwards motions are avoided and the robot heading is always in the direction of the

goal point facilitating the obstacle handling. Second, the avoidance of unexpected obstacles is considered

in a reactive way by following the contour of the obstacles. Next, the stability of the switching parking/

obstacle-avoider controller is analyzed showing stability under reasonable conditions. Finally, the good

performance and the feasibility of this approach are shown through several experimental results.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of programming a mobile robot to move from one
place to another is of course as old as the first mobile robot. In
mobile robotics almost every task to solve deals with the problem
of parking [1], which includes the ability to set a desired final
orientation instead of the classical behavior ‘‘move-to-goal’’ in
behavior-based architectures [2] in which only a final point is
needed (positioning problem). This distinction adds complexity
when working with unicycle-like mobile robots since its model has
a non-holonomic constraint making impossible to design a
continuous invariant control law that guarantees to reach a final
posture in Cartesian coordinates [3]. Intuitively a non-holonomic
constraint restricts a vehicle motion locally but not globally. For the
kinematic unicycle, the non-holonomic restriction implies no
sideways motion of a point on the wheel axis. Note that under
this constraint, there is a feasible trajectory between any two
postures. The price paid for free motion of an off-axis point is the
lost of orientation control. Several works have been developed in
this area; Fierro and Lewis [4] uses the dynamic model of the
mobile robot and achieve the objective by means of neural
networks, in [5,6,1] a change in the coordinates of the kinematic
model has been introduced.

In this paper we present a solution for the parking problem
based on the stable switching of a positioning controller and its
ll rights reserved.
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complementation with an only-bearing controller that brings
the robot the ability to set desired headings. The robot must reach

the final posture xd yd yd

h iT
starting from any initial posture

xi yi yi

h iT
as can be seen in Fig. 1. This approach takes advantage

of the non-holonomic constraint of the unicycle-like mobile robots
decomposing the robot movement in such a way that backward
motions are avoided and the robot heading is always in the
direction of the goal point. A recent switching approach to this
problem is [7] where it is proposed a more complex switching
system concluding stability at the goal point based on passivity
concepts. However, in spite of the stability results, the performance
shown in the experimental results of this paper is questionable.

Besides the parking problem, this paper is intended to cope with
the avoidance of unexpected obstacles [8–11]. This problem itself
has relevant importance since its solution has direct application in
areas such as exploration of unknown environments [27] for map
construction [12], rescue missions [13] or landmark finding [14].
Most of the reports on this subject are strongly based on path
planning strategies where the robot recognizes its surroundings
using cameras or laser range-finders. However, our approach is
closer to reactive strategies such as in [11,26,29,32], since we
propose to follow the obstacle’s boundaries using a stable
contour-following controller (CF) [15], with full independence on
the obstacle shape.

The main contribution of this work is the full description of a new
stable switching system composed by a parking controller and a CF
controller. Different from related papers [11,29,32], our work not only
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Fig. 1. Problem description.
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Fig. 2. Unicycle-like mobile robot and laser-range finder: curly brackets indicate

beams used to estimate the obstacle contour angle.
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Fig. 3. Controller for positioning a non-holonomic mobile robot.
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deals with the switching rules, but also includes the autonomous
navigation control algorithms with formal stability analysis. This way,
the proposed switching rules guarantee both an appropriated path
length (when compared with reactive classical algorithms) and also
the stability of the overall control system considering multiple
Lyapunov functions [16]. The proposed strategy allows the robot to
handle real conditions, including confinement or traps situations in
large-scale settings [18] and can be scaled for more complex
navigation systems such as multi-robot systems [19].

The remainder of this paper is organized as follows: in Section 2 the
well-known kinematics for the unicycle-like mobile robot are
introduced as well as the laser range-finder employed in the
experiments. Section 3 begins with a solution for the positioning
problem with complete stability analysis and concludes with the
design of the proposed switching parking controller. The addition of
the obstacle-avoidance behavior is treated in Section 4. Then, in
Section 5 it is considered the robot–environment interaction with the
stability proposal and some preliminary laboratory experimental
results. Next, in Section 6 experimental results in office settings are
presented and analyzed. Finally in Section 6 the conclusions are stated.

2. Mobile robot

In this paper it is considered the wheeled mobile robot of
unicycle type shown in Fig. 2, in which the state variables are x and
y (the coordinates of the middle point of the front wheels axle) and
y (angle of the vehicle with the world X-axis [WX]). A rear wheel
turns freely and balances the rear end of the robot above the
ground. The kinematics of the robot can be modeled by

_w ¼
_x

_y
_y

2
64

3
75¼ f ðw,uÞ ¼

cosðyÞ 0

sinðyÞ 0

0 1

2
64

3
75 u

o

� �
ð1Þ

where u¼ u o
� �T

is the control input vector: u and o are the
forward and the angular robot velocity, respectively. The robot is
equipped with a 181-beams laser range-finder. With reference to
Fig. 2, the lateral beams from 01 to 151 (and from 1651 to 1801) are
used to estimate the robot/obstacle distance and the obstacle contour
angle with respect to the global framework, while all beams are used
to define a safety-zone, whose purpose is to detect possible robot-
obstacle collisions. The guard-zone is rectangular and is defined by
two parameters: the desired lateral dlat and frontal dfront distances. The
minimum lateral value for a Pioneer IIIDX is about 330 mm.

3. Parking problem

This section presents a switching controller approach to address
the parking problem in Cartesian coordinates. This strategy is based
on the consideration of asymptotically stable subsystems that solve
specific navigation actions, namely the positioning control in Section
3.1 and the heading control in Section 3.2, and then designing a simple
switching controller including both subsystems, presenting a solution
for the parking problem and discussing stability at the switching
times in Section 3.3.

3.1. Positioning control

Let us consider a continuous controller similar to [20], where it
is guaranteed the achievement of a desired destination point

xd yd y
h iT

without specifying the desired final heading yd

(Fig. 3). We continue with the description of this controller by
defining Cartesian errors as

~x ¼ xd�x ð2:aÞ

~y ¼ yd�y ð2:bÞ

and computing the control states: distance to the goal point d

and heading error ~y:

d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2
þ ~y2

q
ð3:aÞ

~y ¼ ydP�y¼ a tan2ð ~y, ~xÞ�y ð3:bÞ

where ~y is the orientation error between the initial and the final
point. Hence, the time-variation of these control states is ruled by

_d ¼�ucosð ~yÞ ð4:aÞ

_~y ¼
u
d

sinð ~yÞ�o ð4:bÞ

where u is the robot translational velocity and d is the distance
between the initial and the target points.
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To prove the asymptotic convergence of the orientation error to
zero it is proposed the following control law for the angular
velocity:

o¼ u
d

sinð ~yÞþK ~y tanhðky
~yÞ ð5Þ

In (5), the first term cannot be saturated, since it includes a
division by d, whereas the second term saturates at the value of the
constant K ~y40, while ky40 is other design constant chosen to
increase the angular velocity for small errors. Note that due to the
division by d, the value for (5) can be arbitrarily large and for this
reason the robot must be stopped within a given neighborhood of
the desired target point. The closed-loop equation, obtained by
replacing (5) into (4.b) is

_~y ¼�K ~y tanhðky
~yÞ ð6Þ

Next, it is considered the following Lyapunov function candi-
date and its time-derivative along trajectories:

V ~y ¼
~y

2

2
ð7Þ

_V ~y ¼
~y _~y ¼�K ~y

~ytanhðky
~yÞo0 ð8Þ

From these, it can be concluded the asymptotic stability of the
angular error, i.e. the robot will head towards the goal point even
with null linear velocity. It must now be proved that the same
occurs for the distance d to the goal point. Then, it is analyzed the
equilibrium point at d¼0, defining the following control law for the
linear velocity:

u¼
d

1þ9d9
umaxcosð ~yÞ ð9Þ

where umax is the constant that indicates the desired maximum
robot linear velocity. Then, the closed-loop equation becomes

_d ¼�
d

1þ9d9
umaxcos2ð ~yÞ ð10Þ

The stability of the equilibrium d¼0 is considered with the
Lyapunov candidate function (11.a) and its time derivative along
-7 -6 -5 -4 -3 -2
-2

-1

0

1

2

3

4

5

x 

y 
[m

]

Continuous Po

0

LYAPUNOV FUNCTIONS (Vd [blue] & Vt[red])

0

-5

 ANGULAR VELOCITY

150

0

 LINEAR VELOCITY

k Ts [Samples]; Ts = 100[ms] 40

v 
[m

/s
]

w
 [º

/s
]

Fig. 4. Continuous parking contro
trajectories (11.b):

VP ¼
d2

2
ð11:aÞ

_V P ¼ d _d ¼�ducosð ~yÞ ð11:bÞ

Then, it is straightforward that

_V P ¼�
d2

1þ9d9
umaxcos2ð ~yÞo0 ð12Þ

With the previous demonstration for ~yðtÞ-t-10, it is immedi-
ately concluded the asymptotic stability of this positioning con-
troller, i.e. dðtÞ-t-10. With reference to Fig. 4 some simulation
results can be seen, the considered initial point was ½ xi yi yi �

T ¼

½3m 3m 45 %
o
�T whereas the target point was set up at

½ xd yd y �T ¼ ½0m 0m y �T . As can be noted, this controller
allows robot backward motions and as the target point is closer
the heading error computation is affected. In the extreme case of
the robot just on the target point, this heading error cannot be
determined due to (4.b).

3.2. Heading control

A heading controller can be obtained from the previously
presented control actions considering u¼0 in (5) and changing
the desired heading position to a new (constant) orientation angle
ydH (Fig. 5). This way, the analysis of the controller could be
summarized as follows:

~y ¼ ydH�y ð13Þ

_~y ¼�o ð14Þ

In consequence, the control commands are

u¼ 0 ð15:aÞ

o¼ K ~y tanhðky
~yÞ ð15:bÞ
-1 0 1 2 3
[m]
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Fig. 5. Controller for angular position.
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Fig. 6. Parking controller: angles involved.
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Fig. 7. Block diagram of the supervisor.
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noting that the angular velocity saturates at the value of the
constant K ~y40. This way it is obtained the same following closed-
loop Eq. (6), and by considering a similar analysis as used in (7), it
can be concluded (as expected) the control system asymptotic
stability at the origin, i.e. ~yðtÞ-t-10.

3.3. Switching parking controller

The theory of hybrid, switched control systems, i.e. systems that
comprise a number of continuous subsystems and a discrete
system that switches between them under certain logic rules,
has received notable attention in the control theory community
[16,17] since they provide a natural and convenient unified
framework. In general, a hybrid switched system can be
represented by the differential equation:

_wðtÞ ¼ f usiðtÞðw,t,usi
Þ ð16Þ

where f usiðtÞ is a collection of n distinct functions, siA{1,2,y,n} is
the switching signal and msi explicitly denotes the dependence of
the control input u on the switching signal si, which is a discrete
signal switching among discrete values in {1,2,y,n}DZ+. The value
si(t) determines which function f usi

ðw,usiÞgoverns system behavior
at time t.

Now we present our switching control system composed by the
controllers described in previous sections. The switching signal is s1

and whenever s1¼1, the controller for distance correction (position-
ing) is active, whereas whens1¼0 ors1¼2 the controller for angular
position is active. The errors are redefined accordingly to Fig. 6.

In Fig. 6, ~y1 ¼ yd1�y is the initial orientation error, yd1 ¼ a

tan2ð ~y, ~xÞ is the constant angle between both points of interest, y is
the robot heading and ~y2 ¼ yd�yd1 is the final orientation error.
Next, based on the controllers described in Sections 3.1 and 3.2 we
build the switching system of Fig. 7, aggregating an automaton to
rule the switching between these controllers. Its logic is based on
three simple stages:

The robot heading is directed towards the destination point, i.e.
~y1-0.
The robot achieves the final point regardless of its orientation,
i.e., d-0.
The robot adjusts its orientation towards the desired final
heading yd, i.e. ~y2-0.

Hence, by switching according to this logic the robot goes
straight to the target point activating the heading controller before
moving towards the target point and after reaching it. In Fig. 7 the
Position Control implements the control actions: Eq. (9) for the robot
translational velocity and Eq. (15.b) for the robot angular velocity.
This strategy preserves the asymptotic stability property if it is
assumed thatyd¼const. in (3.b). This assumption is logical since the
robot is already orientated towards the goal point, and, at the same
time, avoids the division by d in the robot angular velocity.

3.3.1. Stability considerations at switching times

It is well-known that a switched system is stable if all individual
subsystems are stable and the switching is sufficiently slow, so as to
allow the transient effects to dissipate after each switch [16]. These
facts are based most on the stability derivations from the theory of
impulse effect systems [21,22] and randomly switched systems
[28]. In our case, as each controller is stable and has of all the time
necessary to achieve its control objectives, the supervisor can
switch among the above mentioned controllers without affecting
the stability of the system. In Fig. 8, it is shown the performance of
our switching parking controller in order to allow a comparison
with the conventional continuous controller similar to [20] of Fig. 7.
The main difference is in the possibility to choose the final
orientation. Besides, avoiding robot backward motions two main
advantages are achieved: (1) the robot is ever ‘‘looking at’’ the
target point, which is a good strategy for robots with a unique laser
range-finder in its front and (2) the robot will perform the optimal
trajectory to the target point.
4. Switching parking control with obstacles

Given the robot at an initial position, it must arrive to the
destination posture avoiding the obstacles in between. The
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indicate the zones where the obstacle was not yet avoided. Similar graphs can be

constructed for the other quadrants and for the robot following the obstacle at its

left side.
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uncertainty about obstacles’ shapes and positions on the scenario
generally leads to the apparition of deadlocks and local minima.
Many papers were devoted to the solution of such algorithms. In
[11] this problem is considered for path planning. The authors
present the Bug algorithms that allow the robot to achieve a target
position following the boundary of the obstacles always at the same
side of the robot. The so-called Bug1 algorithm is based on following
the obstacles boundary; this happens until the closest point to the
target point along the boundary is detected. Finally, in the Bug2

algorithm, it is defined a main line connecting the initial and the
target point and it is considered in order to leave the obstacle. More
recently, in [23] the authors propose a switching multi-controller
approach using a look-ahead controller several times until
convergence is reached.
In this paper we propose a hybrid switching system composed
by the parking controller of Section 3 and a contour-following
controller, which is considered in detail in [15]. This is not a map
dependent strategy, the robot only knows the initial and the target
points, and it is equipped with odometry and distance (a laser
range-finder) sensors in order to properly determine the obstacle
position and to be able to follow its contour. These reactive
approaches are characterized by its low computational cost
(computing time and memory use), making possible to disregard
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this aspect in the algorithm implementation. It is also assumed that
there exists a feasible path to get the goal point (narrow corridors
are detected as obstacles, whereas the minimal corridor
narrowness depends on the selection of the robot guard-zone).
The algorithm that rules our strategy could be summarized as
follows:
(1)
Fig. 1
(b) a

Fig.
whe
Compute the distance to the target point as a threshold value
(THR).
(2)
 Parking controller (Section 3.3) is active in order to get the
target position until one of the following occurs:
a)
 Target is reached. Procedure stops.

b)
 An obstacle is encountered go to Step 3.
(3)
 Determination of the robot side at which the obstacle will be
followed (Section 4.1). Go to Step 4
(4)
 Follow the obstacle contour until one of the following occurs

a)
 Target is reached. Procedure stops.

b)
 The obstacle was surpassed (Section 4.2) at a distance which is

less than the threshold value. Define a new initial position for
the parking controller and go to Step 1.
Note that the robot will keep following the contour of the
obstacle until the distance to the target point is less than the
previously taken THR value. This solution does not define a global
optimal path due to the unknown environment.
Left 

Random

Goal
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1. Invasion to the safety-zone is stronger at the robot right-side in (a) and (d); in (c) t

nd (e) the robot turns right in order to follow the obstacle at its left side. Note tha
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12. Main control system block diagram. At instants t2n�1 the obstacle is encountere

n the obstacle was surpassed and the robot is closer to the target point (compared
4.1. Contour-following controller [15]

This controller allows the robot to follow the discontinuous
contour of any object at a desired constant distance rdes, consider-
ing a set of stable controllers providing the switching rule among
them. In [15] it is proved that the control system stability for the

control states ~r ~f
h iT

is

~r ¼ rdes�robject ð17Þ

the distance error between the robot and the object, and

~f ¼fobject�y ð18Þ

the orientation error between the robot and the measurement of
the object orientation at this point (Fig. 9). The common Lyapunov
function considered in [15] is

VCF ¼
~f

2

2
þ

Z
0 ~r

k ~r ðBÞBdB ð19Þ

Therefore, based on the results presented in [15] it will be
assumed that the robot is able to asymptotically achieve the
desired robot-obstacle distance rdes. Furthermore, this result is
fulfilled for any obstacle shape, even for non-smooth contours.
Right

Left 

he invasion is equal at both sides so the side to follow is selected randomly. Finally in

t the robot head is always in the goal direction.

ng
rol
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Mobile 
Robot

1

ision at 
passed = FALSE 

r 

Contour 
Following 
Control 

passed=TRUE 
rpassed} 

d activating the contour-following mode. The leaving condition is activated at t¼t2n

to the last surpassed obstacle).
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4.2. Obstacle avoided detection

This algorithm is intended to detect an instant at which an
obstacle could be considered as surpassed and it is useful to
determine a leaving condition for the CF behavior. Such algorithm
requires the knowledge of the current robot position(x,y), the
desired final position (xREF,yREF) and the position (x000,y000) – or
(x180,y180) – of the laser beam at 01 – or 1801 – which indicates the
position at the right- or left-side of the robot. These points can be
appreciated in Fig. 10. Then the problem is divided into four
quadrants depending on the relation between the current and the
final points. A flag variable OBSTACLEpassed is defined; the value
TRUE for this variable indicates that the obstacle was actually
surpassed. As an example for the case in which xREF4x and yREF4y,
Fig. 13. Obstacle between the initial and the final point.

Fig. 14. Parking controller Lyapunov function. o14: obstacle detected; o24:

obstacle avoided; and o34: switching to the parking controller.

Fig. 15. Avoiding a trap situation.

Fig. 16. Parking controller Lyapunov function. o14: obstacle detected; o24:

obstacle avoided with a Vd value smaller than the threshold (direct switching case).

Fig. 17. Large-scale experiment setting (20 m long).
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see Fig. 10, the algorithm is

OBSTACLEpassed ¼ FALSE

if ððxREF 4xÞANDðyREF 4yÞANDðx000oxÞANDðy000oyÞÞ

OBSTACLEpassed ¼ TRUE

ð20:aÞ

and for the other three quadrants: the equations become: (i) for
xREF4x and yREFoy, see (20.b); (ii) for xREFox and yREFoy, see
(20.c), and finally, (iii) for xREFox and yREF4y, see (20.d):

OBSTACLEpassed ¼ FALSE

if ððxREF 4xÞANDðyREF oyÞANDðx000oxÞANDðy0004yÞÞ

OBSTACLEpassed ¼ TRUE

ð20:bÞ

OBSTACLEpassed ¼ FALSE

if ððxREF oxÞANDðyREF oyÞANDðx0004xÞANDðy0004yÞÞ

OBSTACLEpassed ¼ TRUE

ð20:cÞ
Fig. 18. o(1,3,5,7,94 obstacle detected; o2,4,6,8,104: obstacle
OBSTACLEpassed ¼ FALSE

if ððxREF oxÞANDðyREF 4yÞANDðx0004xÞANDðy000oyÞÞ

OBSTACLEpassed ¼ TRUE

ð20:dÞ

4.3. Right/left robot side to follow selection

As the obstacle avoidance problem is treated using a CF
controller, it is important to select the side of the robot that will
avoid the obstacle. To this aim, the safety-zone defined by the laser
range-finder is employed in such a way that, analyzing the obstacle
invasion according to Fig. 11, it is decided if the robot will avoid the
obstacle to its left or to its right side. For brevity this algorithm is
not explained in detail, but an intuitive approach is given in Fig. 11,
where it can be seen how this algorithm depends on the safety-
zone area occupied by the obstacle. It must be observed that this
decision could affect the path length. But a wrong side to follow
avoided. Right picture: parking controller Lyapunov function.



Fig. 19. The same experimental setting of Fig. 16, but blocking the corridor: o14:

obstacle avoided; o24: obstacle detected. Right picture: parking controller

Lyapunov function.

J.M. Toibero et al. / Robotics and Computer-Integrated Manufacturing 27 (2011) 558–568566
could be practically detected and avoided in a second instance as
e.g. in [24].

4.4. Block diagram

The block diagram of the control system is shown in Fig. 12
including both the parking controller (described in Section 3.1) and
the contour following (CF) controller (described in Section 3.1). It is
firstly defined a threshold value (THR) as the value of (11.a) at t¼t0,
i.e., THR¼Vp(t0). The switching signal is s, whereas when s¼0, the
robot is approaching the goal point using the parking controller and
will only switch to the CF controller if an obstacle is detected at the
instant t¼t2n�1,n¼1,2,y, updating the threshold value
THR¼Vp(t2n�1). The CF controller allows the robot to follow the
discontinuous contour of the obstacle at a desired constant
distance, and then, at the instant t¼t2n the supervisor selects the
parking controller again provided that: (1) the obstacle was
successfully surpassed (accordingly to the algorithm of Section
4.2) and (2) the robot-to-target distance is less than the previously
defined threshold value, i.e. Vp(t2n)rTHR.

4.5. Stability analysis

In order to prove the asymptotic stability of this switching
control system we considered a multiple Lyapunov functions
approach (MLF) [16,17] associating a Lyapunov function to each
controller (one for the parking controller and other for the contour
following controller) and designing a logic that guarantees that the
sequence of values for these functions is decreasing. Next, we state
some useful and reasonably assumptions.

Assumption I. There are a finite number of obstacles, and each of
them has finite length.

Assumption II. The performance of the main control system could
be properly evaluated by (11.a).

Remark. Here, we relax the meaning of performance of the main
controller to only ‘‘arrive at the goal point’’ being such information
provided by the Lyapunov function (11.a), which depends only on
the robot-to-goal distance d. This way, other states such as the
orientations ~y1 and ~y2, and the CF-error ~r , are ignored when
talking about the main controller’s performance.

Assumption III. Perfect functioning of the CF controller assumed.

Remark. It will be assumed that the CF controller when active
reduces to zero the error distance between the robot and the
desired robot-to-obstacle distance (as derived from its stability
property), i.e., ~r-0.

Proposition I. Guaranteeing that the discrete sequence associated
to (11.a) – considering only the instants at which the positioning
controller of Section 3.1 is activated – is decreasing, the overall
switching controller of Fig. 11 is stable.

Proof. In order to prove asymptotic stability of a switching system
composed by two subsystems considering multiple Lyapunov
functions theory [25], both discrete sequences (associated to
each subsystem) must be decreasing. In our case, the one
associated to the parking controller and the one associated to
the CF controller. Under Assumption III, the sequence associated to
the activations of the CF controller is always decreasing. So, the
stability property for the main switching controller depends only
on the discrete sequence associated to the parking controller. &

Theorem I. The switching controller compound by the parking
controller of Section 3.3 and the CF-controller of Section 4.1
switches according to
(i)
 Switching from the parking controller to the CF-controller
(s¼1) at the switching instants t2n�1 with n¼1,2,y is allowed
to occur only if an obstacle is detected within a given robot
neighborhood.
(ii)
 Switching from the CF-controller to the parking controller
(s¼0) at switching instants t2n with n¼1,2,y is allowed to
occur only if the obstacle has been surpassed according to the
algorithm of Section 3.2 and the following condition is fulfilled:
VPðt2nÞoVPðt2n�1Þ ð21Þ

is globally uniformly stable, recalling that Vp is the Lyapunov
function associated to the Parking controller.

Proof. Condition (21) secures that the sequence associated to VP

will be decreasing as required, meanwhile if Assumption III holds,
the overall switching system will be stable. In other words, as any
obstacle of finite length detected at a distance d(t2n�1) from the
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target point could be surpassed at a distance d(t2n)od(t2n�1), then,
condition (21) is fulfilled.

5. Experimental results

The experiments were carried out using a Pioneer IIIDX mobile
robot equipped with an onboard Pentium III computer, a laser
range-finder and internal odometry sensors. The robot does not
have any camera or map information. The implementation of the
overall control system needs 10 ms, which represents only a tenth
of the robot sample time. In the first experiment (Figs. 13 and 14), it
can be seen how the obstacle is detected in o14 (red dot) and the
value of VP at this instant is considered as the new threshold value.
Next, in o24 the obstacle is considered as surpassed according to
the algorithm of Section 3.1. However, since the value of VP at this
instant is still greater than the previous threshold the robot keeps
following the obstacle until, at the instant o34 , at which the
value of VP is less than the threshold and the system switches to the
parking controller (securing that VP will be decreasing).

In the second experiment, it is considered a trap situation. As
shown in Figs. 15 and 16, the obstacle is detected at the instant
o14 , and the CF controller is activated, setting the corresponding
THR value, then in o24 the obstacle is surpassed and the value for
the Lyapunov function (11.a) is less than the THR value, so the
system switches again to the parking controller.

Note in both previous Figs. 14 and 16, the solid line on the
Lyapunov function, which denotes that the parking controller is
active, is always a decreasing function, in spite of having increasing
parts at the moments where the controller is not active.

The third experiment, Fig. 17, proposes an autonomous navigation
in a larger office setting. The environment is completely unknown and
the goal position is about 20 m far from the initial point and the robot
should cross several doors and corridors in order to get the final point.
The path denoted as idea trajectory is the path expected to be followed
by the robot if there were no obstacles in the trajectory.

From Fig. 18, it can be appreciated the resulting controller
performance and the associated Lyapunov functions time-evolution.
As can be seen, the task is easily solved by considering the proposed
strategy. It could be remarked that the obstacles were found always at a
distance less than the corresponding THR value and consequently the
Lyapunov function is decreasing. For this reason, in order to obtain a
Start 
Target

Target 

Start 

Fig. 20. Paths found using the proposed algorithm (continu
more complicated test for the switching control system, one of the
corridors was blocked in the fourth experiment, forcing the trap
situation shown in Fig. 19.

Based on these experimental results, it could be interesting to
compare our approach with other well-known algorithms which also
allow the robot to achieve a target position while avoiding obstacles.
These classical navigation algorithms belong to the Bug family [11],
which combines local planning with global information (the target
position related to the world coordinate system). Among several Bug

algorithms [29–33], the performance (regarding path travelled) of our
strategy is comparable to the DistBug [29] approach. From results
reported in [34,35] and also from the comparison results presented in
[29] it can be concluded that the DistBug algorithm’s performance is
notoriously better than the performance presented by the other cited
strategies and perfectly comparable with ours. In fact, both strategies
appear to have similar performances comparing the trajectories found.
The difference (at the algorithm level) lies in the leaving condition, i.e.,
the instant at which the robot abandon the obstacle boundary, since the
DistBug considers an auxiliary distance in free space F, which is used in
the determination of the leaving condition. The authors consider that
this distance in free space is in fact reachable by the robot, and based on
this assumption, the obstacle’s boundaries can be abandoned. Instead
of this, we propose to leave the obstacle’s boundaries when there have
been surpassed at an appropriated real distance to the destiny point in
spite of an assumed reachable distance. The length of the path found by
each algorithm could be larger or shorter depending on the
configuration of the obstacles as can be observed in the examples
shown in Fig. 20. In Fig. 20a it is shown a two-obstacles setting, where
the DistBug approach achieves a slightly shorter path. Next, in Fig. 20b
and d both strategies find the same path. Fig. 20c shows a scenario
where the assumption made by the DistBug algorithm produces a
considerably larger path. It must also be noted that different from these
related papers, our work not only deals with the switching rules but
also includes a full description of the autonomous navigation control
algorithm with formal stability analysis.
6. Conclusions

In this paper, we have presented a fully described switching
controller that solves the problem of parking a wheeled mobile
Start Target  

Start 
Target 

ous path) and the one presented in [29] (dotted path).
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robot (positioning with final orientation) avoiding unknown
obstacles. The strategy has been based on the reactive contour
following the obstacles, and to this aim two complementary
algorithms have been included: one that allows the robot to detect
when an obstacle was or was not avoided (a leaving condition of the
contour following controller), and other that selects the side to
avoid the obstacle. The presented switching controllers: the
parking controller and the parking/contour following controllers,
include the stability analysis at the switching instants. In spite of
the complexity of the problem due mainly for the uncertainties on
the robot environment, the asymptotic stability is proved provided
some common sense assumptions are fulfilled: such as the pre-
sence of static isolated obstacles and the possibility to achieve the
target position. Furthermore, the performance of this strategy has
shown good results though several experiments in real settings.
Nevertheless, adding knowledge about the robot environment,
as e.g. local map information, would improve its performance.
Potential applications for this approach can be found in many
areas such as exploration, map construction and search/rescue
tasks.
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