
Citation: Zacchigna, F.G.; Lew, S.;

Lutenberg, A. Flexible Quantization

for Efficient Convolutional Neural

Networks . Electronics 2024, 13, 1923.

https://doi.org/10.3390/

electronics13101923

Academic Editor: Chen Yang

Received: 16 March 2024

Revised: 11 April 2024

Accepted: 14 April 2024

Published: 14 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Flexible Quantization for Efficient Convolutional
Neural Networks
Federico Giordano Zacchigna 1,* , Sergio Lew 2,3 and Ariel Lutenberg 1,3

1 Universidad de Buenos Aires, Facultad de Ingeniería (FIUBA), Laboratorio de Sistemas Embebidos (LSE),
Buenos Aires C1063ACV, Argentina; alutenb@fi.uba.ar

2 Universidad de Buenos Aires, Facultad de Ingeniería (FIUBA), Instituto de Ingeniería Biomédica (IBYME),
Buenos Aires C1063ACV, Argentina; slew@fi.uba.ar

3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
* Correspondence: fzacchigna@fi.uba.ar

Abstract: This work focuses on the efficient quantization of convolutional neural networks (CNNs).
Specifically, we introduce a method called non-uniform uniform quantization (NUUQ), a novel
quantization methodology that combines the benefits of non-uniform quantization, such as high
compression levels, with the advantages of uniform quantization, which enables an efficient imple-
mentation in fixed-point hardware. NUUQ is based on decoupling the quantization levels from the
number of bits. This decoupling allows for a trade-off between the spatial and temporal complexity
of the implementation, which can be leveraged to further reduce the spatial complexity of the CNN,
without a significant performance loss. Additionally, we explore different quantization configurations
and address typical use cases. The NUUQ algorithm demonstrates the capability to achieve compres-
sion levels equivalent to 2 bits without an accuracy loss and even levels equivalent to ∼1.58 bits, but
with a loss in performance of only ∼0.6%.

Keywords: CNN; quantization; uniform; non-uniform; mixed-precision; FPGA; ASIC; edge devices;
embedded systems

1. Introduction

The computational complexity of convolutional neural networks (CNNs) has been
increasing since their inception, mainly due to their usage in solving more challenging
problems, which, in turn, leads to the incorporation of a higher number of parameters.
Furthermore, applications now have more stringent requirements, and the platforms where
CNNs are deployed face tighter constraints in terms of resource budgets. These constraints
include factors such as the size and bandwidth (BW) of external memory, on-chip memory
capacity, the number of processing elements (PEs), and maximum power consumption.
When considering edge devices, which are gaining popularity, these constraints become
even more restrictive. In general, deploying a CNN on one of these embedded platforms is
a challenging task, if not impossible. However, this issue can be addressed by applying
a technique known as network compression, which allows the CNN to fit within the
platform’s constraints. One possible classification for compression techniques, starting
from a high level and going down to a lower level, is as follows:

1. Architecture modifications: The goal of this compression technique is to define an effi-
cient high-level architecture for the NN. Some examples of architectural modifications
include Inception [1] and residual blocks [2], which propose novel nonlinear networks
as alternatives to linear networks like VGG [3]. Additionally, MobileNets [4] utilize
depthwise convolutions to enhance computational efficiency, while EfficientNets [5]
offer a method to uniformly scale the depth, width, and resolution of a network. An-
other method for optimizing the architecture is network architecture search (NAS) [6],

Electronics 2024, 13, 1923. https://doi.org/10.3390/electronics13101923 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101923
https://doi.org/10.3390/electronics13101923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2302-7025
https://orcid.org/0000-0001-7700-6687
https://orcid.org/0000-0002-3626-7941
https://doi.org/10.3390/electronics13101923
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101923?type=check_update&version=1


Electronics 2024, 13, 1923 2 of 16

which falls under the subfield of Auto-ML. NAS automates the search process. Knowl-
edge distillation (KD) [7] is another method that contributes to NN compression. It
enables the transfer of knowledge from a larger model to a smaller one, resulting in a
more compact network with an improved architecture tailored to address the specific
problem effectively. Co-design is another technique that falls within this category [8].

2. Pruning: This technique is based on the idea of removing unimportant parts of the
NN [9,10]. Typically, it is applied after training, when it becomes possible to determine
what is important and what is not. Pruning can be performed in various ways,
including layer-wise, filter-wise, shape-wise, channel-wise, and element-wise [10]. It
can be classified into two types: structured and unstructured pruning [10].

3. Quantization: This approach aims to find an efficient way of representing or storing
the weights and activations [8,11–24]. Popular quantization techniques include uni-
form quantization (UQ), non-uniform quantization (NUQ) or weight-sharing, and
matrix/tensor decomposition. The KD process may also be applied to optimize the
quantization parameters.

Most of these methods can be used together to jointly compress the NN.
The main objective of this work is to address the quantization challenges of CNNs

in order to improve CNN efficiency for embedded systems and edge devices; this leads
us to 1. develop a flexible quantization approach that balances non-uniform and uniform
quantization benefits, aiming for high compression without losing accuracy; and 2. state
and solve the optimization problem that lets us find the best quantization parameters for
a CNN.

To achieve the objective, it is proposed to apply a hardware-aware quantization. In
this work, this means that the resulting compressed network satisfies two key conditions:
1. It can be efficiently implemented using fixed-point (FxP) hardware, and 2. it helps reduce
the hardware resource needs, such that the constraints are met. More specifically, our
contributions are as follows:

1. Non-uniform uniform quantization (NUUQ): The main idea behind NUUQ is to
decouple the number of quantization levels from the number of quantization bits,
combined with a clustered based quantization and efficient data clipping. Conse-
quently, there is an extra optimization parameter: the number of quantization levels
(or clusters). A mixed-precision (MP) approach is also considered in NUUQ, but with
a significant advantage, which is that the granularity of the MP quantization may be
different for quantization bits and quantization levels. Moreover, the impact in the
hardware complexity when increasing the quantization levels granularity is very little.
So it is possible to increase it, but with little impact in the hardware complexity. This
results in more quantization flexibility compared to the classical quantization. The
overall result is a compressed network that can be efficiently implemented using FxP
hardware.

2. Mid-level metrics: As a consequence of decoupling the number of quantization bits
and levels, new more representative metrics are needed. We introduce three mid-
level complexity metrics that are more hardware-focused than the usual metrics,
yet remain implementation-independent. These metrics are utilized to constrain
our optimization problem, and they effectively relate the platform constraints to the
application requirements.

3. Exploration of quantization parameters and practical applications: We conduct an
analysis of how various quantization parameters influence CNN performance, pro-
viding insights for their optimal selection. Additionally, we present real-world use
cases, showcasing our method’s practical benefits in deploying efficient CNNs

When implementing quantization in CNN, there are numerous possibilities to consider.
For instance, the choice between UQ or NUQ for each data source, such as kernels, biases,
and activations, introduces various possibilities. Additionally, granularity can be adjusted
both in terms of the number of bits and quantization levels. It is also possible to combine
different types of quantization schemes and granularities for each layer, further expanding



Electronics 2024, 13, 1923 3 of 16

the options. In this work, we aim to explore and compare several of these configurations,
selecting those that we deem most representative and suitable for real life applications
These configurations are detailed in Table 1.

Table 1. Summary of the quantization configurations explored in this study. Some cases might
involve fine-tuning (FT). The abbreviated names for each case are displayed in the last column.

Description Arithmetic FT Name

Original model (baseline) FlP No OM

UQ with layer-wise MP [12,16,17,20,25–30] FxP No UQ-L
FxP Yes UQ-L-FT

NUUQ with layer-wise MP [this work] FxP No NUUQ-LL
FxP Yes NUUQ-LL-FT

NUUQ with channel-wise level selection
and layer-wise bit selection [this work]

FxP No NUUQ-LC
FxP Yes NUUQ-LC-FT

This work is structured as follows: Firstly, we present related work in Section 2.
Secondly, our proposal is developed in Section 3. In Section 4, we present the results, and
finally, we draw conclusions in Section 5.

2. Related Work

Neural networks are implemented on various platforms today, including classic mi-
croprocessors with or without machine learning (ML) support, GPUs (graphics processing
Units), GPGPUs (general-purpose graphics processing Units), FPGAs (field-programmable
gate arrays), ML-specific FPGAs, and ASICs (application-specific integrated circuits). Each
of these platforms is suitable for different applications or domains. Additionally, each has
distinct advantages, disadvantages, requirements, and limitations [8,31,32].

In terms of the architectures employed, we can highlight that the use of either unrolled
or iterative architectures is possible. The iterative approach offers greater flexibility but
tends to be less hardware optimized. On the other hand, the unrolled approach is more
specific, providing optimizations that result in less flexibility. Moreover, for scenarios where
low latency is needed, typically with a batch size of 1, the unrolled method is advantageous
compared to its iterative counterpart [33].

In terms of the implementation, there are two major approaches: the use of floating-
point (FlP) or FxP arithmetic. FlP arithmetic provides greater flexibility, while FxP, being
optimized for a specific application, achieves higher efficiency levels in terms of energy
consumption, hardware size and other resource utilization. The use of different FxP
arithmetic for different parts of the CNN is proposed in order to improve the network
performance. This approach is known as MP [25–27,34,35]. And this is the main reason
why unrolled architectures are better using hardware resources. The MP approach has
also reached the iterative architectures. The work [36] serves as an example, where an
iterative, FxP, ASIC architecture is proposed, seeking efficient resource utilization. The FxP
arithmetic, is limited to 2, 4, 8, or 16 bits, and the number of PEs is 8, 4, 2, or 1, respectively.

Works like [32,37–45] propose to use the weight sharing (WS) approach to increase
the weight reusability. This enables the storage of a reduced set of weights along with
a set of indices, rather than storing all the individual weights separately. As the indices
representation requires fewer bits than the weights, it results in a reduction in memory
footprint. To implement WS, clustering algorithms are usually used, with the most popular
one being the K-means clustering. The WS approach is commonly employed in conjunction
with FlP arithmetic. As the probability of each weight is not even along all of them, coding
results are useful for further reducing the memory footprint.

The most widely used coding scheme is Huffman coding (HC). This has been used in
works like [46–49].

The utilization of FT in order to recover accuracy loss has become essential whenever
feasible; this is when training data are available [50–52]. The FT technique has also been



Electronics 2024, 13, 1923 4 of 16

proposed in [16] to recover performance after applying quantization, which is especially
relevant for this work.

Quantization algorithms can primarily be classified into UQ and NUQ. UQ algorithms
hold a significant advantage in being easily implementable using FxP arithmetic, which
reduces hardware complexity, thereby enhancing performance and lowering latency and
power consumption [30,36,53]. On the other hand, NUQ algorithms typically utilize
hardware with FlP arithmetic, which has greater complexity compared to FxP hardware,
but they offer the advantage of achieving higher levels of accuracy [13,37].

Nowadays, state-of-the-art hardware for large-scale deployment of ML algorithms for
inference is primarily dominated by FxP hardware, spanning across CPUs, GPUs, TPUs,
FPGAs, and ASICs [8,31–33,53]. This puts NUQ algorithms at a disadvantage. To overcome
this challenge, Ref. [18] proposes a combination of UQ and NUQ. Similarly, this work
proposes NUUQ, which also combines both approaches; however, in contrast to [18], this
study is not confined to 2n quantization levels, nor does it enforce equidistant levels, which
resembles NUQ more closely.

When using UQ, it is very important to properly choose the quantization precision,
specially for the lower-value regions [9,15,54–58]. This process depends on several variables:
the scale factor, the range of values, and the number of allocated bits. In [15], it is also
proposed to clip the higher values in order to improve the lower-value resolution. Moreover,
this clipping parameter, α-value, is optimized during training.

3. Proposed Quantization Method and Metrics
3.1. Quantization Method

The NUUQ approach proposes the combination of NUQ and UQ techniques to achieve
non-uniform quantization while remaining efficient for implementation using FxP repre-
sentation. This is accomplished through a layer-wise approach involving clipping, NUQ
(utilizing K-means, although other methods are also viable), followed by subsequent UQ
applied to the cluster centers. Additionally, the cluster centers are encoded using HC
to improve memory footprint efficiency. Finally, FT is optionally applied to recover any
performance lost during the quantization process. Figure 1 provides an example of how the
NUUQ quantization function (QNUU) is formed, and Figure 2 demonstrates the outcome of
applying NUUQ to the weights of a specific layer.

Figure 1. The image serves as an illustration of how to derive the quantization function QU by
combining three functions: clipping, Qα (not shown in the image), non-uniform quantization, QNU,
and uniform quantization, QU. The valid quantization levels for FxP arithmetic are indicated by the
arrows on the right side of the image, alongside with the original and quantized levels. As we can see,
the levels for QNU are not valid, making it inviable for FxP hardware implementation. Conversely,
the levels for QNUU are valid since they were quantized using QU. As observed, QNUU serves as an
approximation of QNU, and this approximation improves with an increase in the number of bits used
in QU.



Electronics 2024, 13, 1923 5 of 16

Figure 2. This image displays the probability density distribution for the original weights (represented
by the light blue filled curve) along with the values of the cluster centers (indicated by vertical lines)
after quantization. We applied QNU and QNUU with 3, 5, and 7 bits, while maintaining a fixed
number of clusters (5 clusters) across all cases. In the case of QNUU, the centers, xNUU, are adjusted
to match FxP valid values, resulting in displacement from the original centers, xNU. The number
between brackets in the legend indicates the mean of the variance of the clusters after normalization
by the variance of the original cluster, this is mean[var(xNU

i )/var(xNU
i )]. As expected, the variance

decreases with an increase in the number of bits.

It is important to note that both the allocation of bits and number of clusters is
performed on a layer-wise basis. This simplifies hardware implementation since PEs and
decoders (in the case of hierarchical coding usage) can be utilized across all channels. While
bit and number of cluster assignment is conducted on a layer-wise basis, clustering itself
can be executed either on a layer-wise or channel-wise basis, with the expectation that the
latter approach may yield improved results in terms of performance and spatial complexity.

3.2. Mid-Level Metrics and Optimization Problem

During the implementation process, it is important to have notion of how our design
variables relate to our constraints. For example, if we assume that the weights of the
CNN are stored in external memory, the number of bits used for weights quantization
are directly related to the BW needs. In this work, the number of quantization bits and
quantization levels have no longer a tight relationship, so it is important to see that the
usual metrics are no longer representative. For example, the spatial complexity of the
weights, now depends has a tight dependence with the number of clusters, while the size
(in bits) of the activations depends on the number of bits. For this reason, in this work,
we introduce three mid-level complexity metrics that are more hardware-focused and yet
remain implementation-independent.

1. Binary operations complexity (BOC): This metric represents the binary time complex-
ity (hardware complexity) of the layer, measured in binary operations. Is represented
by cT.

2. Binary weight complexity (BWC): This metric quantifies the spatial complexity of the
weights (K and B), measured in bits. Is represented by cW.

3. Binary activation complexity (BAC): This metric measures the spatial complexity of
the layer activation, expressed in bits. Is represented by cA.

These metrics are derived for our approach as follows. First, it is assumed that the
output of each layer can be efficiently computed using multiply and accumulate (MAC)
operations. In this situation, we are interested in knowing the sizes of I, K, B, and A (nI,
nK, nB y nA), as well as the total number of MACs (nM) for each layer. In [59], these values
are derived for the Conv2D and dense layers. We will also assume that PEs implement
MAC operations using FxP arithmetic according to Figure 3, which is very representative
for both ASIC and FPGA).



Electronics 2024, 13, 1923 6 of 16

Figure 3. This figure illustrates the multiply–accumulate (MAC) architecture with inputs I, K, and B,
and the output Z. The inputs have bit widths of bI, bK and bB, respectively, while the accumulator bit
width is bX = max(bI + bK + bE, bB), where bE represents the number of extra bits used to prevent
overflow during the successive sums. For instance, in a conservative implementation, it may be set
the value of bE to ⌈log2(n

M)⌉ to prevent any potential overflow.

Next, it is common to consider that the binary complexity for a sum of two words
with m and n bits, respectively, is equal to max(m, n), and the binary complexity for the
multiplication of those two words is equal to (m n). Finally, we are in a position to derive
the formulas for the proposed metrics:

cT = nM bK bI + nM bX (1)

cW = nK LK + kK bK + nB LB + kB bB (2)

cA = nA bA (3)

According to our NUUQ quantization approach, in each layer, we have these variables:
clipping values (αK, αB, αA), number of bits (bK, bB, bA), and number of clusters (kK,
kB, kA). Even though it is possible to use custom quantization levels for the activations,
its implementation needs special hardware in the datapath. Thus, the kA is discarded,
which better matches real-life platforms. The optimization problem we address in this
work becomes

Q⋆ = argmax
Q

accuracy(W ,Q; I)

s.t. cT < cT-max, cW < cW-max, cA < cA-max
(4)

with
Q =

{
α
{K,B,A}
i , b{K,B,A}

i , k{K,B}
i

}
(5)

where W and Q are the model parameters and the quantization parameters of the CNN,
respectively, and I is the validation data.

In this work, we want the most even results regardless of the quantization approach
used; thus, a random search algorithm is used, even if the search is very slow. In [59], the
search is described in detail.

4. Results

In this section, we will present the results obtained in two subsections: In Section 4.1,
the exploration conducted across various cases is depicted, while Section 4.2 shows the
outcomes of applying NUUQ to two typical use cases. In both scenarios, a downsized version
of the VGG (See [59] for more detail) and the CIFAR10 dataset were employed.

For all cases, before optimizing quantization parameters (Q), the constraints for the
problem in (4) must be set. These maximum values for complexities are derived from a
uniformly quantized model, enabling the standardization of these values. In other words,
the numbers of bits and clusters for weights and activations (as applicable) are chosen to
quantize a model uniformly and the resulting complexities of this model are used as the
constraints in (10). This approach allows us to link a single tuple with number of bits and
clusters, (bK, cK, bB, cB, bA) to complexity values, providing a more intuitive understanding



Electronics 2024, 13, 1923 7 of 16

for the reader. For instance, a uniformly quantized model with 4 bits and 4 clusters,
(bK, cK, bB, cB, bA) = (4, 4, 4, 4, 4), has a given (cT, cW, cA). This allows us to claim that a
model has been heterogeneously quantized with 4 bits and 4 clusters, which might have
no meaning as the number of bits and clusters varies for each layer. However, it actually
refers to the complexities of this model being less than or equal to those of the uniformly
quantized model with these bit and cluster values. This provides a more intuitive way of
expressing the complexities.

For the remaining figures in this section, when referring to the number of bits and
clusters, it should be understood that there is a direct relationship with complexities, as
explained in the previous paragraph.

4.1. Exploration

In this section exploration results are analysed. Observing the heatmaps in Figure 4, it
is evident that accuracy is highly sensitive to both the number of activation bits and the
average number of clusters. However, concerning the latter, it is also noticeable that once
a certain threshold for accuracy is reached, the sensitivity diminishes. As for the number
of bits, while there is a modest improvement as they increase, it is also noteworthy that
accuracy shows little sensitivity to this value, at least within the range of 3 to 8 bits. On the
other hand, the significance of applying FT is clear, as this process significantly enhances
accuracy. This outcome is well-known, and therefore, not surprising. The application of FT
typically depends solely on data availability.

For a deeper analysis, we consider the conditions under which 100% accuracy can be
recovered in the context of NUUQ. These findings are segmented based on activation bits,
the number of clusters, and the number of bits for weights, providing a comprehensive
understanding of their respective impacts. The possibility of regaining full accuracy is
significantly influenced by the value of bA. Our analysis indicates a critical range between
4 and 6 bits for bA, within which the feasibility of achieving 100% accuracy is determined,
regardless of the application of FT. This value should be higher for the case without FT than
in those with FT, but unfortunately it is not possible to define this value without further
simulations. In the case of the number to recover full accuracy, the required value varies in
the presence of FT and for different values of bA. Table 2 showcases this the ranges for kK:

Table 2. Approximate ranges for the number of clusters (kK) required to achieve 100% accuracy in
CNN quantization, categorized by activation bits (bA) and the application of fine-tuning (FT).

Average Activation Bits (bA)
Number of Clusters

Without FT With FT

8 - -
4 6.5 to 7.0 3.8 to 4.1
6 4.7 to 5.4 3.4 to 3.7

Our findings suggest that the specific value of bK is less critical, provided it exceeds
3 (lower values were not analysed). However, in scenarios with bA = 4 (both with and
without FT) and bA = 6, an increase in bK appears to compensate for the limitations
associated with lower bA or the absence of FT.

Understanding these critical values is not just academic; it is crucial for optimising
CNN quantization. By identifying specific ranges and thresholds affecting accuracy re-
covery, we can define the parameter exploration space more effectively. This strategic
approach tailors quantization parameters to meet accuracy requirements while optimising
hardware resources. By avoiding values that lead to under-quantization, which wastes
hardware resources, and over-quantization, which may lead to inadequate performance,
the design space is smaller, enabling more efficient parameter exploration. These insights
guide the quantization process, ensuring computational resources are allocated judiciously
for optimal balance between accuracy and efficiency.



Electronics 2024, 13, 1923 8 of 16

(a) Average bA = 4, no FT. (b) Average bA = 4, with FT.

(c) Average bA = 6, no FT. (d) Average bA = 6, with FT.

(e) Average bA = 6, no FT. (f) Average bA = 8, with FT.

Figure 4. This figure presents the test accuracy for various base complexity values (BOC, BWC and
BAC) when utilizing the NUUQ-RS search flow (a–c) and NUUQ-RS-FT (d–f) ; this is without and
with Fine-Tuning (FT), respectively. The base complexity values are obtained using the base model
when globally quantized with b{K, B, A} bits and k{K, B} clusters. During the search, the bits and clusters
are allocated layer-wise while always keeping the complexity below the base complexity values. The
base complexity values are calculated using bK = {3, . . . , 8}, kK = {3, . . . , 8}, bB = 8, kB = 32 and
bA = {4, 6, 8} (4 bits for (a,d); 6 bits for (b,e); 8 bits for (c,f)). The contours in the graph represent
constant accuracy slices at levels equivalent to {95%, 98%, 99%, 100%} of the FlP model accuracy. The
not-available (NA) text in the legend means that the x% of accuracy is not reached for that heatmap.

In Table 3, some heatmap points are presented in numerical form. Based on these,
some noteworthy results include the following:



Electronics 2024, 13, 1923 9 of 16

• With NUUQ, it is possible to achieve accuracies above 99% (marked as ↑) with reductions
of 10.7 times (bA = 4), 16 times (bA = 6), and even up to 20.2 times (bA = 8).

• In some cases using NUUQ surpass the original accuracy (marked as ↑↑) with reductions
of 1.7 times (bA = 6) and up to 16 times (bA = 8).

• In all cases, comparing UQ-MP against NUUQ-MP shows that it is feasible to sacrifice
some BOC for a significant improvement in BWC. For instance:

– Compressed by 10.7 times, NUUQ-MP achieves improvements of up to 1.6% com-
pared to UQ-MP.

– Compressed by 16.0 times, NUUQ-MP achieves improvements of up to 9.3% com-
pared to UQ-MP.

• NUUQ achieves compressions of around 20.2 times, losing only 0.6% accuracy for the
bA=8 case. This compression level is equivalent to using approximately 1.58 bits for
the quantization in terms of the BWC. These compression levels are prohibitive for
UQ-MP.

• Regarding the BAC, there are no significant differences observed between UQ-MP and
NUUQ-MP.

Table 3. Accuracies and complexities for noteworthy configurations and cases.

Case Accuracy (SD) Complexity

Without FT With FT BOC BWC BAC

OM (FlP-32) 0.852 (0.013) – (–) NA 1.0 1.0

OM (FlP-16) 0.852 (0.013) – (–) NA 2.0 2.0

U
Q

-M
P

(F
xP

)

bA bK Without FT With FT BOC BWC BAC

4
2 0.422 (0.131) ↓↓ 0.644 (0.088) ↓↓ 2.4 16.0 29.3

3 0.791 (0.026) ↓↓ 0.821 (0.016) ↓ 2.2 10.7 29.3

6
2 0.528 (0.078) ↓↓ 0.751 (0.047) ↓↓ 2.2 16.0 19.5

3 0.815 (0.023) ↓ 0.844 (0.010) ↑ 1.9 10.7 19.5

8
2 0.567 (0.085) ↓↓ 0.765 (0.055) ↓↓ 2.0 16.0 14.7

3 0.825 (0.018) ↓ 0.851 (0.009) ↑↑ 1.7 10.7 14.7

N
U

U
Q

-M
P

(F
xP

)

bA bK(kK) Without FT With FT BOC BWC BAC

4

3 (3) 0.713 (0.065) ↓↓ 0.769 (0.059) ↓↓ 2.2 20.2 29.3

8 (3) 0.761 (0.028) ↓↓ 0.807 (0.022) ↓ 1.5 20.2 29.3

3 (4) 0.807 (0.010) ↓↓ 0.829 (0.005) ↓ 2.2 16.0 29.3

8 (4) 0.812 (0.008) ↓ 0.834 (0.004) = 1.5 16.0 29.3

4 (8) 0.830 (0.003) ↓ 0.845 (0.005) ↑ 2.0 10.7 29.3

8 (8) 0.831 (0.003) ↓ 0.844 (0.005) ↑ 1.5 10.7 29.3

6

3 (3) 0.801 (0.018) ↓↓ 0.834 (0.019) = 1.9 20.2 19.5

8 (3) 0.776 (0.042) ↓↓ 0.828 (0.017) ↓ 1.2 20.2 19.5

3 (4) 0.835 (0.009) = 0.853 (0.008) ↑↑ 1.9 16.0 19.5

8 (4) 0.837 (0.008) = 0.851 (0.007) ↑↑ 1.2 16.0 19.5

4 (8) 0.852 (0.006) ↑↑ 0.861 (0.006) ↑↑ 1.7 10.7 19.5

8 (8) 0.853 (0.005) ↑↑ 0.864 (0.003) ↑↑ 1.2 10.7 19.5

8

3 (3) 0.797 (0.021) ↓↓ 0.846 (0.009) ↑ 1.7 20.2 14.7

8 (3) 0.798 (0.034) ↓↓ 0.846 (0.008) ↑ 1.0 20.2 14.7

3 (4) 0.842 (0.005) ↑ 0.858 (0.004) ↑↑ 1.7 16.0 14.7

8 (4) 0.839 (0.005) = 0.856 (0.006) ↑↑ 1.0 16.0 14.7

4 (8) 0.857 (0.003) ↑↑ 0.867 (0.003) ↑↑ 1.5 10.7 14.7

8 (8) 0.859 (0.003) ↑↑ 0.869 (0.004) ↑↑ 1.0 10.7 14.7

0.78 0.80 0.82 0.84 0.86 0.88

95%↓↓ 98%↓ 99%= 100%↑ ↑↑



Electronics 2024, 13, 1923 10 of 16

4.2. Use Cases

Let us explore two typical scenarios where using NUUQ quantization presents ad-
vantages. The first use case is common in a configurable iterative architecture where
arithmetic is fixed, such as at 4, 8, or 16 bits. This situation is typically encountered in
CNN implementations on FPGA, GPU, or CPU. While ASIC implementations are possible,
they are less common since they would not fully leverage their advantages. In the second
case, we consider unrolled architectures, typically found in both ASIC and FPGA. In such
architectures, it is common to encounter different arithmetic applied in each layer.

Figures 5 and 6 showcase the results for the first and second cases, respectively. In
both scenarios, applying NUUQ demonstrates the potential for a reduction in BWC without
sacrificing accuracy, although achieving this requires a trade-off in BOC. This is evident in
Figure 5, where a NUUQ case without sacrificing BOC (blue curve) does not yield superior
accuracy, as applying NUUQ without sacrificing BOC is equivalent to UQ.

Figure 5. This chart depicts accuracy versus binary weights complexity (BWC) for the first use case.
It illustrates that using NUUQ allows for a lower BWC without sacrificing accuracy compared to UQ.
The upper graph displays results without applying FT, while the lower one incorporates FT.

Figure 6. This graph presents findings similar to those depicted in Figure 5, but for the second use case.



Electronics 2024, 13, 1923 11 of 16

In closing this exploration of use cases, we want to highlight how they apply to real
situations. The examples we have talked about are based on real challenges that people
face when using convolutional neural networks in edge devices [30,33,36,53]. We have
shown how our NUUQ method can be adjusted and used effectively in different situations,
which helps close the gap between research and actual use. In this way, our work is also
useful for making AI a reality.

4.3. Comparison to Other Works

In Figure 7, we present a comparative analysis of the NUUQ strategy alongside
methodologies from other studies. We compare the accuracy loss rate against the weight
compression rate for a comprehensive evaluation across these works The metrics are
defined as follows:

ACC-rate =
ACC

ACC-FlP
BWC-rate =

BWC
BWC-FlP

(6)

here, ACC-FlP represents the accuracy of the original model using FlP arithmetic with
32 bits, while BWC-FlP denotes the BWC under the same conditions. Ideally, we aim
for a high ACC-rate together with a low BWC-rate. Figure 7 shows these metrics for
different number of activation bits, 4, 6 and 8, in Figures 7a, 7b and 7c respectively. Figure 7
aggregates all the previous cases alongside new values for the average activation bits. The
effect of changing the average number of activation bits and the average number of bits
used for weights (only for this work) can be seen as vertically aligned points, this is, points
with the same BWC-rate but different ACC-rate. From this figure, it can be seen that our
NUUQ approach consistently surpasses other methodologies in a broad range of scenarios
with different average numbers of bits for activations and weights. However, it is important
to acknowledge that comparisons across different studies are inherently complex and may
not always be directly comparable due to various underlying factors:

1. Unlike the method described in [18], our approach employs standard quantization
for activations. This decision helps us avoid the need for specialized hardware in the
datapath, ensuring better alignment with fundamental design principles. Neverthe-
less, exploring NUUQ for activations will be performed in future research to enhance
design flexibility and enable comparative analysis.

2. Our methodology inherently allows for more bits allocated to weights for a given
BWC due to its unique ability to decouple the number of quantization levels from
the bit count. This flexibility also means that for a fixed number of bits, our approach
results in fewer quantization levels, making direct comparisons challenging.

3. The CNN architectures employed vary across studies. Our analysis exclusively utilizes
the VGG16 structure, while other research includes models like VGG, ResNet, and
MobileNet, adding another layer of complexity to the comparison.

4. Different datasets are used across different works. Our study utilizes CIFAR-10,
whereas many others employ ImageNet. The choice of CIFAR-10 was made by the
limitations of our search algorithm’s efficiency with larger datasets.

5. Contrary to most studies that focus on search optimization, our work employs a
random search strategy to ensure fairness and comprehensiveness in parameter
exploration.

6. Our FT methodology is applied globally across the entire network, diverging from
other studies that FT sequentially layer by layer. While the latter may yield more
refined FT results, our goal is to maintain fairness in parameter search.

These points reveal that our comparison is both detailed and complex, with some
factors benefiting our approach and others presenting disadvantages.



Electronics 2024, 13, 1923 12 of 16

(a) Average activation bits bA = 4. (b) Average activation bits bA = 6.

(c) Average activation bits bA = 8. (d) All values for the average activation bits,
bA ∈ {2.0, 2.5.0, 3.0, 4.0, 5.0, 6.0, 8.0}.

Figure 7. This figure provides a comparison of the accuracy and BWC rate between our work and
others. Subfigures delineate various scenarios with average activation bits set to 4, 6, and 8 (see
Subfigures a–c). Additionally, Subfigure (d) aggregates results from all previous scenarios alongside
new ones. The name NUUQ-MP is the quantization proposed in this work, N2UQ in [18], HAQ-
edge and HAQ-cloud in [12], PACT in [15], HAWQ-direct and HAWQ in [16], Q-Strategy-A in [17],
Q-Strategy-B in [26] and Q-Strategy-C in [29].

4.4. Limitations

While the proposed NUUQ method demonstrates significant advancements in the
efficient quantization of convolutional neural networks, particularly in terms of achieving
high compression levels without substantial accuracy loss, it is important to recognize that
are some limitations:

• Random search efficiency: The utilization of a random search algorithm for the op-
timization of quantization parameters, while effective in exploring a fair solution
space, presents scalability challenges. This method’s computational intensity limits its
applicability to larger network architectures or more extensive datasets.

• Network architecture scope: During our parameter exploration, we specifically fo-
cused on sequential CNN models because of their straightforward structure, which
is conducive to clear and effective result demonstration. This choice enabled us to
transparently showcase the advantages of our methodology. Nonetheless, it is im-
portant to note that concentrating on these simpler architectures may limit how our



Electronics 2024, 13, 1923 13 of 16

findings apply to more intricate or non-sequential network designs, such as those
incorporating skip connections or parallel processing paths.

• Layer diversity: the current implementation of NUUQ has been applied to a select
subset of neural network layers, primarily those commonly found in conventional
CNNs used for classification tasks. The quantization techniques presented herein
should be extended to other layer types.

By addressing these limitations in future iterations of our research, we aim to enhance
the performance, applicability, and scalability of the NUUQ method.

5. Conclusions and Future Work

Firstly, the metrics proposed in this study provide more insightful information than
classical metrics used in high-level models, making them more suitable for characterizing
quantized models operating in FxP arithmetic.

Secondly, the key conclusion of our work is the notable advantages of applying NUUQ.
The proposed technique introduces the number of clusters as a quantization parameter,
providing an extra degree of freedom when applying mixed-precision quantization. Conse-
quently, a trade-off relationship between BOC and BWC metrics is established, allowing for
the possibility to sacrifice BOC for a reduction in BWC without facing a loss in accuracy. As
a result, the number of potential quantization configurations increases, allowing for more
efficient configurations.

Regarding future direction, we want to highlight a few aspects. Our immediate focus
will be on refining the search methodology used for optimizing quantization parameters.
The current random search approach, while comprehensive, limits the scalability of NUUQ
to larger CNN architectures and more extensive datasets.

Another intriguing direction involves the quantization of activations in addition to
weights and biases. Although this extension may pose challenges for hardware implementa-
tion due to the dynamic nature of activations, it holds potential for comprehensive compar-
isons and deeper insights into quantization impacts across different network components.

It is also important to address non-sequential networks, which will allow us to address
a broader spectrum of CNN architectures, including those with complex topologies such as
skip connections and parallel branches.

Incorporating depth-wise convolutions, known for their efficiency in CNN architec-
tures, will be a significant step forward. Adapting NUUQ to support this layer type could
enhance its utility, especially in mobile and embedded applications where computational
resources are limited.

Finally, a vital aspect of our future work involves translating the theoretical and
simulation-based outcomes of this research into real-world applications. Implementing
NUUQ-optimized CNNs in hardware platforms such as ASICs, FPGAs, or microprocessors
will validate its practical viability. The use cases presented in this study serve as a founda-
tion for this transition, with the ultimate goal of deploying efficient, quantized CNNs in
actual embedded systems.

Author Contributions: Conceptualization, F.G.Z., S.L. and A.L.; Methodology, F.G.Z.; Software,
F.G.Z.; Validation, F.G.Z.; Investigation, F.G.Z.; Resources, F.G.Z.; Writing—original draft, F.G.Z.;
Writing—review & editing, F.G.Z., S.L. and A.L.; Supervision, S.L. and A.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are well known and available online. The
dataset name is https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 13 April 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.cs.toronto.edu/~kriz/cifar.html


Electronics 2024, 13, 1923 14 of 16

References
1. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. arXiv 2014, arXiv:cs.CV/1409.4842.
2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:cs.CV/1512.03385.
3. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015,

arXiv:cs.CV/1409.1556.
4. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:cs.CV/1704.04861.
5. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:cs.LG/1905.11946.
6. White, C.; Safari, M.; Sukthanker, R.; Ru, B.; Elsken, T.; Zela, A.; Dey, D.; Hutter, F. Neural Architecture Search: Insights from 1000

Papers. arXiv 2023, arXiv:cs.LG/2301.08727.
7. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
8. Campos, J.; Dong, Z.; Duarte, J.; Gholami, A.; Mahoney, M.W.; Mitrevski, J.; Tran, N. End-to-end codesign of Hessian-aware

quantized neural networks for FPGAs and ASICs. arXiv 2023, arXiv:cs.LG/2304.06745.
9. Tung, F.; Mori, G. CLIP-Q: Deep Network Compression Learning by In-parallel Pruning-Quantization. In Proceedings of the 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7873–7882.
[CrossRef]

10. Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing 2021, 461, 370–403. [CrossRef]

11. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A Survey of Quantization Methods for Efficient Neural
Network Inference. arXiv 2021. [CrossRef]

12. Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; Han, S. HAQ: Hardware-Aware Automated Quantization with Mixed Precision. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 8604–8612. [CrossRef]

13. Choi, Y.; El-Khamy, M.; Lee, J. Towards the Limit of Network Quantization. arXiv 2017, arXiv:cs.CV/1612.01543.
14. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing Deep Convolutional Networks using Vector Quantization. arXiv 2014,

arXiv:cs.CV/1412.6115.
15. Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.J.; Srinivasan, V.; Gopalakrishnan, K. PACT: Parameterized Clipping Activation

for Quantized Neural Networks. arXiv 2018. [CrossRef]
16. Dong, Z.; Yao, Z.; Gholami, A.; Mahoney, M.; Keutzer, K. HAWQ: Hessian AWare Quantization of Neural Networks with

Mixed-Precision. arXiv 2019, arXiv:cs.CV/1905.03696.
17. Banner, R.; Nahshan, Y.; Soudry, D. Post training 4-bit quantization of convolutional networks for rapid-deployment. In

Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14
December 2019; Curran Associates Inc.: Red Hook, NY, USA, 2019.

18. Liu, Z.; Cheng, K.T.; Huang, D.; Xing, E.; Shen, Z. Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation. arXiv 2022, arXiv:cs.CV/2111.14826.

19. Martinez, J.; Shewakramani, J.; Liu, T.W.; Bârsan, I.A.; Zeng, W.; Urtasun, R. Permute, Quantize, and Fine-tune: Efficient
Compression of Neural Networks. arXiv 2020. [CrossRef]

20. Bablani, D.; Mckinstry, J.L.; Esser, S.K.; Appuswamy, R.; Modha, D.S. Efficient and Effective Methods for Mixed Precision Neural
Network Quantization for Faster, Energy-efficient Inference. arXiv 2024, arXiv:cs.LG/2301.13330.

21. Liu, Z.; Oguz, B.; Zhao, C.; Chang, E.; Stock, P.; Mehdad, Y.; Shi, Y.; Krishnamoorthi, R.; Chandra, V. LLM-QAT: Data-Free
Quantization Aware Training for Large Language Models. arXiv 2023, arXiv:cs.CL/2305.17888.

22. Zhu, K.; He, Y.Y.; Wu, J. Quantized Feature Distillation for Network Quantization. arXiv 2023, arXiv:cs.CV/2307.10638.
23. Sayed, R.; Azmi, H.; Shawkey, H.; Khalil, A.H.; Refky, M. A Systematic Literature Review on Binary Neural Networks. IEEE

Access 2023, 11, 27546–27578. [CrossRef]
24. Yamamoto, K. Learnable Companding Quantization for Accurate Low-bit Neural Networks. In Proceedings of the 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 5027–5036.
[CrossRef]

25. Capotondi, A.; Rusci, M.; Fariselli, M.; Benini, L. CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge
Devices. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 871–875. [CrossRef]

26. Latotzke, C.; Ciesielski, T.; Gemmeke, T. Design of High-Throughput Mixed-Precision CNN Accelerators on FPGA. In Proceedings
of the 2022 32nd International Conference on Field-Programmable Logic and Applications (FPL), Belfast, UK, 29 August–2
September 2022; pp. 358–365. [CrossRef]

27. Nguyen, D.T.; Kim, H.; Lee, H.J. Layer-Specific Optimization for Mixed Data Flow With Mixed Precision in FPGA Design for
CNN-Based Object Detectors. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 2450–2464. [CrossRef]

28. Huang, Y.; Chen, K.; Shao, Z.; Bai, Y.; Huang, Y.; Du, Y.; Du, L.; Wang, Z. LSMQ: A Layer-Wise Sensitivity-Based Mixed-Precision
Quantization Method for Bit-Flexible CNN Accelerator. In Proceedings of the 2021 18th International SoC Design Conference
(ISOCC), Jeju Island, Republic of Korea, 6–9 October 2021; pp. 256–257. [CrossRef]

http://doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1109/CVPR.2018.00821
http://dx.doi.org/10.1016/j.neucom.2021.07.045
http://dx.doi.org/10.48550/ARXIV.2103.13630
http://dx.doi.org/10.1109/CVPR.2019.00881
http://dx.doi.org/10.48550/ARXIV.1805.06085
http://dx.doi.org/10.48550/ARXIV.2010.15703
http://dx.doi.org/10.1109/ACCESS.2023.3258360
http://dx.doi.org/10.1109/CVPR46437.2021.00499
http://dx.doi.org/10.1109/TCSII.2020.2983648
http://dx.doi.org/10.1109/FPL57034.2022.00061
http://dx.doi.org/10.1109/TCSVT.2020.3020569
http://dx.doi.org/10.1109/ISOCC53507.2021.9613969


Electronics 2024, 13, 1923 15 of 16

29. Tang, C.; Ouyang, K.; Wang, Z.; Zhu, Y.; Wang, Y.; Ji, W.; Zhu, W. Mixed-Precision Neural Network Quantization via Learned
Layer-wise Importance. arXiv 2023, arXiv:cs.LG/2203.08368.

30. Umuroglu, Y.; Rasnayake, L.; Sjalander, M. BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable
Computing. arXiv 2018. [CrossRef]

31. Zacchigna, F.G. Methodology for CNN Implementation in FPGA-Based Embedded Systems. IEEE Embed. Syst. Lett. 2023,
15, 85–88. [CrossRef]

32. Garland, J.; Gregg, D. Low Complexity Multiply-Accumulate Units for Convolutional Neural Networks with Weight-Sharing.
ACM Trans. Archit. Code Optim. 2018, 15, 1–24. [CrossRef]

33. Zhang, X.; Ye, H.; Wang, J.; Lin, Y.; Xiong, J.; Hwu, W.M.; Chen, D. DNNExplorer: A Framework for Modeling and Exploring a
Novel Paradigm of FPGA-based DNN Accelerator. In Proceedings of the 2020 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), Virtual, 2–5 November 2020; pp. 1–9.

34. Zhe, W.; Lin, J.; Aly, M.S.; Young, S.; Chandrasekhar, V.; Girod, B. Rate-Distortion Optimized Coding for Efficient CNN
Compression. In Proceedings of the 2021 Data Compression Conference (DCC), Snowbird, UT, USA, 23–26 March 2021;
pp. 253–262. [CrossRef]

35. Gajjala, R.R.; Banchhor, S.; Abdelmoniem, A.M.; Dutta, A.; Canini, M.; Kalnis, P. Huffman Coding Based Encoding Techniques
for Fast Distributed Deep Learning. In Proceedings of the 1st Workshop on Distributed Machine Learning (DistributedML’20),
Barcelona, Spain, 1 December 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 21–27. [CrossRef]

36. Sharma, H.; Park, J.; Suda, N.; Lai, L.; Chau, B.; Chandra, V.; Esmaeilzadeh, H. Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Network. In Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), Los Angeles, CA, USA, 1–6 June 2018; pp. 764–775. [CrossRef]

37. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. arXiv 2016, arXiv:cs.CV/1510.00149.

38. Dupuis, E.; Novo, D.; O’Connor, I.; Bosio, A. CNN weight sharing based on a fast accuracy estimation metric. Microelectron.
Reliab. 2021, 122, 114148. [CrossRef]

39. Dupuis, E.; Novo, D.; O’Connor, I.; Bosio, A. Fast Exploration of Weight Sharing Opportunities for CNN Compression. arXiv
2021, arXiv:cs.LG/2102.01345.

40. Dupuis, E.; Novo, D.; O’Connor, I.; Bosio, A. A Heuristic Exploration of Retraining-free Weight-Sharing for CNN Compression.
In Proceedings of the 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 17–20 January
2022; pp. 134–139. [CrossRef]

41. Wang, X.; Bao, A.; Yu, Q. Weight-sharing multi-stage multi-scale ensemble convolutional neural network. Int. J. Mach. Learn.
Cybern. 2019, 10, 1631–1642. [CrossRef]

42. Meng, Z.; Zhao, F.; Liang, M.; Xie, W. Deep Residual Involution Network for Hyperspectral Image Classification. Remote Sens.
2021, 13, 55. [CrossRef]

43. Ouyang, K.; Hou, Y.; Zhou, S.; Zhang, Y. Convolutional Neural Network with an Elastic Matching Mechanism for Time Series
Classification. Algorithms 2021, 14, 192. [CrossRef]

44. Takahashi, R.; Matsubara, T.; Uehara, K. A Novel Weight-Shared Multi-Stage CNN for Scale Robustness. IEEE Trans. Circuits Syst.
Video Technol. 2019, 29, 1090–1101. [CrossRef]

45. Chavan, A.; Bamba, U.; Tiwari, R.; Gupta, D. Rescaling CNN Through Learnable Repetition of Network Parameters. In
Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021;
pp. 754–758. [CrossRef]

46. Cheng, W.; Lin, I.C.; Shih, Y.Y. An Efficient Implementation of Convolutional Neural Network with CLIP-Q Quantization on
FPGA. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 4093–4102. [CrossRef]

47. Chandra, M. Data Bandwidth Reduction in Deep Neural Network SoCs using History Buffer and Huffman Coding. In Proceedings
of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India,
28–29 September 2018; pp. 1–3. [CrossRef]

48. Tariq, R.; Khawaja, S.G.; Akram, M.U.; Hussain, F. Reconfigurable Architecture for Real-time Decoding of Canonical Huffman
Codes. In Proceedings of the 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2),
Rawalpindi, Pakistan, 24–26 May 2022; pp. 1–6. [CrossRef]

49. Chen, T.; Liu, H.; Shen, Q.; Yue, T.; Cao, X.; Ma, Z. DeepCoder: A deep neural network based video compression. In Proceedings
of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4.
[CrossRef]

50. Zheng, H.; Shen, L.; Tang, A.; Luo, Y.; Hu, H.; Du, B.; Tao, D. Learn From Model Beyond Fine-Tuning: A Survey. arXiv 2023,
arXiv:cs.AI/2310.08184.

51. Arnab, A.; Xiong, X.; Gritsenko, A.; Romijnders, R.; Djolonga, J.; Dehghani, M.; Sun, C.; Lučić, M.; Schmid, C. Beyond Transfer
Learning: Co-finetuning for Action Localisation. arXiv 2022, arXiv:cs.CV/2207.03807.

52. Tian, K.; Mitchell, E.; Yao, H.; Manning, C.D.; Finn, C. Fine-tuning Language Models for Factuality. arXiv 2023,
arXiv:cs.CL/2311.08401.

53. Wang, C.; Luo, Z. A Review of the Optimal Design of Neural Networks Based on FPGA. Appl. Sci. 2022, 12, 10771. [CrossRef]

http://dx.doi.org/10.48550/ARXIV.1806.08862
http://dx.doi.org/10.1109/LES.2022.3187382
http://dx.doi.org/10.1145/3233300
http://dx.doi.org/10.1109/DCC50243.2021.00033
http://dx.doi.org/10.1145/3426745.3431334
http://dx.doi.org/10.1109/ISCA.2018.00069
http://dx.doi.org/10.1016/j.microrel.2021.114148
http://dx.doi.org/10.1109/ASP-DAC52403.2022.9712487
http://dx.doi.org/10.1007/s13042-018-0842-5
http://dx.doi.org/10.3390/rs13163055
http://dx.doi.org/10.3390/a14070192
http://dx.doi.org/10.1109/TCSVT.2018.2822773
http://dx.doi.org/10.1109/ICIP42928.2021.9506158
http://dx.doi.org/10.1109/TCSI.2022.3193031
http://dx.doi.org/10.1109/GUCON.2018.8675036
http://dx.doi.org/10.1109/ICoDT255437.2022.9787442
http://dx.doi.org/10.1109/VCIP.2017.8305033
http://dx.doi.org/10.3390/app122110771


Electronics 2024, 13, 1923 16 of 16

54. Dupuis, E.; Novo, D.; O’Connor, I.; Bosio, A. On the Automatic Exploration of Weight Sharing for Deep Neural Network
Compression. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,
France, 9–13 March 2020; pp. 1319–1322. [CrossRef]

55. Zhou, S.; Wang, Y.; Wen, H.; He, Q.; Zou, Y. Balanced Quantization: An Effective and Efficient Approach to Quantized Neural
Networks. arXiv 2017, arXiv:cs.CV/1706.07145.

56. Deng, C.; Deng, Z.; Han, Y.; Jing, D.; Zhang, H. GradQuant: Low-Loss Quantization for Remote-Sensing Object Detection. IEEE
Geosci. Remote Sens. Lett. 2023, 20, 1–5. [CrossRef]

57. Chen, Q.; Teng, Y.; Zhang, H.; Jiang, K.; Duan, Q.; Li, X.; Zhao, X.; Li, R. Post-Training Quantization for Longformer with
Chunkwise Quantization Granularity and Optimized Percentile. In Proceedings of the 2022 7th International Conference on
Computer and Communication Systems (ICCCS), Wuhan, China, 22–25 April 2022; pp. 27–31. [CrossRef]

58. Chen, L.; Lou, P. Clipping-Based Post Training 8-Bit Quantization of Convolution Neural Networks for Object Detection. Appl.
Sci. 2022, 12, 12405. [CrossRef]

59. Zacchigna, F.G. NUUQ Repository. 2024. Available online: https://github.com/colorete87/nuuq (accessed on 13 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.23919/DATE48585.2020.9116350
http://dx.doi.org/10.1109/LGRS.2023.3308582
http://dx.doi.org/10.1109/ICCCS55155.2022.9846198
http://dx.doi.org/10.3390/app122312405
https://github.com/colorete87/nuuq

	Introduction
	Related Work
	Proposed Quantization Method and Metrics
	Quantization Method
	Mid-Level Metrics and Optimization Problem

	Results
	Exploration
	Use Cases
	Comparison to Other Works
	Limitations

	Conclusions and Future Work
	References

