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We simulate the coherent stage of Cu precipitation in α-Fe with an atomistic kinetic Monte Carlo
(AKMC) model. The vacancy migration energy as a function of the local chemical environment is
provided on-the-fly by a neural network, trained with high precision on values calculated with the
nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, how-
ever, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly
to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the
coarse-grained approach is achieved again by using a neural network, that provides all stability and
mobility parameters for large Cu clusters, after training on atomistically informed results. The result-
ing hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable
CPU time. The results obtained are in very good agreement with several series of experimental data
available from the literature, spanning over different conditions of temperature and alloy composi-
tion. We deduce from these results and relevant parametric studies that the mobility of Cu clusters
containing one vacancy plays a central role in the precipitation mechanism. © 2011 American Insti-
tute of Physics. [doi:10.1063/1.3622045]

I. INTRODUCTION

Copper was inadvertently included as alloying element
in nuclear reactor pressure vessel steels of second genera-
tion. Later, the formation of Cu-rich precipitates revealed it-
self as one of the major causes of degradation of mechanical
properties in ferritic steels under neutron irradiation1 (mainly
hardening and embrittlement), which is nowadays an im-
portant factor limiting the lifetime of nuclear power plants.
For this reason, Cu precipitation in α-Fe has been inten-
sively studied during the last decades, both experimentally,2–7

and using theoretical models5, 8–11 or computer simulations,
in particular using atomistic kinetic Monte Carlo (AKMC)
techniques.7, 12–15

The main features of AKMC models and their different
applications are reviewed in Refs. 16 and 17. In AKMC sim-
ulations of thermal ageing, a single vacancy is introduced in
a volume filled with atoms of different chemical species, lo-
cated on perfect crystal lattice positions. The vacancy acts as
vehicle for atomic species redistribution, via thermally acti-
vated diffusion jumps, i.e., exchanges of position between the
vacancy and an atom nearby. The physics of the model is con-
tained in the activation energies of the diffusion jumps (mi-
gration energies of the vacancy), which vary significantly de-
pending on the local chemical, or atomic, environment.
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Generally AKMC models are subsumed as rigid lattice
models, i.e., crystallographic changes cannot be described.
This seems to rule out their use to describe precipitation
of face-centered-cubic (fcc) Cu in body-centered-cubic (bcc)
α-Fe. However, Cu precipitates in α-Fe are experimentally
found to be coherent with the bcc-Fe matrix, up to a di-
ameter between 4 and 5 nm.18, 19 Growing further, they first
take intermediate crystallographic structures (first 9R, then
3R) and finally become fcc when they reach diameters above
12 nm.18, 19 This finding was also confirmed using molecu-
lar dynamics simulations, which moreover suggested that the
stability of Cu precipitates is enhanced by the presence of va-
cancies inside.20 Thus, it makes sense to simulate by AKMC
the coherent stage of Cu precipitation in Fe, as long as Cu
precipitates remain smaller than ∼5 nm.

AKMC models differ from each other essentially by the
methodology employed to calculate the migration energies. In
most models, they are calculated without allowing for atomic
relaxation, using an interatomic potential or fitted pair inter-
action energies, for example, in a broken-bonds formalism,
within a range of interaction of first or second nearest neigh-
bor distance. In some cases, the pair interaction energies are
fitted to data calculated with first principles methods. For a
critical review of most existing approaches that have been ap-
plied for the study of Cu precipitation in Fe, the interested
reader is referred to Vincent et al.7 The conclusion by Vin-
cent et al. is, however, that none of the models reviewed can
consistently predict Cu precipitation in Fe: depending on the
parameterization, either the average precipitate radius, or the

0021-9606/2011/135(6)/064502/9/$30.00 © 2011 American Institute of Physics135, 064502-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3622045
http://dx.doi.org/10.1063/1.3622045
http://dx.doi.org/10.1063/1.3622045
mailto: ncastin@sckcen.be
mailto: pascuet@cnea.gov.ar


064502-2 Castin, Pascuet, and Malerba J. Chem. Phys. 135, 064502 (2011)

precipitate density is correctly predicted, but hardly ever both.
In particular, most models tend to overestimate the density.

Soisson and Fu15 achieved a more satisfactory and con-
sistent prediction. In their AKMC model, the vacancy migra-
tion energy was calculated using a broken-bonds formalism,
fitted to energy data calculated by density functional theory.
With this model they were able to predict accurately the first
stages of Cu precipitation, in terms of both mean precipitate
radius and precipitate density. The main reason for their suc-
cess is probably that their model incorporated a very strong
interaction between vacancies and Cu clusters, with the con-
sequence that Cu clusters of all sizes were mobile, via com-
plex series of vacancy hops at or near their surface. They also
observed direct coalescence of clusters, as the result of mi-
gration. Their results, therefore, suggest that the mobility of
Cu clusters, as a consequence of strong interaction with va-
cancies, can play a non-negligible role in the kinetics of Cu
precipitation in Fe. Mobility of Cu clusters was also observed
in previous AKMC simulations, though limited to the small-
est ones.12, 14 The diffusion of Cu clusters, on the other hand,
had never been considered as mechanism in classical diffu-
sion theory models for Cu precipitation.5, 9–11

The main limitation of Soisson and Fu’s model was a
“collateral effect” of the strong binding between Cu clus-
ters and vacancy: the latter remained trapped in the bulk of
these clusters for a very large fraction of the simulation time,
thereby increasing enormously the CPU cost and, therefore,
limiting drastically the reach of the simulation, which had
to be stopped at a very early stage of the coherent precip-
itation. Thus, in their work they could not fully assess the
consequences of Cu clusters mobility on the kinetics of the
precipitation process.

In this work, we simulate Cu precipitation in α-Fe with
an AKMC computer simulation approach that allows us to
prove clearly that indeed the mobility of Cu clusters is the
key to explain the experimentally observed kinetics of pre-
cipitation. Classical coarsening mechanisms, such as the pro-
gressive growth of large precipitates at the expenses of the
dissolution of small ones, by emission of single Cu atoms,
would result in a significantly slower precipitation kinetics in
terms of size, with density overestimation.

Our AKMC approach is described in ample detail
elsewhere.21 To summarize briefly, we calculate the va-
cancy migration energies with the nudged elastic band (NEB)
method,22, 23 using an interatomic potential, thereby fully al-
lowing for effects of long-range chemical interaction and
static relaxation. However, to allow fast estimation of the mi-
gration energies during the simulation, the NEB values are
in fact provided by a properly trained artificial neural net-
work (ANN).24 Key for the physical reliability of the model
is the quality of the interatomic potential. The Fe-Cu poten-
tial we use here was developed in Ref. 25, specifically to
fulfill two major objectives: (1) be consistent with thermo-
dynamics, by providing a correct prediction of the exper-
imental Fe-Cu phase diagram and (2) provide an accurate
description of the interaction between point defects in α-Fe
and Cu atoms. The potential has been proven to be able to
predict the correct final equilibrium for a thermal annealing
experiment.25, 26 Its ability to fully predict also the kinetic path

from a random solid solution is demonstrated in the present
work.

In this work we added a new feature to our model,
namely, we combined the full AKMC approach with a coarse-
grained approach, of object kinetic Monte Carlo (OKMC)
type.27 Clusters of Cu atoms above a certain size are consid-
ered as objects, for which migration and dissociation events
are defined, based on specific, size-dependent, and thermally
activated frequencies. Seamless matching between the fully
atomistic model used to describe small Cu clusters and the
coarser-grain model used to describe larger Cu clusters is
guaranteed by calculating the diffusion coefficients and emis-
sion probabilities for the object-like clusters based on specific,
full AKMC simulations, on which another ANN has been
trained. This “hybrid” AKMC approach proves both compu-
tationally efficient and physically very accurate, thanks also to
the high quality of the interatomic potential, which is here ex-
ploited in the most complete way possible. This enabled us to
push our simulations well into the coarsening stage, allowing
full comparison with available experimental data. Our model
bears some resemblance to the 2D model proposed in Ref. 28.

The paper is organized as follows. In Sec. II, we summa-
rize the fundamentals of our ANN-based AKMC algorithm,
reporting in detail on the modifications introduced to “hy-
bridize” it with an OKMC approach. In Sec. III, the hybrid
AKMC is used to simulate several thermal annealing experi-
ments in Fe-Cu, for different Cu contents and at different tem-
peratures. Finally, in Sec. IV, we analyze the mechanism of
Cu precipitation that stems from our simulations, emphasiz-
ing in particular the key role of the diffusion of Cu clusters
and precipitates.

II. HYBRID ATOMISTIC KINETIC MONTE
CARLO APPROACH

As anticipated in the introduction, in AKMC models
atoms are located on the positions corresponding to the crys-
tallographic structure of interest, generally on a rigid lattice.
The evolution of the system is driven by the diffusion jumps
of vacancies. The jump to occur is selected stochastically each
time, according to the jump frequencies,

� = �0 exp

(−Em

kBT

)
. (1)

Here, �0 is the attempt frequency, Em is the migration energy
calculated at zero temperature, kB is Boltzmann’s constant,
and T is the absolute temperature. The Monte Carlo time in-
crement is then obtained using the standard residence time
algorithm.29–31

The simulation volume is a cubic and periodic bcc
monocrystal, with Fe as matrix. A number of Cu atoms are
introduced, according to the alloy composition, as well as
one vacant site. An ANN was trained to predict the vacancy
migration energy, as calculated with NEB using the poten-
tial from,25 given as input a description of the vacancy lo-
cal chemical environment (i.e., how Cu atoms are distributed
around it). The methodology we followed to train the ANN
is fully described in Ref. 21. Figure 1 shows that the predic-
tions are very accurate; therefore, the ANN can be considered
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FIG. 1. Quality of the ANN predictions of the vacancy migration energies
obtained with the NEB method in Fe-Cu alloys. The input variables are a
description of the vacancy local atomic environment up to the 11th nearest
neighbors. The average error of predictions is 2.0%, and Pearson’s product-
moment correlation coefficient R2 is 0.998.

as an adequate substitute of the computation on-the-fly of en-
ergy barriers with NEB. The attempt frequency in Eq. (1) is
considered constant and taken to be of the order of Debye’s
frequency: �0 = 6 × 1012 s−1.

Due to the negligible solubility of Fe in Cu, the clusters
formed during the simulation are from the beginning com-
pletely pure and compact, similar to the findings by other au-
thors in previous AKMC simulations7, 14, 15 (clusters are de-
fined by groups of solute atoms that are linked by 1nn or
2nn bonds). Also consistently with previous work, in a full
AKMC simulation with this method, the vacancy is strongly
attracted by Cu clusters, and remains trapped inside them for
a very large fraction of the AKMC events. The simulation is,
therefore, significantly slowed down.7, 15 To speed up the cal-
culation, clusters of Cu atoms (henceforth denoted as CuN, N
being the number of atoms in the cluster) above a certain size
(N ≥ Nmin) are defined as objects, using the approximations
described in what follows.

When the vacancy approaches a CuN object, as depicted
in Fig. 2, the full AKMC algorithm is still applied: possible
events are only the migration of the vacancy to a first nearest
neighbor position, and the corresponding migration energies
are calculated using the ANN shown in Fig. 1. We, therefore,
do not introduce any coarse-grain approximation for the mi-
gration path followed by the vacancy in the vicinity of a CuN

cluster, and – most importantly – for the mechanisms of drag-
ging individual Cu atoms, or small Cu clusters, in the direc-
tion of the large cluster.

When the vacancy enters in contact with a cluster, many
events that would take place in a full AKMC simulation
are ignored and replaced by coarse-grain approximations, as
shown in Fig. 2. In particular, the most probable outcome
of the capture of a vacancy by the cluster is the subsequent
inclusion in the cluster of all Cu atoms that are in solution
in the matrix, but sufficiently close to the interface with the
precipitate to be dragged inside by the vacancy hopping at
this interface. To allow for this atomic-level process, we de-
fine a spherical absorption radius (radius of the cluster aug-
mented by the 2nn distance) and make the assumption that all

FIG. 2. Schematic representation of the absorption of a vacancy in a CuN

cluster in the hybrid AKMC algorithm. Dashed lines represent the radius
of the cluster and the absorption radius. On the left side, the vacancy is
approaching the cluster and is considered absorbed when a migration event
is chosen involving one atom of the cluster. After absorption of the vacancy,
Cu atoms situated within the absorption range are immediately absorbed
in the cluster, and the new radii are increased accordingly, as shown on the
right side.

Cu atoms within this radius are immediately absorbed by the
cluster.

After the vacancy (v) has been absorbed by a CuN cluster
object, the latter becomes a vCuN object, and new events are
defined in replacement of the vacancy migration in the regular
AKMC algorithm:

• Dissociation of the cluster, with a frequency denoted as
�

(diss)
N , as depicted in Fig. 3. Two dissociation mech-

anisms are possible: (i) emission of the vacancy from
the cluster or (ii) emission of a vCu1 pair, as in OKMC
simulations.27 A single frequency for the dissociation
is assigned, and the emission of a vCu1 pair occurs
with a probability pN.

• Migration of the cluster, with a frequency denoted as
�

(mig)
N . For convenience, we only consider jumps of the

central atom of the cluster (dragging the whole cluster)
to any of the eight possible 1nn lattice sites (in bcc).
After the migration is completed, Cu atoms within the
absorption range are added to the cluster.

• Coalescence of clusters when, after a migration event
is chosen, the absorption range of the vCuN cluster

FIG. 3. Schematic representation of the dissociation event for a vCuN clus-
ter in the hybrid AKMC algorithm. The frequency of occurrence is denoted
�

(diss)
N . When applied, the vacancy alone is emitted outside the absorption

range (delimited by the dashed lines on the figure). A Cu atom is also emitted
occasionally, with a probability denoted as pN.
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overlaps with the absorption range of another CuN

cluster.

To summarize, the hybrid AKMC algorithm is a com-
promise between AKMC and OKMC: the description at the
atomic level of the system is retained as long as the vacancy
is not trapped in CuN clusters. In the latter case, vCuN clus-
ters are defined as objects, and treated in a similar way as in
OKMC methods. Clearly, the application of this algorithm re-
quires the pre-definition of values for �

(diss)
N , �

(mig)
N , and pN

as functions of the size, N, and temperature, T. These val-
ues must guarantee seamless matching with the atomistic de-
scription. The procedure to obtain this parameterization is de-
scribed in Sec. II A.

A. Parameterization

First of all, an appropriate threshold value, Nmin, above
which clusters are considered as objects must be chosen. A
sensible choice is, e.g., Nmin = 15, because it corresponds,
in bcc, to a central atom surrounded by other atoms filling
completely its first and second shells of close neighbors (so
it is very stable), and it is larger than the critical size for nu-
cleation of Cu clusters in our AKMC. It is also useful to de-
fine the maximum allowed size for CuN clusters, Nmax, to re-
main in a framework of coherent precipitation: R = 2.5 nm
(Refs. 18 and 19) corresponds to Nmax ≈ 6000.

Migration and dissociation of Cu clusters are complex
processes that are not easily described with simple for-
malisms, because they are the consequence of a succession
of many vacancy jumps at their surface. We, therefore, use
again a numerical approach: cluster migration and dissocia-
tion frequencies are estimated with series of independent full
AKMC simulations, using the ANN of Fig. 1. The vCuN clus-
ter is introduced alone in an otherwise pure Fe matrix. The full
AKMC algorithm is applied until the vacancy, or a vCu1 pair,
is emitted from the cluster (time to dissociation, or lifetime).
Repeating this simulation a large number of times, enough
statistics can be collected to calculate the cluster diffusion co-
efficient DN, and the average lifetime τN, following the pro-
cedure described in Ref. 32. The dissociation frequency is the
inverse of the lifetime:

�
(diss)
N = 1

τN

. (2)

Neglecting correlations, the migration frequency can be de-
rived from the diffusion coefficient using the relationship

�
(mig)
N = 6DN

�2
· 1

8
, (3)

where �2 is the square of the jump distance, i.e., of the 1nn
distance, equal to (3/4)a0

2 (a0 is the lattice parameter, 2.86 Å
for dilute Fe-based alloys). The factor 1/8 is introduced to ac-
count for the eight possible destinations of migration.

DN and τN are calculated at several very high tempera-
tures (up to 4000 K) and linearly extrapolated down to the
temperatures of interest via Arrhenius plots: ln(DN) or ln(τN)
versus the reciprocal temperature 1/kBT. As a matter of fact,
high temperatures make the lifetime, and therefore the simu-
lation time, shorter, thereby enabling the collection of statis-

FIG. 4. Diffusion coefficients DN of different vCuN clusters versus recipro-
cal temperature (1/kBT), measured with AKMC simulations. Plain lines show
interpolation and extrapolation on the reciprocal temperature using f1 defined
in Eq. (4).

tically relevant quantities of data points, also for very large
cluster sizes. A few sets of data points are represented as Ar-
rhenius plots in Figs. 4 and 5. Figure 6 shows an example of
diffusion coefficient DN for T = 773 K versus size. We see
that for N > 1000, the value is not monotonously decreasing
with N: these oscillations are entirely attributed to extrapola-
tion errors from high temperature, as indicated by the error
bars. In order to fit a function providing diffusion coefficients
and lifetime of clusters as functions of both cluster size and
temperature, we sought for smooth mathematical expressions
to these relationships:

ln (DN (T )) = f1(N, 1/kBT ), (4)

ln (τN (T )) = f2(N, 1/kBT ). (5)

These functions were constructed by fitting to the data points
shown in Figs. 4 and 5, using ANNs again. In the case of
DN at 773 K, Fig. 6 shows both reference data points and the
regression obtained using the ANN.

FIG. 5. Lifetimes τN of different vCuN clusters versus reciprocal tempera-
ture (1/kBT), measured with AKMC simulations. Plain lines show interpo-
lation and extrapolation on the reciprocal temperature using f2 defined in
Eq. (5).
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FIG. 6. Evolution of the diffusion coefficient DN of vCuN clusters with the
number N of Cu atoms at 773 K. Dots show interpolation/extrapolation from
AKMC data achieved with Arrhenius plots. The plain line shows interpola-
tion/extrapolation achieved using function f1 (Eq. (4)).

Finally, the probability pN that the vCuN cluster disso-
ciates by the emission of a vCu1 pair is simply calculated as
the ratio between the number of times the clusters dissolved
by this mechanism, and the number of times the vacancy
alone was emitted. To obtain enough statistics, a number
of simulations as large as 100 000 was necessary. These
calculations could, therefore, only be performed at high
temperature (T ≥ 1125 K). The values we calculated are
shown in Fig. 7. Similar to the above case, we designed a
general fitting function based on ANN to extrapolate pN to
lower temperatures and to any size N:

pN (T ) = f3(N, 1/kBT ) (6)

Figure 7 shows the regression for 2000 K and its extrapolation
to 773 K.

Overall, the CPU time required to produce the whole pa-
rameterization using an 8-core personal computer did not ex-
ceed two months, the training of the ANN being the least de-
manding part. This time can be significantly reduced, if more
processors and/or faster computers are available.

FIG. 7. Probability pN for a vCuN cluster to dissociate by the emission of a
vCu1 pair. Dots show the values calculated with 100 000 independent AKMC
simulations at different temperatures. The dashed line shows interpolation
using function f3 (Eq. (6)) at 2000 K, and the plain line shows extrapolation
using function f3 at 773 K.

B. Time rescaling

Simulations of thermal annealing experiments with
AKMC are conducted with the introduction of one vacancy
in the simulation volume. The equilibrium vacancy concen-
tration in real materials is, however, much smaller, by several
orders of magnitude. For this reason, the Monte Carlo time
tMC must be rescaled before a comparison with experimen-
tal results is possible. This is a well-known problem that is
formally solved by weighting the simulation time with the ra-
tio between the vacancy concentration in the simulation box,
Cv

(MC), and the real vacancy concentration in the experiment,
Cv

(real),7, 12–15

treal = tMC

C(MC)
v

C
(real)
v

. (7)

The vacancy concentration in the simulation box is known ex-
actly: it is the ratio between the number of vacancies (1 in our
case) and the number of atoms Nat. However, Le Bouar and
Soisson pointed out in Ref. 14 that this concentration should
be corrected, in the case of solute atoms that, like Cu, inter-
act strongly with the vacancy, with the fraction of time ac-
tually spent by the vacancy in Fe, i.e., far from Cu atoms.
This is necessary because the binding of the vacancy with the
Cu atoms will change locally the vacancy formation energy
during the process of Cu precipitation. The effective vacancy
concentration in the box is then precisely obtained as

C(MC)
v = fV

NatXFe

. (8)

Here, XFe is the concentration of Fe atoms in the box (XFe

≈ 1), and fV is the fraction of time spent by the vacancy in a
pure Fe environment, which can be exactly deduced from the
simulation, by monitoring for how long the vacancy remains
at a distance larger than second nearest neighbor separation
from any Cu atom.14

Much more delicate is the estimation of the real vacancy
concentration during the experiment (the experimental condi-
tions used here for reference are listed in Table I). Given the
enthalpy of formation of the vacancy in pure Fe, h

f
v (here we

take h
f
v = 1.7 eV, because this is the value given by the in-

teratomic potential used), after the correction of Cv
(MC) with

fV, as described above, one can assume that the experimen-
tal vacancy concentration to be used as reference will be the
equilibrium one in pure Fe, namely,

C(real)
v ∼ exp

(
−h

f
v

kBT

)
(9a)

or

C(real)
v = A exp

(
−h

f
v

kBT

)
. (9b)

Here, A is a coefficient that takes into account any deviation
from the equilibrium concentration in pure Fe, due to the in-
fluence of Cu concentration (beyond second nearest neighbor
distance) and also temperature (e.g., effect of vibrational en-
tropy, not included in the model in any explicit or implicit
way), as well as any other uncertainty inherent not only to the
real experimental conditions (e.g., effect of impurities in the
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TABLE I. Summary of the sets of experimental data used in this work, focusing on the coherent stage of precipitation (the average clusters radius R̄ < 3 nm).
In the experimental technique column, APT stands for atom probe tomography, SANS for small angle neutron scattering, and SAXS for small angle x-rays
scattering.

Cu content T Max. cluster density Cluster density
(at. %) (K) Number of points (m−3) (m−3) at R̄ = 3 nm Expt. technique Reference

1.34 773 3 1 × 1024 ∼1 × 1023 APT Goodman et al. (Ref. 2)
1.34 773 6 4 × 1024 ∼1 × 1023 SANS Kampmann and Wagner (Ref. 3)
1.34 773 3 2.5 × 1024 ∼2 × 1023 SANS Mathon et al. (Ref. 5)
1.34 773 >10 . . . . . . SAXS Perez et al. (Ref. 6)
1.34 873 >10 . . . . . .
1.34 973 >10 . . . . . .
1.1 823 4 ∼1.5 × 1023 ∼1 × 1023 SANS Buswell et al. (Ref. 4)
0.6 773 6 2.7 × 1023 ∼7 × 1022 APT Vincent et al. (Ref. 7)

alloy), but also to the choice, in the model, of a constant at-
tempt frequency in Eq. (1). In the limit of infinite dilution and
under fully ideal conditions, A ≈ 1. Since A is not precisely
known and cannot be calculated, we use it as fitting parameter
for the comparison with experiments. This way of proceeding
is equivalent to the one used by other authors, who rescaled
time purely on empirical grounds, using the ratio between real
and simulation time at the moment the simulation reached the
experimental density of precipitates.7 The advantage of our
procedure is that the fitted value of A also acts as parameter
of control, as it should not depart too much from a value of a
few units, or of tens of units. The game rule is of course that
a unique value of A must allow the reproduction of all data
from the same experiment, i.e., for a given temperature and
Cu content, both experimental precipitate density and mean
size versus annealing time should be reproduced by the model
for the same A value. As indicated in Table II, the values of A
that allowed a comparison to be made between model predic-
tions and experiments ranged from 0.77 to 10, which is fully
acceptable.

III. SIMULATION OF THERMAL ANNEALING
EXPERIMENTS

In this section, we report on the use of the hybrid AKMC
approach described in Sec. II to simulate several thermal an-
nealing experiments in Fe-Cu, as summarized in Table I. The
results of our simulations are summarized in Table II and
Fig. 8.

In order to choose the most appropriate simulation vol-
ume, as a trade-off between reasonable CPU time and statis-
tical accuracy of the prediction, we consider that the peak of
precipitate density is, at 773 K with 1.34 at. % Cu, of the or-
der of 4 × 1024 m−3. The density then decreases to 1023 m−3

at the end of coherent precipitation stage. A sufficient size for
the AKMC simulation box is thus 64 × 64 × 64 units cells
(524 288 atoms), similar to other authors’ choices.7, 15 The
peak of density, if correctly predicted by the model, would
then be reached by a number of 24 precipitates in the box,
whereas if only one large precipitate remains at the end of
the coherent stage the density will be still correctly sampled.
Nonetheless, to obtain more statistics, some simulations were
also conducted in a bigger box of 128 × 128 × 128 unit cells
(4 194 304 atoms). Another strategy adopted to optimize the
CPU time has been to start the simulation with a smaller box
and continue the same simulation in a box eight times bigger,
when the densities become too low for the small box to pro-
vide enough statistics: this was achieved by duplicating the
small box before restarting the simulation, an operation con-
sistent with the use of periodic boundary conditions.

Figure 8 shows at a glance that the predictions of the hy-
brid AKMC model are in very good agreement with the ex-
perimental data (the corresponding values of A are given in
Table II). For example, the increase of the average precipitate
radius versus time in Fe-1.34 at. % Cu is very closely repro-
duced at all three temperatures investigated (773 K, 873 K,
and 973 K). In the case of the experiment at 773 K, the mea-
sured evolution of the density of precipitates is also provided

TABLE II. Summary of the results obtained with the hybrid AKMC simulations performed in this work. NCl denotes the number of Cu clusters, and R̄ the
average cluster radius. The last simulation (Fe-1.1 at. % Cu at 823 K) was first started in a 64 × 64 × 64 unit cells box, then interrupted and continued in a 128
× 128 × 128 unit cells box when the number of clusters was lower than 10. The number of AKMC events is proportional to the CPU time.

Cu content T AKMC box size Number of AKMC NCl at peak R̄

(at. %) (K) (lattice units) events (*1 × 109) of density NCl (nm) fV (Eq. (8)) A (Eq. (9b))

1.34 773 64 1.4 47 1 2.55 1.5 × 10−5 1.7
1.34 773 128 4.2 375 11 1.76 1.5 × 10−5 1.7
1.34 873 64 3.5 27 1 2.32 1.0 × 10−4 1.7
1.34 973 64 6.3 9 1 1.9 8.1 × 10−4 1.7
1.1 823 64/128 1.5/15.3 22 6 2.17 4.4 × 10−5 0.77

(in box 64)
0.6 773 128 30.2 26 4 1.81 2.7 × 10−5 10
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FIG. 8. Comparison of the results of our hybrid AKMC simulations (plain lines) with experimental data (diamonds, squares, triangles, and circles) described
in Table I. For the Fe-1.34 at. % Cu case at 773 K, the (x) mark indicates the results obtained in a 128 × 128 × 128 unit cells box, whereas the unmarked one
was obtained in a 64 × 64 × 64 box.

and the model very nicely predicts nucleation (density in-
creases), growth (density reaches a peak and remains tem-
porarily constant, while the radius keeps increasing), and
coarsening (density decreases, while the radius keeps increas-
ing, because large precipitates grow at the expense of smaller
ones). The curves obtained in the simulation box with sides
of 64 lattice parameters are jerky because, especially when
the coarsening stage is reached, only a few precipitates re-
main in the box and the disappearance of two small ones
to make a bigger one produces significant oscillations in the
overall density. In particular, step-like increases/decreases are
observed: this is a clear indication of the fact that the mecha-
nism leading to density decrease and radius increase is the co-
alescence of two mobile precipitates. Simulations conducted
in the larger box (side of 128 lattice parameters) allow the
jerks to be damped, thanks to better statistics (larger number
of precipitates in the box). In all cases, the simulations fin-
ished with one single cluster in the box, of varying size, con-
sistently with the increasing solubility limit with temperature.

The annealing of Fe-0.6 at. % Cu at 773 K leads to a pre-
cipitate density significantly smaller than the above case, at
all stages, consistently with the halved solute concentration:
the simulation could only be meaningfully performed in a 128
× 128 × 128 unit cells box with ∼4 × 10−6 atoms. These
simulations were particularly demanding in terms of CPU
time, most likely because the Cu concentration is lower
and the acting thermodynamic force correspondingly weaker.
Nonetheless, a good agreement with experimental data is
achieved. The optimal A factor value, 10, is significantly

larger than for the more concentrated alloys. This may per-
haps be the consequence of the assumption of constant at-
tempt frequency �0 in Eq. (1). For example, Soisson and Fu
used two different attempt frequency values in Ref. 15, de-
pending on the chemical nature of the jumping atom, larger
for Fe than for Cu. Such a choice of different attempt fre-
quencies may be a way to reduce this increase of A with de-
creasing concentration, because the proportion of Fe-vacancy
exchanges is expected to increase if the Cu content is reduced.

In the simulation of the annealing of a Fe-1.1 at. % Cu al-
loy at 823 K we observe that the first two experimental points
are not predicted by our model. The good agreement with

FIG. 9. Evolution with annealing time, during simulation with the hybrid
AKMC, for a Fe-1.34 at. % Cu alloy at 773 K, of (1) the ratio between the
total number of Cu atoms admitted in Cu clusters after their migration and
the number of Cu atoms dragged by the vacancy from the matrix to the clus-
ters vicinity and (2) the ratio between the number of vCuN clusters objects
merging and dissolutions.
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FIG. 10. Thermal annealing experiment for a Fe-1.34 at. % Cu alloy at 773 K. Parameters in the model were changed compared to Fig. 8: Curve (a) the
probability pN for vCuN clusters objects to dissolve by the emission of a vCu1 pair is set to 0. Curve (b) The vCuN migration frequency �

(mig)
N is modified to

inhibit the migration of clusters bigger than 100 atoms.

experiments obtained in all other cases, however, gives us
sufficient confidence to believe that those two experimen-
tal points are probably affected by large uncertainty, possi-
bly as a consequence of the limited resolution of the exper-
imental technique used, i.e., small angle neutron scattering,
which is not sensitive to precipitates below 1 nm in diameter
and therefore can be supposed to have overestimated the av-
erage size at the early stage of the precipitation, especially
because in the experiment there was no support from any
other complementary technique. This is confirmed by the fact
that the third experimental point, still within the limit of co-
herent precipitation, is correctly reached by the model, and
that a visual extrapolation of the curve will lead to reach the
fourth point as well, even though this lies well into the regime
where crystallographic transformation must have started, i.e.,
strictly speaking outside the range of validity of the model.
Our model, as most experimental data, is roughly consistent
with a dependence of the radius on a 1/2 power of time dur-
ing growth, that decreases to a dependence on a 1/3 power
of time during coarsening, as should be expected6, 7 (in loga-
rithmic scale this is a roughly linear dependence, though with
gradual change of slope), while no regression interpolating
the four experimental points from Ref. 4 will respect such a
law. Time was rescaled using an A factor value smaller than
unity, perhaps a sign of experimental conditions significantly
different from those of the other sets of experiments.

To summarize, the hybrid AKMC model proposed here
is able to make relevant predictions of the kinetics of Cu
precipitation in α-Fe, in an affordable CPU time on stan-
dard workstations. We thus believe that our model includes all
important mechanisms of the investigated physical-chemical
process and that these are satisfactorily parameterized. This
achievement is of course also closely connected to the quality
of the interatomic potential used, from which all parameters
are obtained, either directly or indirectly.

IV. ANALYSIS OF THE Cu PRECIPITATION
MECHANISM

Our results of Sec. III strongly support the idea that the
mobility of Cu clusters and even precipitates plays a signif-
icant role in the process of precipitation in Fe, consistently

with the suggestion of Soisson and Fu15 which, however, in
their case could not be fully substantiated. With the algorithm
we developed, it becomes possible to provide clear proof of
this. Figure 9 shows the evolution with annealing time, in Fe-
1.34 at. % Cu at 773 K, of: (1) the ratio between the number
of Cu atoms absorbed in big clusters after their migration,
and the number of Cu atoms dragged to the cluster absorption
range by the vacancy and (2) the ratio between the number
of times clusters density was reduced because of big clusters
merging and because of clusters dissociation by the emission
of CuV1 pairs. These ratios are significantly larger than 1, and
constantly increasing with time, confirming that indeed Cu
clusters, in our simulations, grew mainly as a consequence
of their migration and subsequent inclusion of Cu atoms, and
that the clusters density decreased mainly due to the coales-
cence of mobile clusters. To further highlight this conclusion,
we have conducted additional simulations (Fig. 10), in which
some events were deliberately prohibited, namely, in one, the
emission of vCu1 pairs from vCuN clusters was suppressed
(pN = 0); in the other, the migration frequency �

(mig)
N was

artificially modified in order to progressively inhibit the mi-
gration of the biggest vCuN clusters (for N > 100). Compared
to Fig. 8, when emission of vCu1 is forbidden, the average
precipitate radius is unsurprisingly somewhat larger and the
average precipitate density almost unaltered, i.e., the results
are virtually unaffected and remain in good agreement with
experiments. When, however, Cu precipitate mobility is in-
hibited, the results deviate significantly from the experimental
data: from a certain annealing time on, the average precipitate
radius ceases to increase, and the clusters density ceases to
decrease, thus remaining higher than the experimental one.
Therefore, only by allowing large clusters to be mobile, the
experimental results can be matched to the model. The one-
by-one emission of vCu1 pairs, on the contrary, is not a suffi-
ciently efficient mechanism to enable coarsening as observed
in experiments.

V. CONCLUSION

We have simulated the coherent stage of Cu precipita-
tion in α-Fe during thermal annealing with novel hybrid atom-
istic kinetic Monte Carlo simulations. The vacancy migration
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energies used to parameterize the model were calculated us-
ing a suitable interatomic potential, taking into account long-
range chemical interactions and static relaxation, by exploit-
ing the capabilities of artificial neural networks to interpo-
late and extrapolate the results of nudged elastic band cal-
culations. This algorithm was hybridized with an object ki-
netic Monte Carlo approach, by treating Cu precipitates as
objects above a certain size. The seamless matching between
the atomistic and the coarse-grain approximations was en-
sured by calculating all parameters governing object behavior
from atomistic simulations and again by exploiting the regres-
sion capability of artificial neural networks for extrapolation.
This allowed the CPU time required by the simulations to be
reduced by orders of magnitude and enabled complete ther-
mal annealing experiments to be simulated, up to the end of
the coherent precipitation stage, finding in addition very good
agreement with the experimental data, both in terms of mean
size and density of precipitates. This achievement proves: (1)
the suitability of the interatomic potential used, which de-
scribes correctly not only the thermodynamic properties of the
Fe-Cu system (phase diagram), but also the kinetics of precip-
itation and (2) that the model includes all important mecha-
nisms driving the precipitation of Cu in iron. In particular, the
coalescence of mobile Cu precipitates containing even several
thousands of atoms (and one vacancy) turns out to be the dom-
inant mechanism leading to growth and coarsening, while the
classical coarsening mechanism based on the growth of larger
clusters at the expense of dissolving small clusters (via emis-
sion of vCu1 pairs) is clearly insufficient. This is consistent
with what was proposed, though not fully proven, by Soisson
and Fu.15

The hybrid model proposed here may seem somewhat
specific for the problem of Cu precipitates; however, it ap-
pears to be suitable for interesting generalisation to all those
cases in which coalescence of large, but mobile, nanofeatures
is the main mechanism for their growth and coarsening. This
is especially true for self-interstitial clusters that are formed
under irradiation. The present model, therefore, paves the way
for addressing more complex phenomena than thermal age-
ing, such as radiation-enhanced, or even induced, precipita-
tion, not only in Fe-Cu, but also in more complex alloys.
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