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Abstract. Extensive Monte Carlo simulations are employed in order to study
the dynamic critical behaviour of the one-dimensional Ising magnet, with
algebraically decaying long-range interactions of the form 1/r%+?, with o = 0.75.
The critical temperature, as well as the critical exponents, are evaluated from
the power-law behaviour of suitable physical observables when the system is
quenched from uncorrelated states, corresponding to infinite temperature, to the
critical point. These results are compared with those obtained from the dynamic
evolution of the system when it is annealed at the critical point from the ordered
state. Also, the critical temperature in the infinite interaction limit is obtained by
means of a finite-range scaling analysis of data measured with different truncated
interaction ranges. All the estimated static critical exponents (y/v, 5/v, and 1/v)
are in good agreement with renormalization group (RG) results and previously
reported numerical data obtained under equilibrium conditions. On the other
hand, the dynamic exponent of the initial increase of the magnetization (0) was
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close to RG predictions. However, the dynamic exponent z of the time correlation
length is slightly different to the RG results probably due to the fact that it may
depend on the specific dynamics used or because the two-loop expansion used in
the RG analysis may be insufficient.

Keywords: classical Monte Carlo simulations, classical phase transitions
(theory), critical exponents and amplitudes (theory), finite-size scaling
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1. Introduction

The study of the critical behaviour of systems with long-range (LR) interactions is still a
challenging topic in the field of statistical physics [1]-[4]. Furthermore, the understanding
of the dynamic evolution of these systems, from far-from-equilibrium initial states towards
a final equilibrium regime, poses an additional difficulty due to the fast relaxation of
relevant physical observables owing to the presence of LR interactions. For these reasons,
the study of relaxation processes in simple Ising and Potts models with LR interactions
plays an important role for the understanding of the dynamics of second-order phase
transitions. Within this context, the study of the short-time dynamics (STD) of critical
systems has attracted great attention during the last two decades [1], [5]-]7]; for a recent
review see [8]. The pioneering theoretical study of the STD, which was formulated in the
context of the dynamic renormalization group [9], predicts the existence of a new exponent
related to the initial increase of the order parameter. This prediction has subsequently
been validated by a large body of numerical evidence obtained in a variety of models [5, 8],
[10]-[14]. However, only few studies have been performed in order to generalize these
concepts to systems with LR interactions. In fact, the field-theoretical calculations of
Janssen et al [9] have been extended to the case of LR interactions decaying according to
a power law for the case of the continuous n-vector model [1], the random Ising model [15],
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and the kinetic spherical model [16,17], and only a few preliminary numerical results on
the STD of the LR Potts model have been reported [7]. On the other hand, theoretical
studies of the relaxation dynamics of discrete models are still lacking. Recently, numerical
results on the relaxation dynamics of the LR Ising model, obtained by applying a new
algorithm that produces effective long-range interactions, have been reported [18].

In order to contribute to the understanding of the dynamics of phase transitions
in discrete systems, our aim in this paper is to report and discuss extensive numerical
simulations of the Ising model, in one dimension, with LR interactions decaying with the
distance as a power law. For this purpose, we performed studies of both the STD of
initially disordered states (i.e., quenching experiments) and the relaxation dynamics of
initially ordered states (i.e., annealing experiments). Since the term annealing has a wide
range of interpretations, in order to avoid misunderstandings in this paper we refer to
the case where the system at the initial temperature (7' = 0) is suddenly heated up to
a pre-established T' that remains constant. Results obtained by applying these methods
allow us to determine not only the critical temperature, but also the complete set of static
and dynamic critical exponents (for the methodology used, see e.g. [8,19]). In this way,
we can compare our results with theoretical renormalization group (RG) results [1,20],
with independent numerical determinations of the static exponents performed under
equilibrium conditions [2], and with the results reported in [7, 18].

The paper is organized as follows: in section 2 a brief description of the model
and the simulation method is presented, section 3 is devoted to a brief discussion of
the theoretical background subsequently applied to the analysis of the results that are
discussed in section 4, and finally, our conclusions are stated in section 5.

2. The Ising model with LR interactions and the simulation method

In this paper we present and discuss simulations of the LR Ising model in d = 1 dimension,
whose Hamiltonian, H, is given by

H = —JZ SZ'S]'/T?J'JFJ, (1)
(i,5)

where J > 0 is the (ferromagnetic) coupling constant, S; is the spin variable at the site of
coordinates ¢, which can assume two values, S; = £1, the summation is extended to all
pairs of spins placed at distances r;; = |r; — 7|, and o is a parameter that controls the
decay of LR interactions.

Simulations are performed by using samples of length L < 1 x 10° and taking periodic
boundary conditions. The LR interactions described by the Hamiltonian of equation (1)
are evaluated up to a distance |r; — r;| = L/2. Also, simulations with LR interactions
truncated at the Nth neighbour, i.e., J = 0 for r > N, have been performed in order to
apply a finite-range scaling (FRS) analysis [21], and the results will be briefly discussed.
Spin update is performed by using the standard Metropolis dynamics. Also, during a
Monte Carlo time step (MCS) all the spins of the sample are updated once, on average.

In order to carry out the calculations we chose o = 0.75, because for this value of
the parameter the critical exponents of the Ising model are expected to be sufficiently
different from mean-field values (¢ = 0.50) to allow a meaningful comparison with RG
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results [22]-[24]. Furthermore, one also likes to be as far as possible from o = 1.00, where
strong Kosterlitz—Thouless behaviour is known to occur [25].

During the simulations we recorded the time dependence of the following observables:
(i) the order parameter or average magnetization (M (¢, 7)) given by

M(t, 1) = % <Z Si(t,7)> : (2)

where 7 = (T' — T;) /T is the reduced temperature and 7. is the critical temperature.
(ii) The susceptibility (x(¢,7)) evaluated as the fluctuations of the order parameter,
namely

X(ta T) = (MQ(ta T) - M(ta 7—)2)7 (3)

where M2(t,7) = 1/L*((325, Si(t, 7))2).
(iii) The autocorrelation of the spin variable

Alt,7) = % <Z S;(t,7)5;(0, 7)> . (4)

(iv) The time correlation of two spins separated by a distance r at the critical point

Ct,r) = % <Z Si(t)Si+r(t)> : (5)

(v) The autocorrelation of the order parameter at the critical point, when the initial
condition corresponds to uncorrelated states, given by

Q- <Z si<t>§jsi<o>>. ©)

(vi) The second-order Binder cumulant (U(t)), when the initial condition corresponds
to the ground state, namely,
M?(t, )
Ult,7) = ——=% — 1, 7
(17) = Ty @
where in all cases the brackets indicate configurational averages performed over a number
ng of different samples starting from equivalent (but different in the case of T' = co) initial
conditions.

3. A brief theoretical background

Short-time dynamics (STD). Let us now analyse the expected short-time dynamic
behaviour when the system starts from a disordered (uncorrelated) configuration, but
with a small initial magnetization. According to the argument of Janssen et al [9], the
general scaling approach for the order parameter for the nonconservative dynamics of
model A (according to the classification of Hohenberg and Halperin [26]) is given by

M(t, 7, L, My) = b=V M (t/b%, b7, L/b, b* M), (8)
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where b is a scaling parameter, and 3 and v are the order parameter and correlation length
(static) critical exponents, respectively. Also, z is the dynamic exponent. Furthermore,
xo is a new exponent, introduced by Janssen et al [9], which accounts for the scaling
dimension of the initial magnetization My, in the My — 0 limit.

For sufficiently large lattices, at the critical point (7 = 0), and on setting b = /2,
equation (8) becomes

M(t, My) =t~ /" M (t*0/% M), (9)

which holds for a time short enough that the correlation length (£(t) oc t/#) is not so large

(¢ < L). Furthermore, for times even shorter than the crossover time (¢, ~ My */™), but
larger than the microscopic time (i) that is set when the correlation length is of the
order of a single lattice spacing, equation (9) becomes

M(t) o< Myt?, (10)

which describes the (power-law) initial increase of the magnetization with exponent
0=umx¢/2—pF/vz.

In the absence of an initial magnetization (M, = 0), and at criticality, the scaling
behaviour of the susceptibility is given by

X(t) o vz (11)

where y is the susceptibility exponent. Also, under these conditions (7 = 0 and M, = 0),
the time autocorrelation function is expected to follow a power law with time according
to

A(t) o t72, (12)

where the critical exponent is given by A = d/z — 0, i.e., even in the absence of an initial
magnetization, A depends on the exponent # that describes the initial increase of the order
parameter according to equation (10).

On the other hand, on starting with randomly generated configurations, the
correlation function of the magnetization is also expected to follow a power law with
time according to

Q(t) oc t’, (13)

i.e., a relationship that allows us to obtain the initial increase exponent avoiding the
numerical extrapolation My — 0 [6].

Finally, the two-spin time correlation allows us to obtain an independent
determination of dynamic exponent z by means of the following scaling form [27]

C(t,r) = r- =201 /£(1)). (14)

Standard relaxation dynamics (SRD). STD measurements can be further reinforced by
independent measurements of the SRD, which are started from a fully ordered or ground
state configuration and are performed at criticality. In this way, one could be able not
only to test the validity of some exponents evaluated by means of the STD method, as well
as the critical temperature, but also to obtain additional exponents and test the validity
of relationships between them, e.g., the hyperscaling relationship [5]. In fact, by starting
from a ground state configuration with all spins pointing in the same direction (7" = 0)
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and annealing the system at criticality, the SRD scaling approach is given by (see also
equation (9))

M(t,7,L) = b=P"" M(t/b*, b 7, L/b). (15)
For large lattices and on setting b = ¢'/%, this dynamic scaling form leads to
M(t, ) oc 7PV Mt 7). (16)

It is well known that this power-law decay of the order parameter is valid within the long-
time regime, but several numerical results indicate that it also holds in the short-time
regime.

On the other hand, by taking the logarithmic derivative of equation (16) with respect
to the reduced temperature, evaluated at the critical point, one gets

Olog M(t,T)

e o /77 (17)

7=0

which allows us to evaluate the exponent 1/vz by performing measurements at and slightly
away from the critical point. Furthermore, just at the critical point the second-order
Binder cumulant is expected to behave according to

U(t) o t47, (18)

It is worth mentioning that because of the small nonequilibrium correlation length
for short-ranged models, both STD and SRD are free of finite-size effects. However,
in long-ranged models, finite-size effects also appear due to the fact that the finite size
yields a truncated interaction range. So, this effect remains even during the short-time
regime investigated in this paper and it is worth knowing its influence on both the critical
temperature and the critical exponents.

4. Results and discussion

4.1. Standard relaxation dynamics

Focusing our attention first on the relaxation dynamic behaviour at criticality, figure 1
shows the time evolution of the magnetization at different temperatures for the system
size L = 2 x 10*. It is well known that for temperatures close to the critical point,
deviations from the expected power-law behaviour given by equation (16) are due to
at least three different contributions. (i) As follows from the scaling function involved in
equation (16) one has a downward (upward) deviation for 7" > T, (T < T¢). (ii) Also, close
to criticality, finite-size effects and (iii) the finite range of the interactions considered are
identified by means of a drop in the time evolution of the order parameter, which takes
place at a time around t.,q(L) that depends on the system size. Therefore, all effects
cause deviations, hindering the determination of t.,q. So, let us briefly describe here
the method used throughout the paper in order to determine the critical points and the
critical exponents, as well the corresponding error bars. We notice that by means of a
simultaneous analysis of the behaviour of d(log(M))/d(log(t)) and the observation of the
best power-law behaviour obtained for the largest system size, we can overcome these
shortcomings and obtain a reliable estimate of te,q(L). In fact, as shown in the inset
of figure 1, upward (downward) departures form the power law correspond to 7' < T,

doi:10.1088,/1742-5468,/2011/09/P09007 6
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Figure 1. Log-log plots of the time evolution of the magnetization M (¢) obtained
on annealing from 7" = 0 (ground state) at the indicated temperatures. The data
correspond to the system size L = 2x 10*. The solid line shows the fit of the curve
obtained for T, = 2.6525, according to equation (16). The number of averaged
configurations (ng) is also indicated. The inset shows the derivative of log(M)
with respect of log(t); the solid line corresponds to 3/vz = 0.129. More details
appear in the text.

(T > T.), while the critical temperature corresponds to a constant value within of the
time interval (Zmic, tena), Which gives the value of the critical exponent involved. On the
other hand, deviations from the horizontal behaviour in the curve corresponding to 7.
(see the inset of figure 1) are due to the operation of both finite-size and finite-range
effects, a fact that allows us to estimate t.,q(L). Then, for the system size L = 2 x 10?
shown in figure 1, the critical temperature 7, = 2.6525(25) was found. The error bars
of T. were assessed by considering the closest temperatures that present noticeable but
small deviations from the power-law behaviour. Also, from the fit of the data the critical
exponent [/vz = 0.129(6) was determined (see also the horizontal line in the inset of
figure 1).

4.1.1.  Finite-size effects. In order to investigate the influence of finite-size effects on
the results, the procedure described above was carried out not only for several system
sizes (see figure 2), but also for different interaction ranges. The purpose of that type
of study is to distinguish between two different sources of size effects: those caused
by the finiteness of the sample and others caused by the finite interaction range. In
fact, in contrast to the case of results often obtained by using models with short-range
interactions [8], here the expected power-law behaviour of the physical observables is
observed for temperatures that depend on the size, i.e. effective critical temperatures.
Then it is possible to understand this situation as an additional size effect that is caused
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Figure 2. Log-log plot of the time evolution of the magnetization M /()
obtained on annealing from 7" = 0 (ground state) to the critical temperatures
corresponding to the indicated system sizes (L). The solid line shows the fit of
the curve obtained for L = 10%. The number of averaged configurations (ns) is
also indicated. More details appear in the text.

by the truncated interaction range of the long-range interaction rather than by the usual
finite number of spin sites considered in Monte Carlo simulations. Indeed, a finite-system-
size sample implies a truncated interaction range, i.e., the maxima number of neighbours
(Nmax) on either side of the central spin considered in order to evaluate the Hamiltonian
given by equation (1) is finite, and due to the periodic boundary conditions used, one
has Npax = L/2. Following that, simulations with different N' < Ny, and L values were
carried out. Figure 3 shows the critical relaxation of the magnetization for a system size
L = 10* and different N values. The data indicate that the effective critical temperature
and the range of the power-law behaviour depend on the value of N but the corresponding
critical exponent remains unaffected, within the short-time regime. Furthermore, this
statement is reinforced by the results shown in figures 4(a) and (b) that correspond to
N =2x10% and N =5 x 103, and different L values, respectively.

Summing up, the (almost) perfect overlap of the curves observed within the suitable
time interval defined for each system size shows that in the LR Ising model the critical
temperature must be changed with the size, while the critical exponents are no longer
influenced.

4.1.2. Finite-range scaling (FRS) analysis. A FRS analysis has also been applied in order
to obtain the critical temperature in the infinite interaction range (thermodynamic limit).
This type of analysis has already been developed by analogy with the finite-size scaling
method [21]. The basic idea behind this approach is to study systems with different

doi:10.1088,/1742-5468,/2011/09/P09007 8
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Figure 3. Log-log plot of the critical relaxation of the magnetization M (t) from
T = 0 for the system size L = 10* and different interaction ranges N. The solid
line shows the fit of the curve obtained for N = 5x 103. The numbers of averaged
configurations (ng) and effective critical temperatures are also indicated. More
details appear in the text.

truncated interaction ranges and obtain information on the critical behaviour by means
of scaling properties. In this way, on the basis of [21], the following scaling dependence
has been proposed:

T(N) =T.(c0) + A/N*T, (19)

where T.(oc0) is the critical temperature for the infinite interaction range, xp is the
convergence exponent, and A is a constant. According to standard finite-size scaling
we assume that zr = 1/v [28,29]. Figure 5 shows the T.(N) values obtained as a
function of N=1/¥, which was fitted with the aid of equation (19) (continuous line) and
gives the critical temperature (7.(oo) = 2.669(1)). The critical temperature obtained
by this approach interpolates between the previously reported values for ¢ = 0.70
(Te(o0) = 2.929 [21] and T.(o0) = 2.9269 [31]), and for ¢ = 0.80 (T.(c0) = 2.431 [21]
and Ti.(co) = 2.4299 [31]), which were obtained by means of analytic calculations with
the transfer matrix method and FRS analysis.

Also, in figure 5 we have included the value reported by Tomita [18] (after a proper
interpolation) for N = 2% which within the error bars is in full agreement with our
results. This fact also shows that the algorithm used in [18] gives (non-universal) effective
critical temperatures that are in agreement with the standard Metropolis algorithm.

4.1.3.  Critical exponents. The already discussed results suggest that the system size
L = 10* is large enough for the evaluation of the critical exponents within a suitable

doi:10.1088,/1742-5468,/2011/09/P09007 9
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Figure 4. Log—log plot of the critical relaxation of the magnetization M (t) from
T = 0 for the system sizes L indicated and fixed interaction range: (a) N = 2x10?
and (b) N = 5x103%. The solid lines correspond to the fits, which give an exponent
B/vz = 0.129(6). The numbers of averaged configurations (ng) and effective
critical temperatures are also indicated. More details appear in the text.
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2.67 4%

2.66 1

T(N)

2.65 1
2.64 1

2.63 1

" 15x102  2.0x10%  2.5x107

N-1/v

00  50x10° 1.0x10?

Figure 5. Plot of the effective critical temperature as a function of N~/¥ (full
squares). The continuous line corresponds to the fit performed with the aid of
equation (19). The effective critical temperature reported in [18] is also included
(full star). More details appear in the text.
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101" /4 L=2x10" T =2.6525(25) ] 4 L=2x10"T_=2.6525(25)

S

e =

2 2 109
«Q

10° 10’ 107 10°
t(MCS) t(MCS)

Figure 6. Time evolutions of dynamic observables obtained on annealing at the
effective critical temperature from 7" = 0. (a) The second-order Binder cumulant
(U(t)), and (b) the logarithmic derivative of the magnetization with respect to
the reduced temperature (0log(t)/07). The solid lines indicate the fits performed
with the aid of equations (17) and (18), respectively. The system sizes (L) and
the corresponding effective critical temperatures (7¢) are also indicated.

time interval, namely (10, 900) MCS. In order to verify the above statement and to
obtain the complete set of critical exponents, the SRD of the physical observables was
obtained for system sizes of L = 10% and 2 x 10* up to 10* MCS. Figure 6(a) shows the
time evolution of the second-order Binder cumulant at the effective critical temperature
that can be fitted with a power law with the exponents listed in table 1 (third column).
From these values the dynamic exponent z was estimated to be close to z = 0.84(2)
(see table 1, fifth column), i.e. a figure that is significantly larger than the RG results,
given by zrg = 0.775 [1]. In principle one could expect this disagreement to be most
likely due to the fact that z depends on the specific dynamics used, as in the case of the
short-ranged Ising model [32]. Nevertheless, this discrepancy could also be attributed to
an underestimation of the RG calculation, again as in the case of the short-ranged Ising
model [33]. Furthermore, the dynamic exponent obtained interpolates between the values
reported by Tomita [18], i.e. z = 0.79(4) and 1.00(1) for ¢ = 0.70 and 0.80, respectively.

On the other hand, by using measurements of the magnetization performed at two
temperature points adjacent to the effective critical one, the logarithmic derivative of the
magnetization with respect to the reduced temperature was obtained. Figure 6(b) shows
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Table 1. List of exponents obtained by means of SRD measurements of the
magnetization (3/vz), Binder cumulant (d/z), and logarithmic derivative of the
magnetization with respect to the reduced temperature (1/vz). The estimated
critical exponents z, 1/v, and /v, as well as the RG predictions, are also listed
for the sake of comparison.

L B/vz d/z 1/vz z 1/v B/v
1x10% 0.129(7) 1.20(2) 0.59(2) 0.83(1) 0.49(2) 0.107(5)
2 x10*  0.129(6) 1.19(3) 0.57(2) 0.84(2) 0.48(2) 0.109(6)
RG 0.775 0.4765  0.125

that this observable also exhibits a power-law behaviour and the fitted exponents are
listed in table 1, fourth column. Furthermore, by replacing the value obtained for z in the
exponent corresponding to the logarithmic derivative, one gets 1/v = 0.48(2) (see table 1,
sixth column), in agreement with both the RG prediction, namely, 1/v = 0.4765 [1,20],
and the Monte Carlo simulations performed at equilibrium, 1/v = 0.469 [20]. Finally,
from the exponents §/v and 1/v one can obtain the SRD estimation of 5/ = 0.109(6)
that also interpolates between the values reported in [18].

It is worth mentioning that the error bars of the evaluated exponents are not easy
to estimate because they are introduced by several sources such as insufficient statistics,
arbitrariness in the time interval used to fit the power-law behaviour of the observables,
and, finally, the use of an approximate effective critical temperature, T.. In order to
have an estimation of the magnitude of the error due to the former source, a variant of
the blocking method was used [30]. For this purpose one proceeds as follows: the time
dependence of each observable is fitted for several independent sets of measurements; then,
the error bars are obtained by accounting for the spreading of the obtained values. In
the case of the time interval used for the power-law fit, we found that the selection of the
microscopic time ;. accounts for the major error. So, the reported exponents correspond
to a fixed t,;. that is established after the first 10 MCS, and the error bars include the
values obtained by taking ¢,,;. within the range 10-100 MCS. On the other hand, the error
due to the approximate critical temperature cannot be estimated directly.

4.2. Short-time dynamics

Now we turn our attention to the STD measurements. The STD evolution exhibits a weak
dependence on the quenching temperature, so this shortcoming hinders an independent
estimation of 7.. Consequently, in the simulations we used the values obtained from
SRD measurements. As in that case, a finite-size analysis of the time evolution of the
susceptibility (see figure 7(a)) allows us to determine the suitable time interval to be
used in order to perform the fitting procedure. In this way, for the system size L = 10*
the power-law behaviour is observed up to 400 MCS. Also, the autocorrelation function
(figure 7(b)) exhibits a power-law decay at the same time interval. The critical exponents
v/vz and X obtained by means of fits with the aid of equations (11) and (12), respectively,
are presented in table 2. The error bars of the critical exponents were estimated in
the same way as for the case of the SRD measurements, and they include the values
corresponding to ;. taken from the interval 4-36 MCS.
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Figure 7. Time evolution measured after quenching from uncorrelated

(disordered) states to the corresponding effective critical temperature T of (a) the
susceptibility x(¢) and (b) the autocorrelation A(t). The solid lines indicate the
fits performed with the aid of equations (11) and (12), respectively. The number
of averaged configurations (ns) and the system sizes (L) are also indicated.

Table 2. Critical exponents obtained from the STD evolution of the susceptibility
(v/vz), autocorrelation (d/z — 6) and initial increase of the magnetization (6).
The calculated exponents z, v/v and /v and the corresponding RG predictions
are also included.

L v/ vz d/z—0 0 z v/ v B/v

1x10% 0.87(2) 0.99(1) 0.200(5) 0.840(8) 0.73(2) 0.13(1)
2x 104 0.88(1) 0.99(1) 0.201(4) 0.839(8) 0.74(1) 0.130(9)
RG 02171 0775  0.75  0.125

In contrast with these measurements, performed by setting My = 0, the initial increase
of the magnetization has to be measured for vanishingly small values of My, as is shown
in the figures 8(a) and (b) for system sizes L = 10* and 2 x 10*, respectively. Note
that the simulation time verifies that ¢ < t,. The insets show the power-law exponents
obtained by the fit by means of equation (10) and the extrapolation for My — 0. This
procedure yields the 6 values reported in table 2 (fourth column) which are close to
the RG prediction [1]. Now, by using the relationship A\ = d/z — 6 and replacing the
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Figure 8. Log-log plot of M(t) versus time showing the initial increase
of the magnetization obtained after quenching the system from uncorrelated
(disordered) states, with a small magnetization My, to T,. The data correspond
to system sizes (a) L = 10* and (b) L = 2 x 10*. The solid lines show the fits
obtained according to equation (10). The inset shows the linear extrapolation of
the values of the exponent to My — 0. The number of averaged configurations
(ng) is also indicated.

exponents determined, one gets the dynamic exponent z (see table 2, fifth column). The
value obtained, z = 0.84, is consistent with our previous SRD determinations but slightly
higher than the RG result (zrq = 0.775) [1]. Also, it interpolates between previously
published STD results corresponding to a system of size L = 3000, which are given by
z = 0.81(1) and 0.96(4), for 0 = 0.70 and 0.80, respectively [7]. On the other hand,
one can use the values of both v/vz and z in order to estimate /v (see table 2, sixth
column). Furthermore, by assuming that the hyperscaling relationship (d —25/v = ~/v)
holds, one can obtain the STD estimation of /v = 0.130(9). It is worth mentioning that
RG calculations obtained from the asymptotic expansion in € = 20 — d up to second order
yield n =2 — o = 1.25 [4]. Then, by using the standard scaling relationships v/v =2 —n
and B/v = (d — 2+ n)/2, the exponents v/v = o = 0.75 and /v = (d —0)/2 = 0.125
can be obtained in excellent agreement with our STD estimations.

Furthermore, just by starting with random configurations and measuring the
autocorrelation function of the magnetization (Q(¢)) given by equation (9), one can also
obtain the initial increase exponent 6 = 0.180(6), as shown in figure (9). Due to the fact
that in this case the fluctuations are more pronounced, the calculation of the correlation
function requires better statistics and consequently the simulations were done up to 200
MCS for L = 10%. The error bars include the figures obtained for ¢,,;. within the range
4-36 MCS. The value of the exponent 6 is close to a previous measurement obtained by
using the numerical extrapolation My — 0, namely, § = 0.201(4). Furthermore, by using
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Figure 9. Log—log plot of the time evolution of the autocorrelation function of the
magnetization after quenching randomly generated configurations to T, = 2.645.
The solid line shows the fit performed with the aid of equation (9). The number
of averaged configurations (ng) and system size (L) are also indicated.

this independent estimation of # and applying the previously described procedure, the
exponents z = 0.855(9), v/v = 0.74(2), and B/v = 0.13(1) can be obtained, which, of
course, are in good agreement with our previous estimations.

On the other hand, in order to obtain an additional independent estimation of the
dynamic exponent z, the scaling behaviour of the spin—spin correlation functions (C(t, 7))
was studied for different values of r ranging from 10 to 90 (see the insets of figure 10).
The main panels of figure 10 show the best collapse of the C(r,t) obtained by using the
conventional critical scaling (equation (5)) and assuming that the hyperscaling relation
d=2B/v+~/vand n = 2 — /v hold. From these results, the exponents z = 0.84(2)
and 3/v = 0.125(3) were obtained. The error bars were determined by considering the
values where noticeable deviations from the collapsed form were observed (not shown
here for the sake of space). These results are in excellent agreement with our previous
determinations and further support the self-consistency of the results obtained by means
of different dynamical methods.

5. Conclusions

In this paper we present and discuss the results of extensive simulations of the
nonequilibrium dynamic behaviour of the LR Ising magnet with interactions decaying
as r~(@9) in d = 1 dimension and with o = 0.75.

Power-law behaviour of the relevant observables was found at temperatures which
depend on the interaction range, for both the relaxation and the short-time regimes.
The results allow us to verify that the finite-size effect only affects the effective critical
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Figure 10. Plots of the scaled spin-spin correlation function r>**C(r,t) as a
function of the scaled variable x = r/t'/* as obtained for (a) L = 10* and
(b) L = 2 x 10*. The insets show the time evolution of C(¢,r) for the r values
indicated, after quenching randomly generated configurations to T,.. The collapses
shown in the main panels were obtained by using z = 0.84 and §/v = 0.125. The
numbers of averaged configurations (ng) are also indicated.

temperature and the time power-law range, while in contrast the critical exponents
remained unaltered within the interaction ranges of the study.

Furthermore, finite-range scaling analysis was applied in order to obtain the critical
temperature in the thermodynamic limit which yields 7 (co) = 2.669(1). It is found that
all the estimated static critical exponents (v/v, 3/v, and 1/v) are in good agreement with
RG results. Also, the dynamic exponent of the STD initial increase of the magnetization
(0) is close to the RG results. The estimations of the dynamic exponent (z) of the time
correlation length from SRD and STD measurements are in agreement, but they are
slightly different from the RG results. This difference could be due to insufficiency of the
two-loop expansion in the RG analysis, or it may be a consequence of a dependence on
the specific Monte Carlo dynamics used (Metropolis in the present paper).

Summing up, the results reported lead us to conclude that the comparison between
the two kinds of dynamic measurements, annealing and quenching, provides relevant
information on the critical behaviour of a system with long-range interactions, allowing
the evaluation of both dynamic and static critical exponents.
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