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a b s t r a c t

It is widely known that commodity markets are not totally efficient. Long-range
dependence is present, and thus the celebrated Brownian motion of prices can be
considered only as a first approximation. In this work we analyzed the predictability in
commodity markets by using a novel approach derived from Information Theory. The
complexity–entropy causality plane has been recently shown to be a useful statistical
tool to distinguish the stage of stock market development because differences between
emergent and developed stock markets can be easily discriminated and visualized with
this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso,
Complexity–entropy causality plane: a useful approach to quantify the stock market
inefficiency, Physica A 389 (2010) 1891–1901]. By estimating the permutation entropy
and permutation statistical complexity of twenty basic commodity future markets over
a period of around 20 years (1991.01.02–2009.09.01), we can define an associated ranking
of efficiency. This ranking is quantifying the presence of patterns and hidden structures
in these prime markets. Moreover, the temporal evolution of the commodities in the
complexity–entropy causality plane allows us to identify periods of time where the
underlying dynamics is more or less predictable.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the past, before the existence of money, commodities were used to buy and to trade. Nowadays, they are the primary
raw materials in all production stages and several developing countries are highly dependent on them. For example, the
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crude oil’s price has reached historical values around 140 dollars in 2008. For exporter countries this increase in price is
positive for the balance of payments; however, for other countries this fact can derive in an increasing overall inflation. It is
also worth noting that, especially in crisis periods, commodities can be seen as a measure of value. Despite these facts, these
markets have attractedmuch less attentionwithin the Econophysics community than stock and currencymarkets, and a few
previous works directly related to the commodity analysis by using physical concepts and tools can be mentioned [1–10].

Similar to stocks and currencies, commodities were initially modeled as a geometric Brownian motion. Changes of their
prices would be, therefore, random and unpredictable. However, deviations from this model have been found in many
empirical studies since the revolutionary papers of Benoit Mandelbrot on the evolution of cotton and wheat prices [11,12].
The existence of autocorrelation between distant observations breaks the market efficiency because past prices can help
to predict future prices, i.e., correlated markets allow for arbitrage opportunities. The Hurst exponent has been widely
estimated to determine whether stock prices, stock indices and currency exchange rates exhibit long-range correlations.
Without being exhaustive we can mention Refs. [13–23] related to the use of Hurst exponent to measure the strength of
long-range dependence and, consequently, to the stock market inefficiency quantification. It is also interesting to point
out that a link between the local time-dependent Hurst exponent and the appearance of crashes on the financial markets
has been shown [24,25]. Power and Turvey [6] have recently estimated this long-memory parameter in the daily volatility
of future prices for 14 agricultural and energy commodities. By using a wavelet-based analysis they have found that the
geometric Brownian motion should be rejected for all commodities in favor of long-range dependence with H > 0.5. In
addition they reject, for most commodities, the null hypothesis of a stationary Hurst exponent. However, Bassler et al. [26]
have shown that the estimation of this parameter alone cannot be used to determine either the existence of long-term
memory or the efficiency of markets, finding that Hurst exponentsH ≠ 1/2 are perfectly consistent withMarkov processes.
Therefore, it is concluded that the Hurst exponent, taken alone, may be misleading regarding long time correlations. Taking
also into account that Hurst exponent estimations are strongly affected by the presence of heavy tails [27], we conclude that
the use of this parameter to quantify the efficiency in financial time series should be considered with caution.

It is clear that commodity markets have some particular features. Most of them represent physical products needed for
some purpose that require storage and transportation. What is more important, commodities can exhibit a slower response
to change in demand because their prices depend on the supply. Matia et al. [2] have conjectured that this latter feature
is the main reason behind the broader multifractal spectrum of the price fluctuations of commodities compared to stock
markets. Commodities respond slower than stocks to demand changes, and higher-order correlations are introduced.1 In
the samework it is also shown that the Hurst exponent is not able to provide information regarding the clustering observed
in commodity returns.

To the best of our knowledge, little is known concerning the efficiency of commodity markets. In this paper we try to
fill this gap by using a novel permutation information theory approach. The complexity-entropy causality plane has been
recently shown to be a practical way to discriminate linear and nonlinear correlations present in financial time series [29].
The location in the complexity–entropy causality plane allows us to quantify the efficiency of each one of the commodity
markets under study because the presence of temporal patterns derives in deviations from the ideal position associated to
a totally random process. The null hypothesis is that commodity prices are not predictable from their past values. Large
entropy and low complexity values are associated with this hypothesis. Consequently, the distance to this random ideal
location can be used to define a ranking of efficiency. In addition, by analyzing the locations of these estimated permutation
quantifiers it is possible to extract very useful information about the underlying (stochastic or chaotic) nature of the financial
prices under analysis [30]. This is of great importance for modeling and forecasting purposes.

The remainder of the paper is organized as follows. In the following section, in order to keep our description as self-
contained as possible,wedescribe the permutation information theory quantifiers employed to analyze the commodity data.
The data sets considered are detailed in Section 3. In Section 4 we present the empirical results obtained for the different
commodity markets under consideration. Finally, we summarize the findings of this paper in Section 5.

2. Permutation information theory quantifiers

2.1. Shannon entropy and statistical complexity

Tools derived from Information Theory can be very useful for the analysis of financial data. For example, the concept of
entropy is able to capture the uncertainty and disorder of the time series regardless of the empirical probability distribution
evidenced by the data [31];moreover, it is a function ofmanymoments of the probability distribution, and thus is considered
a consistent alternative to the standard deviation for assessing stock market volatility [32]. Shannon entropy is very often
used as the first natural entropy measure. Given any arbitrary probability distribution P = {pi : i = 1, . . . ,M}, the widely
known Shannon’s logarithmic information measure, S[P] = −

∑M
i=1 pi ln pi, is related to the uncertainty associated with

the physical process described by P . If S[P] = 0 we are in position to predict with complete certainty which of the possible
outcomes iwhose probabilities are given by pi will actually take place. In this case, our knowledge of the underlying process
described by the probability distribution is maximal; on the contrary, our knowledge is minimal for a uniform distribution.

1 Supply and demand with different elasticities can be the source of these correlations [28].
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It iswidely known that an entropymeasure does not quantify the degree of structure or patterns present in a process [33].
This is why we have proposed to consider also the statistical complexity for the analysis of financial time series [29].
The statistical complexity of a system is defined as zero in the opposite extreme situations of perfect order and maximal
randomness (a periodic sequence and a fair coin toss, for example). The former situation is fully predictable and the latter
one has a very simple statistical description. At a given distance from these extremes, a wide range of possible degrees of
physical structure exists, that should be quantified by the statistical complexity measure. Lamberti et al. [34] introduced
an effective statistical complexity measure (SCM) that is able to detect essential details of the dynamics and differentiate
different degrees of periodicity and chaos. This statistical complexity measure is defined, following the intuitive notion
advanced by López-Ruiz et al. [35], through the product

CJS[P] = QJ [P, Pe] HS[P] (1)

of the normalized Shannon entropy

HS[P] = S[P]/Smax (2)

with Smax = S[Pe] = lnM , (0 ≤ HS ≤ 1) and Pe = {1/M, . . . , 1/M} the uniform distribution, and the disequilibrium
QJ defined in terms of the extensive (in the thermodynamical sense) Jensen–Shannon divergence. That is, QJ [P, Pe] =

Q0J[P, Pe] with J[P, Pe] = {S[(P + Pe)/2] − S[P]/2 − S[Pe]/2} the above-mentioned Jensen–Shannon divergence and
Q0 a normalization constant, equal to the inverse of the maximum possible value of J[P, Pe]. This value is obtained when
one of the components of P , say pm, is equal to one and the remaining pi are equal to zero. The Jensen–Shannon divergence,
that quantifies the difference between two (or more) probability distributions, is especially useful to compare the symbol
composition between different sequences [36]. We stress the fact that the above SCM is not a trivial function of the entropy
because it depends on two different probability distributions, the one associated to the system under analysis, P , and the
uniformdistribution, Pe. Furthermore, itwas shown that for a givenHS value, there exists a range of possible SCMvalues [37].
Thus, it is clear that important additional information related to the correlational structure between the components of the
system and the emergence of nontrivial collective behavior is provided by evaluating the statistical complexity [38,39]. Of
course there existmany other complexitymeasures. For a comparison among them see the paper byWackerbauer et al. [40].

2.2. Bandt and Pompe symbolization method

In order to evaluate the two above-mentioned quantifiers, HS and CJS , an associated probability distribution should be
constructed in advance. The adequate choice of the probability distribution associated to a time series is a crucial step for
obtaining a successful characterization of the system. Bandt and Pompe [41] introduced a simple and robust method to
evaluate the probability distribution taking into account the time causality of the system dynamics. They suggested that the
symbol sequence should arise naturally from the time series, without any model assumptions. Thus, they took partitions by
comparing the order of neighboring values rather than partitioning the amplitude into different levels. That is, given a time
series {xt , t = 1, . . . ,N}, an embedding dimension D > 1 (D ∈ N), and an embedding delay time τ (τ ∈ N), the ordinal
pattern of order D generated by

s →

xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs


(3)

has to be considered. To each time swe assign a D-dimensional vector that results from the evaluation of the time series at
times s− (D− 1)τ , . . . , s− τ , s. Clearly, the higher the value of D, the more information about the past is incorporated into
the ensuing vectors. By the ordinal pattern of order D related to the time swemean the permutation π = (r0, r1, . . . , rD−1)
of (0, 1, . . . ,D − 1) defined by

xs−r0τ ≥ xs−r1τ ≥ · · · ≥ xs−rD−2τ ≥ xs−rD−1τ . (4)

In this way the vector defined by Eq. (3) is converted into a unique symbol π . The procedure can be better illustrated with a
simple example; let us assume that we start with the fictional time series depicted in Fig. 1 and we set the embedding
dimension D = 4, s = 20 and the embedding delay τ = 3. In this case the state space is divided into 4! partitions
and 24 mutually exclusive permutation symbols are considered. The first 4-dimensional vector is (0.1, 0.4, 0.5, 0.35).
According to Eq. (3) this vector corresponds with (xs−3τ , xs−2τ , xs−τ , xs), and following Eq. (4) we find that xs−τ ≥ xs−2τ ≥

xs ≥ xs−3τ . Then, the ordinal pattern which allows us to fulfill Eq. (4) will be (1, 2, 0, 3). The next 4-dimensional vector
is (0.25, 0.6, 0.7, 0.2), and (1, 2, 3, 0) will be its associated permutation, and so on. For all the D! possible orderings
(permutations) πi of order D, their associated relative frequencies can be naturally computed by the number of times
this particular order sequence is found in the time series divided by the total number of sequences. Thus, an ordinal
pattern probability distribution P = {p(πi), i = 1, . . . ,D!} is obtained from the time series. It is clear that with this
ordinal time series analysis details of the original amplitude information are lost. However, a meaningful reduction of the
complex systems to their basic intrinsic structure is provided. This way of symbolizing time series, based on a comparison
of consecutive points, allows a more accurate empirical reconstruction of the underlying phase space of chaotic time series
affected by weak (observational and dynamical) noise [41]. Furthermore, ordinal pattern distribution is invariant with
respect to nonlinearmonotonous transformations. Thus, nonlinear drifts or scalings artificially introducedby ameasurement
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Fig. 1. (Color online) Procedure to identify ordinal patterns from a fictional time series. In this particular example embedding dimensionD = 4, embedding
delay τ = 3 and time s = 20 are considered.

device do not modify the quantifiers’ estimations, a property highly desired for the analysis of experimental data. These are
the main advantages with respect to more conventional methods based on range partitioning. The probability distribution
P is obtained once we fix the embedding dimension D and the embedding delay time τ . The former parameter plays an
important role for the evaluation of the appropriate probability distribution, since D determines the number of accessible
states, given by D!. Moreover, it was established that the length N of the time series must satisfy the condition N ≫ D! in
order to obtain a reliable statistics [42]. With respect to the selection of the other parameter, Bandt and Pompe specifically
considered an embedding delay τ = 1 in their cornerstone paper [41]. Nevertheless, it is clear that other values of τ could
provide additional information. It has been recently shown that this parameter is strongly related, if it is relevant, with the
intrinsic time scales of the system under analysis [43,44].

In this work we evaluate the normalized Shannon entropy, HS (Eq. (2)), and the SCM, CJS (Eq. (1)), using the permutation
probability distribution, P = {p(πi), i = 1, . . . ,D!}. Defined in this way, the former quantifier is called permutation
entropy and the latter permutation statistical complexity. These symbolic quantifiers were shown to be particularly useful
for different purposes like characterizing stochastic processes [45,46], detecting noise-induced temporal correlations in
stochastic resonance phenomena [47], measuring the stock market inefficiency [48], quantifying the randomness of chaotic
pseudo-randomnumber generators [49], and characterizing the complexity of low-frequency fluctuations in semiconductor
lasers with optical feedback [50].

2.3. Complexity–entropy causality plane

In several situations it is important to analyze the time evolution of the SCM. The second law of thermodynamics states
that the entropy of an isolated system growsmonotonically with time until it reaches its equilibrium state.2 Thus,HS can be
regarded as an arrow of time and a diagram ofCJS versusHS can be employed for that purpose. It has been successfully used
to study changes in a system dynamics originated by modifications of some characteristic parameters [34,35,51,52]. The
complexity–entropy causality plane is the plane obtained with the permutation entropy of the system in the horizontal axis
and the permutation statistical complexity in the vertical one. The term causality takes into consideration that the temporal
correlation between successive samples is included in the permutation probability distribution used to estimate both
information theory quantifiers. This representation space is particularly useful to discriminate between chaotic systems and
stochastic processes, locating them at different planar positions [30]. More importantlywithin the econophysics framework,
it has been recently shown that this statistical approach is an effective tool for distinguishing the stage of stock market
development, allowing a more refined classification of their dynamics [29]. Emergent and developed stock markets can
be discriminated with this statistical tool because it is shown that the former have lower entropy and higher complexity
values revealing the presence of significant time correlations and some degree of order. Besides, the influence of linear and
nonlinear correlations can be unveiled by employing surrogate tests (time and phase-randomized data). See Ref. [29] for
further details. We conjecture that this permutation information tool can be also useful for detecting and quantifying the
presence of correlations and hidden structures in the temporal evolution of commodity markets.

2 It should be stressed that the premise of an isolated system can hardly be accepted in the case of financial systems.



880 L. Zunino et al. / Physica A 390 (2011) 876–890

Table 1
Commodities for which we analyzed future prices.

Name Code Sector

Aluminum AL Metal
Cocoa CC Agriculture
Coffee CF Agriculture
Copper CO Metal
Corn CN Agriculture
Cotton CT Agriculture
Crude oil CR Energy
Gold GO Metal
Heating oil HO Energy
Lean hogs LH Agriculture
Live cattle LC Agriculture
Natural gas NG Energy
Nickel NI Metal
Silver SI Metal
Soyabean oil SO Agriculture
Soyabean SY Agriculture
Sugar SU Agriculture
Unleaded gas UG Energy
Wheat WH Agriculture
Zinc ZI Metal

3. Data

In this paper we have employed the commodity Dow Jones UBS subindexes (http://www.djindexes.com/commodity),
which are composed of commodities traded on US exchanges, with the exception of aluminum, nickel and zinc, which
are traded on the London Metal Exchange (LME). These are benchmark indexes, composed of future contracts on physical
commodities, which provide a good approximation for the behavior of commodity prices worldwide. We investigate 20
different commodities using a daily recorded database from January 2, 1991 to September 1, 2009. Thus, 4673 observations
for future prices denominated in US dollars were considered. Table 1 details the code and sector of commodities analyzed in
this paper. A similar database was recently used to characterize the topology and taxonomy of the commodity network [7].
In what follows we will evaluate the complexity–entropy causality plane location of these commodity futures daily prices.

Most research on financial markets focus on price returns, i.e. the forward change of the logarithm of the price at
successive times separated by a fixed time interval, because they are stationary. However, it is clear that prices and returns
contain the same information about long-range correlations [53]. In this work we have analyzed daily prices; clearly, these
time series are non-stationary. Permutation quantifiers involved in this work can be applied to processes with stationary
increments.3 Indeed, the Bandt and Pompe scheme is preferred when the observed data are not completely stationary or
when changes in time are more significant than absolute values [55]. They have been used to characterize the fractional
Brownian motion, a widely known non-stationary process—see Refs. [30,45,46,56] for further details. Moreover, we have
previously shown that in the particular case of the normalized permutation entropy and in order to discriminate time series,
better results are obtained for prices than log-returns [48].

4. Empirical results

In order to estimate the permutation entropy, HS , and permutation statistical complexity, CJS , it is necessary to fix
previously the embedding dimension D and embedding delay τ . The condition N − (D− 1)τ ≫ D!, with N the length of the
time series under analysis, should be satisfied for reliable statistics. Therefore, taking into account that N = 4673 for the
commodity time series under study in this paper, the embedding dimension should be, at most, equal to 6. In the following
sections we perform the analysis for different embedding dimensions (D = 4, 5 and 6) and for different embedding delays
(1 ≤ τ ≤ 500, τ ∈ N). Finally, in Section 4.3,we analyze how the permutation quantifiers evolvewith timeby implementing
a rolling sample approach [16,57]. For the computation of the Bandt and Pompe probability distribution we follow the very
efficient algorithm described by Keller and Sinn in Ref. [58].

4.1. Analysis for different embedding dimensions

In Fig. 2 we have plotted the location of the commodity markets in the complexity–entropy causality plane for different
embedding dimension D = 4, D = 5 and D = 6, and time delay τ = 1. Commodities are labeled by the corresponding
codes listed in Table 1. It is worth noting that the position in this representation space is not directly dependent on the

3 The distribution of ordinal patterns is time-invariant for processeswith stationary increments. Consequently, unbiased estimators of the ordinal pattern
probabilities are obtained by their corresponding relative frequencies [54].

http://www.djindexes.com/commodity
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Table 2
Ranking of efficiency for the commodity markets with different embedding dimensions and embedding delay τ = 1.

Position D = 4 D = 5 D = 6

1. Silver Silver Silver
2. Copper Cotton Cotton
3. Cotton Copper Sugar
4. Soybeans Sugar Copper
5. Cocoa Cocoa Cocoa
6. Sugar Live cattle Live cattle
7. Lean hogs Soybeans Soybeans
8. Live cattle Lean hogs Coffee
9. Coffee Coffee Lean hogs

10. Gold Gold Gold
11. Aluminum Heating oil Heating oil
12. Heating oil Unleaded gas Unleaded gas
13. Unleaded gas Aluminum Zinc
14. Zinc Zinc Nickel
15. Crude oil Crude oil Aluminum
16. Natural gas Natural gas Natural gas
17. Soybean oil Nickel Crude oil
18. Nickel Soybean oil Soybean oil
19. Wheat Wheat Wheat
20. Corn Corn Corn

commodity sector. However, we have found that energy commodities are located together in an intermediate position, with
intermediate entropy and complexity values. The Euclidean distance to the random ideal vertex, i.e. HS = 1 and CJS = 0,
quantifies the inefficiency of these markets. By inefficiency we mean that the time series are not completely random in the
Fama’s sense [59]. The goal of any market is to approach the ideal (1, 0)-point in this plane, as closely as possible, since
there randomization is optimal. Based on this fact we can define a ranking of efficiency for the commodity markets, which
are detailed in Table 2. It can be concluded that there are only small changes in the order derived for different values of D
and, afterward, our approach is practically independent of the embedding dimension. Silver and corn are, respectively, the
most and the least efficient ones, regardless the embedding dimension value. Taking into account that by increasing the em-
bedding dimension we are increasing the length and the number of symbols, it is reasonable to assume that with the largest
possible value, in our case D = 6, a better characterization can be achieved. Thus, we fix D = 6 for the next estimations.

We have also analyzed the location in the complexity–entropy causality plane for the shuffled commodity prices. In the
shuffling procedure the data are put into random order and all non-trivial temporal correlations are destroyed. As it can be
seen in Fig. 3 the estimated values of HS and CJS for the shuffled data are very close to the random ideal ones (HS ≈ 0.988
andCJS ≈ 0.029).We verify in this way that the positions obtained from original data are not obtained by chance. Moreover,
the underlying correlations are significant and play a starring role in the commodity price formation. A similar result was
found in the analysis of stock markets [29].

It is important to note that we have only considered four, five and six consecutive days to build the ordinal patterns.
However, the information related with the long-range correlations is provided by the permutation probability distribution
associated to each commodity market. Differences in the long-range correlations of time series translate to differences in
their associated probability distribution. Moreover, it was shown theoretically and through numerical simulations that HS
and CJS are able to distinguish stochastic processes with different long-range correlations, like the fractional Gaussian noise
(fGn) and fractional Brownian motion (fBm), for embedding dimensions D = 3, 4, 5 and 6 [30,45,46].

Taking into account that fBm is widely used in the Econophysics community to model the dynamics of financial systems,
we have compared the locations of numerical realizations of this stochastic process with the positions obtained for the
original commodity markets. One hundred independent numerical realizations of length N = 4673 for Hurst exponent
H ∈ {0.4, 0.45, 0.5, 0.55, 0.6} were simulated, each series starting at a different initial condition. The method of Wood
and Chan, which is both exact and fast [60], was adopted for the numerical simulations. This algorithm simulates fGn
that are cumulated to obtain fBm. From Fig. 4 it can be concluded that commodity and fBm locations are very close in
the complexity–entropy causality plane. Indeed, the commodities under analysis in this work are located in the same
position than fBm numerical simulations with the Hurst exponent in the range [0.45, 0.55]. According to these results we
can conclude that commoditymarkets and fBm share similar dynamical properties. This finding is relevant formodeling and
forecasting purposes. Moreover, comparing with Fig. 1 of Ref. [30], it is possible to affirm that the proposed deterministic
chaotic nature of commodities [61] should be rejected because chaotic systems have entropies that are seen to be in the
entropy region lying between 0.45 and 0.7, and located near the maximum CJS . These high complexity values are due to
nonlinear structures immersed in chaotic time series.

4.2. Analysis for different embedding delays

The embedding delay τ is directly related to the sampling frequency of the system under analysis [62]. By increasing
this parameter the original time series is subsampled in a very efficient way. It has been recently shown that characteristic
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Fig. 2. (Color online) Position of the commodity markets in the complexity–entropy causality plane with embedding dimensions D = 4 (upper plot),
D = 5 (central plot) and D = 6 (lower plot), and time delay τ = 1. The shape and color is based on the commodity sector: blue squares for metals, red
circles for agriculture and black diamonds for energies. The codes used in these plots are detailed in Table 1. We also display the maximum and minimum
possible values of the permutation statistical complexity (segmented curves). For further details about the range of possible SCM values see Ref. [37].

time scales present in the system dynamics are detected through the presence of clear extrema of permutation entropy and
permutation complexity when they are calculated as a function of the embedding delay [43,44]. Also periodicities present
in the system can be identified by analyzing the behavior of these quantifiers as a function of τ [63].
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Fig. 3. (Color online) Location of the shuffled commodity markets in the complexity–entropy causality plane with embedding dimension D = 6 and time
delay τ = 1. The shuffled positions are estimated averaging over ten different realizations. Themaximumandminimumpossible values of the permutation
statistical complexity are also shown (segmented curves).

Fig. 4. (Color online) Comparison of the positions of the original commodity markets (blue squares) and numerical realizations of fBm in the
complexity–entropy causality plane for embedding dimension D = 6 and time delay τ = 1. Mean and standard deviation of both permutation quantifiers
for 100 independent realizations of length N = 4673 for each value of H ∈ {0.4, 0.45, 0.5, 0.55, 0.6} were considered. The maximum possible values of
the permutation statistical complexity is also shown (segmented curves).

Fig. 5 shows the permutation quantifiers estimated from the original commodity time series for different embedding
delays. More precisely, time scales associated to the interval 1 ≤ τ ≤ 500 are considered. Although the quantifiers are only
estimated for discrete values, we use continuous lines in the plot because the visualization is improved in this way. HS is a
decreasing function of τ for all commodity markets under analysis. Thus, the randomness decreases for larger time scales.
CJS has a different behavior. This quantifier increases as a function of the embedding delay for the interval 1 ≤ τ ≤ 200. It
can be seen that for larger values of τ the permutation statistical complexity saturates for most of the commodity markets.
In some particular cases (corn, cotton, lean hogs and wheat) a pronounced maximum of CJS is found for τ ≈ 250, close to
a business year cycle. This extremum is due to the presence of patterns and hidden structures for this time scale, resulting
in the probability distribution of the ordinal patterns being different from the uniform probability distribution. It is worth
mentioning that this behavior is only observed in the permutation complexity analysis. Permutation entropy has amonotone
behavior with τ and, consequently, this measure is not able to identify this particular time scale. The presence of this peak
can be attributed to the seasonal production of these agricultural commodities. It seems to be reasonable that the harvest
annual cycles play a relevant role in the price dynamics, especially if the commodities are producedmostly in specific regions
of the world. The US is the major exporter of corn, cotton and wheat. On the other hand, agricultural commodities with a
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Fig. 5. (Color online) Permutation entropy HS and permutation statistical complexity CJS of commodity stock markets as a function of the embedding
delay τ (1 ≤ τ ≤ 500) for embedding dimension D = 6. The color is based on the commodity sector: blue for metals, red for agriculture and black for
energies.

global production should not be affected. For instance, in the case of soybean, which is mainly produced and exported by
the US, Brazil and Argentina, we do not find the signature of an annual cycle.

It is well known that fBm are self-similar processes.4 As a consequence of this property it is found that the relative
frequencies of the ordinal patterns do not depend on the value of the embedding delay [54,56]. Therefore, quantifiers
derived from the permutation probability distribution, like permutation entropy and permutation statistical complexity,
are independent of the time scale considered. From the behavior of the permutation quantifiers depicted in Fig. 5, we firstly
conclude that commodity markets are not self-similar and the fBm, widely considered to model financial time series, is not
suitable for commodity markets.

With the intention to numerically check this fact we have estimated both permutation quantifiers as a function of the
embedding delay for numerical simulations of geometric Brownian motions (gBm), i.e. fBm with H = 0.5. For simulating
these time series we have summed up the Gaussian white noise generated by using the function randn of Matlab. One
hundred independent numerical realizations of length N = 4673 were considered in order to take into account the
finite-size effect present in commodity time series and embedding dimension D = 6 was chosen for the evaluation of
the corresponding associated permutation probability distribution. The concomitant mean values plus the corresponding
standard deviations of both quantifiers, HS and CJS , are plotted in Fig. 6 (upper plot) as functions of the embedding delay τ .
Contrary to what was expected, permutation quantifiers are not constant functions of τ . We conjecture that this numerical

4 Self-similar stochastic processes are invariant in distribution under suitable scaling of time and space. Formally, a (stochastic) processX(t) is self-similar
with index H (also named the Hurst exponent) if, for any positive stretching factor c , X(t) d

= cH X(c−1t), where d
= means equality in distribution [64].

These processes are of considerable importance because they appear in a natural way from limit theorems for sums of random variables [65].
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Fig. 6. (Color online) Permutation entropy HS and permutation statistical complexity CJS of gBm simulations as a function of the embedding delay τ

(1 ≤ τ ≤ 500) for embedding dimension D = 6. Top: Mean and standard deviation of both permutation quantifiers for 100 independent realizations of
length N = 4673. Bottom: Estimated quantifiers for simulations with N = 5000, 50 000 and 500000 data points.

behavior is due to the finite-size of the realizations. By increasing the length of Bm simulations the theoretical finding
is verified as it can be concluded from the lower plot in Fig. 6. Consequently, self-similarity cannot be discarded in the
commodity time series because very long traces are necessary to verify the theoretical expected behavior.

We have estimated the Hurst exponent associated to the commodity prices in order to compare it with the results
obtained by employing our permutation information theory approach. Three well known and widely used techniques were
implemented in R [66,67] to estimate the Hurst exponent: the Higuchi method, the detrended fluctuation analysis (DFA)
and the detrended moving average (DMA) analysis. It has been recently shown that these methods are reliable for high
non-stationary time series [53,65]. Since a description of these graphical estimators is beyond the scope of the present
work, the reader is referred to Refs. [57,68–70] for a more comprehensive survey. The results obtained for the 20 different
commodity daily prices are summarized in Table 3. All methods were applied between 10 and 300 time step windows, in
order to have a sufficient number of points in small windows and an appropriate number of windows for large scales. Hurst
exponent estimations are performed on the range of scales where the log–log plots are approximately linear. As the three
methods are applied to the same range of scales, they are eventually affected by the same problem. It is worth mentioning
that according to these Hurst exponent estimations only cocoa, copper, crude oil, gold, heating oil, nickel, silver and zinc
can be considered outside the confidence intervals (0.45, 0.55) usually associated to a geometric Brownian motion [3]. The
rest of commodities appear to be strongly or marginally consistent with this totally random stochastic process. In Fig. 7 we
plot the Pearson’s correlation coefficient ρ between the Hurst exponent and our inefficiency measure, i.e. the distance to
the random ideal vertex in the complexity–entropy causality plane, as a function of the embedding delay τ .5 The correlation

5 Similar results are obtained for the Kendall and Spearman rank correlation coefficients.
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Table 3
Hurst exponents estimated for the commodity daily prices.

Commodity Higuchi DFA DMA

Aluminum 0.545 0.503 0.576
Cocoa 0.412 0.458 0.457
Coffee 0.476 0.455 0.494
Copper 0.576 0.570 0.608
Corn 0.541 0.517 0.576
Cotton 0.525 0.474 0.562
Crude oil 0.574 0.549 0.655
Gold 0.443 0.443 0.442
Heating oil 0.572 0.536 0.631
Lean hogs 0.507 0.483 0.544
Live cattle 0.491 0.487 0.518
Natural gas 0.551 0.538 0.534
Nickel 0.580 0.547 0.623
Silver 0.423 0.461 0.448
Soyabean oil 0.503 0.489 0.549
Soyabean 0.488 0.501 0.525
Sugar 0.490 0.494 0.548
Unleaded gas 0.523 0.545 0.567
Wheat 0.509 0.512 0.524
Zinc 0.544 0.469 0.578

Fig. 7. (Color online) Pearson’s correlation coefficient ρ between the Hurst exponent estimations and the distance to the random ideal location in the
complexity–entropy causality plane as a function of the embedding delay τ . Embedding dimensionD = 6was used to estimate the permutation quantifiers.
Three different graphical estimators were considered for the Hurst exponent estimation: the Higuchi method, DFA and DMA analysis. Inset: Enlargement
of the correlation coefficient in the interval 1 ≤ τ ≤ 30.

coefficients for the original time series, i.e. with τ = 1, are equal to 0.4673, 0.3503 and 0.3848 for the Higuchi, DFA and DMA
methodologies, respectively. Then, these positive correlations decrease for the three estimators, reaching a minimum value
for τ = 2 in the case of DMA and for τ = 3 in the Higuchi and DFA cases (see the inset in Fig. 7). An absolute maximum of
the correlation is found for an embedding delay τ ≈ 25 in the case of the Higuchi and DMA methods, and around τ ≈ 15
for DFA. After that the correlations decrease. These high correlations found between the Hurst exponent estimations and
our approach are particularly curious and their reasons will be the scope of a future study.

4.3. Time evolution of the quantifiers

We have analyzed the time evolution of the quantifiers in order to see how the inefficiency of commodities is changing
in time. Both permutation quantifiers are estimated on the ensemble of points obtained from the intersection of the time
series and a sliding window of size Ns = 1000 (around four business years). Then, the time window is rolled δs = 20 points
forward (close to a business month) eliminating the first δs observations and including the next ones, and the quantifiers
are re-estimated. This procedure is repeated until the end of the time series. Fig. 8 depicts the evolution of the locations
of silver and corn in the complexity–entropy causality plane with D = 5 and τ = 1. We can observe that the position
of these commodities is changing with time. In particular, silver is moving to lower entropy values and higher complexity
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Fig. 8. (Color online) Time evolution of positions of silver (blue squares curve) and corn (red circles curve) in the complexity–entropy causality plane by
employing a rolling sample approach with a sliding window of size Ns = 1000, step δs = 20, embedding dimension D = 5 and embedding delay τ = 1.
The maximum and minimum possible values of the permutation statistical complexity are also shown (segmented curves).

Fig. 9. (Color online) Inefficiency measure for the commodity daily prices as a function of time. A rolling sample approach with a sliding window of size
Ns = 1000, step δs = 20, embedding dimension D = 5 and embedding delay τ = 1 was implemented. The codes used in these plots are detailed in Table 1
and the color is based on commodity sector: blue for metals, red for agriculture and black for energies. The continuous gray line corresponds to the global
inefficiency measure considering the time series as a whole.

ones. Consequently, it is more inefficient with time. In Fig. 9 we have plotted the inefficiency measure, i.e. the Euclidean
distance to the random ideal point (1, 0) of the representation space, for the twenty commodities as a function of time.
This number is an indicator of the predictability degree of the system. When this number decreases the evolution of the
time series is more random and less predictable. Contrarily, when this number increases, randomness is decreasing and the
underlying dynamics would be more predictable. We observe that the inefficiency of commodity markets is changing in
time with periods of increasing and decreasing randomness.
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5. Conclusions

The study of commodity predictability is of great importance and interest. In this paper we address this relevant issue
by using the complexity–entropy causality plane. This diagnostic tool measures the presence of patterns, and consequently
the long-range dependence of a temporal trace, in a parameter-free way by combining the information provided by two
complementary quantifiers: permutation entropy and permutation statistical complexity. Linear and nonlinear correlations
are considered by applying this novel approach. Moreover, the difference-based symbolization methodology implemented
increases the efficiency of unveiling hidden structures in financial time series and reduces notably the sensitivity to noise.
Consequently, our approach can be considered of more general applicability than other widely used alternatives like the
Hurst exponent. In fact, a multifractal behavior was found for commodities in Ref. [2]. Different moments of the variable’s
distribution are associatedwith different scaling laws, and the 2-point correlations is not sufficient to uncover the clustering
observed in commodity returns. Furthermore, a time-varying Hurst coefficient has been recently accounted for 9 of 14
commodities in Ref. [6].

The complexity–entropy causality plane location allows us to derive an associated ranking of efficiency. The presence
of patterns in the temporal evolution translates into deviations from the ideal position associated with a totally random
process. Thus, the distance to this random ideal location (HS = 1 and CJS = 0) is a way to quantify the inefficiency of the
market under analysis. It is worth mentioning that only small changes are observed in the commodity rankings obtained
with different embedding dimensions. According to the empirical results obtained in this work the efficiency is not related
to the commodity sector. We have found that highly demanded commodities (corn, crude oil, natural gas and wheat) are
less efficient. Thus, we conjecture that significant correlations introduced by the increasing demand can be the main source
of this inefficiency.

We have also studied the temporal evolution of commodity prices in the complexity–entropy causality plane. This
analysis allowsus to identify periods of increasing anddecreasing randomness (lower andhigher predictability, respectively)
in the commodity dynamics. The information extracted can be very valuable for policy makers and regulatory authorities
for investigating market bubbles or manipulation.

Matia et al. [1] have shown that commodity spot and future prices have different scaling behaviors. More specifically,
power-law probability distributions with larger exponent values are found for commodity future prices, indicating the
presence of smaller fluctuations. Taking into account this relevant difference, it will be interesting to compare the
complexity–entropy causality plane locations of commodity spot and future prices in a further research. More recently,
Romero et al. [5] have provided empirical evidence of very different temporal organization of ancient Babylon andmedieval
English commodity prices compared to commodities traded on contemporary markets. Strong persistent correlations are
found in both Babylon and England commodity prices. Our approach can be useful to follow the evolution of commodity
dynamics in different historical periods.

It is clear that the Bandt and Pompe symbolization methodology plays a key role in our approach. In order to better
understand how relevant it is, a comparison with the complexity–entropy plane locations obtained by using other ways
to estimate the probability distribution associated to financial time series will be considered in the future. We conjecture
that the probability density functions related to the length, duration and area of the clusters delimited by two consecutive
intersections between the time series xt and the average of the signal over a number of points [71,72], could be particularly
helpful for distinguishing long-range correlated time series.

Finally, it should be remarked that the results obtained in this work confirm the usefulness of our permutation
information theory approach for detecting and quantifying the presence of correlations and hidden structures, highlighting
its relevance and encouraging its application to real time series of other scientific fields.
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