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Abstract— We analyze the intrinsic time scales of the chaotic
dynamics of a semiconductor laser subject to optical feedback by
estimating quantifiers derived from a permutation information
approach. Based on numerically and experimentally obtained
times series, we find that permutation entropy and permutation
statistical complexity allow the extraction of important character-
istics of the dynamics of the system. We provide evidence that per-
mutation statistical complexity is complementary to permutation
entropy, giving valuable insights into the role of the different time
scales involved in the chaotic regime of the semiconductor laser
dynamics subject to delay optical feedback. The results obtained
confirm that this novel approach is a conceptually simple and
computationally efficient method to identify the characteristic
time scales of this relevant physical system.

Index Terms— Chaos, optical feedback, permutation entropy,
permutation statistical complexity, semiconductor lasers, time
scale identification.

I. INTRODUCTION

THE identification of essential physical time scales from
complex laser dynamics is a nontrivial task, which is

however important for their general characterization and ap-
plication. In particular, systems with time delays can generate
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chaotic dynamics with high complexity, i.e., they possess a
large number of dynamical degrees of freedom [1]. This is
one of the properties that makes delay systems very attractive
for applications. Particularly, optical chaos encryption is based
on the unpredictability of the chaotic carrier [2] besides its
synchronizability [3]. Chaotic radar [4] and lidar [5], rain-
bow refractometry [6], and ultrahigh-speed physical random
number generation [7], [8] are other relevant applications
of optical chaos based on delay phenomena. Semiconductor
lasers with optical feedback have been shown to be particularly
suitable for these applications due to their large dynamic band-
width [9]–[13]. This bandwidth amounts to typically several
gigahertz (GHz), related to the relaxation oscillation period of
the semiconductor laser, but possibly also faster time scales,
as we will discuss in this paper. The resolution of chaotic lidar
and the transmission rates of chaos communications are lim-
ited by this characteristic fast time scale of the semiconductor
laser [14]. The feedback time delay is another intrinsic time
scale determining the dynamics of semiconductor lasers with
feedback. The time delay is important to generate suitable car-
riers for chaos communication, but also, because the dynamics
of certain chaotic delayed systems can be identified and mod-
eled once their time delay is known [15]–[17]. Consequently,
the identification of the time delay could compromise the
security and confidentiality of chaotic communication systems
[18]–[20]. Rontani et al. [21], [22] have recently shown that
difficult time delay identification scenarios strongly depend on
the time scales of the system, i.e., the separation between the
relaxation oscillation period and feedback time delay plays a
crucial role in the retrieval of the time delay.

For all these aspects, a detailed study of the time scales
present in the chaotic dynamic of a semiconductor laser subject
to optical feedback is very important. This critical issue is
addressed in this paper by estimating permutation entropy HS
and permutation statistical complexity CJ S of both numerical
and experimental time series of the laser output power as
functions of the embedding delay τ of a particular symbolic
reconstruction. It is worth mentioning that this novel approach,
derived from information theory, provides useful evidence
about time delay phenomena present in noisy time series [23].
More specifically, in [23] it is shown that both quantifiers, i.e.,
HS and CJ S, develop clear extrema when the embedding delay
τ matches the characteristic time delay τS of the system. In the
present paper, we verify from numerical and experimental time
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series that these quantifiers are able to identify the feedback
time delay and relaxation oscillation period in the dynamics of
the semiconductor laser subject to optical feedback operating
in a chaotic regime. Additionally, the approach detects an even
faster time scale, which we relate to fast chaotic dynamical
processes. Several implications, in particular temporal detec-
tion requirements, are being discussed. We note that, to our
knowledge, this is the first application of this methodology to
experimental time series.

This paper is organized as follows. In Section II, we
describe the two information theory quantifiers estimated in
our analysis, permutation entropy HS and permutation statis-
tical complexity CJ S. In Sections III and IV, numerical and
experimental results, respectively, are presented and discussed.
Finally, some concluding remarks are given in Section V.

II. INFORMATION THEORY QUANTIFIERS

Deterministic chaotic time series produced by nonlinear
time delay systems share several properties with those gener-
ated by stochastic processes, e.g., a wide-band power spectrum
and a long-term unpredictable behavior. They can be hard
to distinguish in practical situations and several works have
aimed at elucidating the deterministic or random nature of a
time series [24], [25]. This similarity justifies the use of stan-
dard statistical operators to study the properties of chaotic time
series. Autocorrelation function (ACF) and delayed mutual
information (DMI) are conventional techniques widely used
to identify time delays [18], [20]–[22], [26], [27]. However,
new alternatives have been introduced in recent years in
order to perform this task [28]–[35]. We are particularly
interested in the application of a permutation information
theory methodology to unveil delay phenomena from time
series introduced recently [23]. In this approach, quantifiers
derived from information theory, more precisely Shannon
entropy and statistical complexity, are estimated by using
an efficient symbolic technique, i.e., the Bandt and Pompe
permutation method [36], to determine the probability distrib-
ution associated with the time series under study. This way of
symbolizing time series, based on a comparison of consecutive
points, allows a more accurate empirical reconstruction of the
underlying phase space of chaotic time series affected by weak
(observational and dynamical) noise [36]. This is the main
advantage with respect to standard methods such as ACF and
DMI, which take the exact metric into account. Moreover,
the ordinal pattern distribution is invariant with respect to
nonlinear monotonous transformations. Thus, nonlinear drifts
or scalings artificially introduced by a measurement device
do not modify the quantifier estimations. This property is
highly desired for the analysis of experimental data. The basic
intrinsic structure of complex systems is obtained in a very
fast and flexible way. Characteristic time scales present in
the system dynamics are detected through the presence of
clear extrema of the quantifiers when they are calculated as a
function of the embedding delay.

A. Shannon Entropy and Statistical Complexity

Shannon entropy is widely used as a first natural approach
to quantify the information content of a system. Given any

arbitrary probability distribution P = {pi : i = 1, . . . , M},
the widely known Shannon’s logarithmic information measure
defined by S[P] = − ∑M

i=1 pi ln pi is regarded as the
measure of the uncertainty associated to the physical process
described by P . If S[P] = 0, our knowledge of the underlying
process described by the probability distribution is maximal. In
contrast, our knowledge is minimal for a uniform distribution.

However, entropy measures do not quantify the degree of
structure or patterns present in a process, and measures of
statistical or structural complexity are necessary to capture
properties related to organization [37]. The opposite extremes
of perfect order and maximal randomness (a periodic sequence
and a fair coin toss, for example) possess no complex structure.
These systems are defined to have zero statistical complexity.
At a given distance from these extremes, a wide range of
possible degrees of physical structure exists, which should
be quantified by the statistical complexity measure (SCM).
Lamberti et al. [38] introduced an effective SCM that is able
to detect essential details of the dynamics and differentiate
different degrees of periodicity and chaos. This SCM is de-
fined, following the intuitive notion advanced by López-Ruiz
et al. [39], through the product

CJ S[P] = QJ [P, Pe] HS[P] (1)

of the normalized Shannon entropy

HS [P] = S[P]/Smax (2)

with Smax = S[Pe] = ln M , (0 ≤ HS ≤ 1) and Pe =
{1/M, . . . , 1/M} the uniform distribution, and the disequilib-
rium QJ defined as QJ [P, Pe] = Q0J [P, Pe]. J [P, Pe] =
{S[(P + Pe)/2] − S[P]/2 − S[Pe]/2} is the Jensen-Shannon
divergence and Q0 a normalization constant, which is equal to
the inverse of the maximum possible value of J [P, Pe]. This
maximum value is obtained when one of the components of P ,
say pm , is equal to 1 and the remaining components are equal
to zero. The Jensen-Shannon divergence, which quantifies the
difference between two (or more) probability distributions, is
especially useful to compare the symbol composition between
different sequences [40]. We stress the fact that the above
SCM is not a trivial function of the entropy because it depends
on two different probabilities distributions, the one associated
with the system under analysis P and the uniform distribution
Pe. Furthermore, it has been shown that, for a given HS
value, there exists a range of possible SCM values [41].
Thus, it is clear that important additional information related
to the correlational structure between the components of
the physical system is provided by evaluating the statistical
complexity [42], [43].

B. Bandt and Pompe Symbolization Method

In order to evaluate the two above-mentioned quantifiers
HS and CJ S, an associated probability distribution should be
constructed beforehand. The adequate way of choosing the
probability distribution associated to a time series is an open
problem. Rarely, a univocal procedure imposes itself. Bandt
and Pompe [36] introduced a successful method to evaluate the
probability distribution taking into account the time causality
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of the system dynamics. They took partitions by comparing
the order of neighboring values rather than partitioning the
amplitude into different levels. That is, given a time series
{xt , t = 1, . . . , N}, an embedding dimension D > 1, and
an embedding delay time τ , the ordinal pattern of order D
generated by

s �→ (
xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)
(3)

has to be considered. To each time s we assign a
D-dimensional vector that results from the evaluation of the
time series at times s − (D − 1)τ, . . . , s − τ, s. Clearly, the
higher the value of D, the more the information about the
past that is incorporated into the ensuing vectors. By the
ordinal pattern of order D related to the time s we mean
the permutation π = (r0, r1, . . . , rD−1) of (0, 1, . . . , D − 1)
defined by

xs−r0τ ≥ xs−r1τ ≥ · · · ≥ xs−rD−2τ ≥ xs−rD−1τ . (4)

In this way, the vector defined by (3) is converted into
a unique symbol π . The procedure can be better illustrated
by a simple example, let us assume that we start with the
time series {3, 2, 5, 1, 4, 6, . . . }, and we choose the embedding
dimension as D = 4 and the embedding delay as τ = 1. In
this case, the state space is divided into 4! partitions, and 24
mutually exclusive permutation symbols are considered. The
first 4-dimensional vector is (3, 2, 5, 1). According to (3), this
vector corresponds to (xs−3, xs−2, xs−1, xs). Following (4),
we find that xs−1 ≥ xs−3 ≥ xs−2 ≥ xs . Then, the ordinal
pattern allowing us to fulfill (4) will be (1, 3, 2, 0). The second
4-dimensional vector is (2, 5, 1, 4), and (2, 0, 3, 1) will be
its associated permutation, and so on. For all the D! pos-
sible permutations πi of order D, their associated relative
frequencies can be naturally computed by the number of times
this particular order sequence is found in the time series
divided by the total number of sequences. Thus, an ordinal
pattern probability distribution P = {p(πi), i = 1, . . . , D!}
is obtained from the time series. This probability distribution
is derived once we fix the embedding dimension D and the
embedding delay time τ . The former parameter plays an
important role for the evaluation of the appropriate probability
distribution, since D determines the number of accessible
states, given by D!. Moreover, it was established that the
length N of the time series must satisfy the condition N � D!
in order to obtain a reliable statistics [44]. With respect to the
selection of the other parameter, Bandt and Pompe specifically
considered an embedding delay τ = 1 in their cornerstone
paper [36]. Nevertheless, it is clear that other values of τ could
provide additional information. It has been recently shown that
the embedding delay τ is strongly related, if it is relevant, with
the intrinsic time delay of the system under analysis [23].

In this paper, the normalized Shannon entropy HS , i.e., (2),
and the SCM CJ S, i.e., (1), are evaluated using the permu-
tation probability distribution P = {p(πi), i = 1, . . . , D!}.
Defined in this way, these quantifiers are usually known as
permutation entropy and permutation statistical complexity,
respectively [45], [46]. These symbolic quantifiers were shown
to be particularly useful for different purposes, such as dis-
tinguishing chaotic systems from stochastic processes [24],

TABLE I

PARAMETER SET IN THE NUMERICAL SIMULATION

Parameter Description Value
α Line width enhancement factor 5
τp Photon lifetime 2 ps
τN Carrier lifetime 2 ns
g Differential gain coefficient 1.5 × 10−8 ps−1

No Carrier number at transparency 1.5 × 108

s Gain compression coefficient 5 × 10−7

τS Feedback time delay 1 ns
γ Feedback strength 20 ns−1

� Optical feedback phase 0
Ith Threshold current 14.7 mA
I Bias current 1.5Ith

detecting noise-induced temporal correlations in stochastic
resonance phenomena [47], quantifying the randomness of
chaotic pseudo-random number generators [48], discriminat-
ing market dynamics [49], and characterizing the complexity
of low-frequency fluctuations in semiconductor lasers with
optical feedback [50]. In addition, a very related approach,
based on computing the number of forbidden patterns present
in the time series, has been recently used to find evidence
of deterministic behavior in financial time series [51] and
to characterize numerically and experimentally the level of
stochasticity in the leader–laggard dynamical regime of two
mutually coupled semiconductor lasers [52].

III. NUMERICAL RESULTS

In this paper, we focus on the chaotic dynamics of a
semiconductor laser. In particular, we consider a single-mode
laser with moderate delayed feedback, operating in the coher-
ence collapse regime. The data used in our analysis originate
from the numerical integration of the widely used Lang–
Kobayashi rate equations [53]. These equations have been
shown to be successful in modeling the dynamic behaviors
of semiconductor lasers subject to weak to moderate coherent
optical feedback, taking into account a single reflection in the
external cavity. The equations for the complex slowly varying
amplitude of the electric field E(t) and the carrier number
inside the cavity N(t) are

Ė(t) = 1 + iα

2

[

G(t) − 1

τp

]

E(t) + γ E(t − τS)e
−i� (5)

Ṅ (t) = I

e
− N(t)

τN
− G(t)|E(t)|2 (6)

where G(t) = g(N(t)− N0)/(1+s|E(t)|2) is the optical gain.
Table I details the different parameters as well as their values
used in the simulation. The relaxation oscillation frequency of
the solitary laser is fRO = 4.2 GHz at this pumping condition.

The intensity dynamics of the laser was obtained by numeri-
cally integrating (7) and (8) using a second-order Runge–Kutta
method with a time step of �t = 0.1 ps. We analyzed time
series of N = 2 · 106 data points with a sampling period of
�s = 1 ps. Fig. 1 shows a typical temporal trace.

In Fig. 2, we plot the normalized permutation entropy HS
and the permutation statistical complexity CJ S associated with
the laser intensity time series as a function of the embedding
delay τ for different embedding dimensions (4 ≤ D ≤ 8).
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Fig. 1. Numerical chaotic time trace simulated by using the Lang–Kobayashi
model at the coherence collapse regime (I = 1.5Ith , γ = 20 ns−1, τS = 1 ns,
and �s = 1 ps).

Independent of the embedding dimension, the permutation en-
tropy is minimized and the permutation statistical complexity
is maximized when the embedding delay τ of the symbolic
reconstruction is similar to τS , i.e., for τ ≈ τs/�s = 1000.
This particular value, denoted as τ ∗

S hereafter, is slightly larger
than τs due to the inertia of the laser system. The inertia
or internal response time is an inherent property difficult to
determine precisely and affects most of the methods proposed
to identify time delay from the time series [20]. In particular,
we have obtained the same time delay estimation by using
the ACF and the DMI since the inertia also affects these
conventional techniques [21], [22], [31].

It is worth noting that the time delay of the system can be
identified from the analysis of only one of the two quantifiers.
Both of them have local extrema around the time delay,
providing approximately the same information. However, it
should be noted that the permutation statistical complexity
is better in identifying the time delay because of the higher
contrast with the base line. Other minima and maxima for
HS and CJ S, respectively, are obtained when the embedding
delay matches harmonics and subharmonics of τ ∗

S . However,
they are less pronounced as it can be concluded from Fig. 2.
The number of the peaks associated with subharmonics of
τ ∗

S increases with the embedding dimension. More precisely,
there are D − 2 subharmonic peaks for embedding dimension
D, located at τ ∗

S /2, τ ∗
S /3, . . . , τ ∗

S /(D − 1). In the insets of
Fig. 2, we have detailed the locations of the different peaks
for the particular case of embedding dimension D = 8. It is
reasonable to assume that, with the largest possible embedding
dimension we have considered, i.e., with D = 8, more
information is being included when estimating the quantifiers,
because in this case we are maximizing the length and number
of symbols. We just have to take into account that longer time
series are necessary in this case (N � D!).

From Fig. 2, we can identify other significant extrema of
the quantifiers for an embedding delay τ slightly larger than
τ ∗

S (indicated by the black arrow). The presence of this peak
can be attributed to the relaxation oscillation period τRO ,
because its time location (τ = 1155) is approximately equal
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Fig. 2. Permutation entropy HS (top) and permutation statistical complexity
CJ S (bottom) as a function of the embedding delay τ with embedding
dimensions 4 ≤ D ≤ 8 for the numerical intensity time series. Black and gray
arrows indicate the peaks associated with the relaxation oscillation period.
Locations of the local extrema associated with the feedback time delay τ∗

S
and its subharmonics for D = 8 are detailed in the insets. It is worth noting
that the local extrema related to subharmonics decrease in amplitude.

to τ ∗
S + τRO/2 independent of the embedding dimension.

Also, for small embedding delays we find the signature of
the relaxation oscillation period. The gray arrow indicates the
location of a broader peak. Its position is around τRO/2. We
have confirmed that, in the case of periodic functions, certain
ordinal patterns do not appear, or have very small probabilities,
for embedding delay at half the period. Consequently, HS
has a minimum and CJ S has a maximum for this particular
embedding delay value. As can be seen from Fig. 2, the
location of the latter peak shifts to the left with the embedding
dimension and better identification is curiously obtained for
smaller embedding dimension values (D = 4, 5, and 6). We
have checked that extrema at similar locations, namely τRO/2
and τ ∗

S + τRO/2, are obtained for the ACF and the DMI.

In addition, we find a third relevant time scale for an even
smaller embedding delay value. The permutation complexity
indicator has a pronounced change for well-defined small em-
bedding delays. Fig. 3 displays the behavior of both quantifiers
for embedding dimensions 4 ≤ D ≤ 8 and 1 ≤ τ ≤ 50.
CJ S is maximized for an intermediate value of τ , while HS
monotonically increases with τ in this domain, highlighting an
important difference between both quantifiers. This particular
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Fig. 3. Permutation entropy HS and permutation statistical complexity CJ S
as a function of the embedding delay τ with embedding dimensions 4 ≤
D ≤ 8 for the numerical intensity time series. Small embedding time delays
are considered (1 ≤ τ ≤ 50). D increases from top to bottom for HS and
from bottom to top for CJ S .

embedding delay value τM , at which the permutation statistical
complexity reaches a local maximum, represents the minimally
required sampling rate to capture all the information related
to the nonlinear correlations of the fast chaotic dynamics.
We note that this time scale is faster than the relaxation
oscillation time scale. It is, therefore, not sufficient to record
with the bandwidth of the relaxation oscillations in order to
acquire the full complexity of the dynamics. The origin of
this faster time scale can be associated with the picosecond
pulsing due to partial mode locking of the external cavity
modes in the delayed feedback system, as has been found
in [54]. In order to justify that this time scale is related to the
fast chaotic dynamics, we have analyzed the evolution of the
quantifiers for small embedding delays (1 ≤ τ ≤ 50) in the
complexity–entropy causality plane, i.e., the plane obtained
with the permutation entropy of the system in the horizontal
axis and the permutation statistical complexity in the vertical
one. The term causality takes into consideration that the
temporal correlation between successive samples is taken into
account by using the permutation probability distribution to
estimate both information theory quantifiers. This representa-
tion space was shown to be useful to discriminate between
chaotic systems and stochastic processes, locating them at
different planar positions [24]. It is clear that the embedding
delay is directly related to the sampling frequency, i.e., low
embedding delay values require high sampling frequencies.
For embedding delays smaller than τM , τ < τM (sampling
frequencies larger than the optimum value), we oversample
the dynamics. Thus, spurious and superfluous correlations are
introduced, causing low permutation entropy and statistical
complexity values typically associated with a regular process
(see Fig. 4). On the other hand, for embedding delays larger
than τM , τ > τM (sampling frequencies smaller than the
optimum value), the intrinsic nonlinear correlations present in
the chaotic system are progressively lost as a result of under-
sampling. The resulting sampled system resembles a random
process with high permutation entropy and low permutation
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Fig. 4. Evolution of the quantifiers on the complexity–entropy causality plane
for the numerical intensity time series as a function of the embedding delay
parameter τ (1 ≤ τ ≤ 50, increasing from left to right). Different embedding
dimensions 4 ≤ D ≤ 8 are considered. A well-defined maximum of CJ S is
obtained for an intermediate τ value.

statistical complexity values (see Fig. 4). The curve described
by the permutation quantifiers as a function of the embedding
delay allows us to estimate the amount of information redun-
dancy, determinism, and stochasticity present in the underlying
chaotic nature of the laser system. We have checked that the
minimally required sampling rate is related to the sampling
rate at which other nonlinear time series analysis measures,
such as correlation dimension, provide meaningful results.

It is worth mentioning that De Micco et al. [43] have
recently shown that the permutation statistical complexity can
be used to determine the best sampling time of chaotic systems
by analyzing the behavior of this quantifier as a function of
the sampling frequency. They illustrated the results for the
case of two paradigmatic examples, the Rössler and Lorenz
chaotic attractors. Our approach is slightly different. The
original time series of the delayed feedback laser is efficiently
subsampled by changing the embedding delay of the symbolic
reconstruction, which appears to be a more adequate approach.
From Figs. 3 and 4, it can be concluded that τM increases with
D. In Fig. 5, the minimal required sampling time τM is plotted
as a function of the embedding dimension D for the numerical
data. According to this plot, by increasing the embedding di-
mension D the minimal required sampling time also increases.
Therefore, higher values of D allow the use of larger minimal
required sampling times, retaining all the information about the
chaotic dynamics of the system under analysis. It is necessary
to consider that an appropriate statistical analysis can be done
only if the number of points of the time series satisfies N �
D!. We have found that the values estimated for τM are close to
the optimal sampling time predicted by the Nyquist–Shannon
sampling theorem, even though the chaotic system under study
is not a bandwidth-limited signal. As it is depicted in Fig. 6,
where the power spectrum of the numerical realization of the
dynamical system is plotted, the Nyquist–Shannon theorem
predicts that the time continuous function is approximately
determined and reconstructed with an infinite sequence sam-
pled at τN S = 1/(2 fmax) ≈ 14 ps, with fmax = 36 GHz.
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This frequency roughly corresponds to the highest significant
frequency in the power spectrum, i.e., 99% of the full spectrum
is taken into account. For smaller cut-off frequencies, the
estimated values for the optimal sampling time increase. They
are around 21 and 28 ps when 95% and 90% of the full power
spectrum, respectively, are considered (see Figs. 5 and 6).

IV. EXPERIMENTAL RESULTS

Experiments on the delayed feedback dynamics of a
semiconductor laser were performed using a fiber pigtailed
semiconductor laser lasing at 1542 nm, fabricated by Eblana
Photonics. The threshold current of the solitary laser is Ith =
11.7 mA at 20 °C. The laser exhibits single-mode emission
above the lasing threshold. The side-mode suppression ratio
of this device is over 40 dB when the laser is biased at
I = 18 mA. The temperature is stabilized up to ±0.01 K.
This device has been packaged without an optical isolator so
that optical feedback studies can be performed.

The external optical feedback has been introduced using
a fiber loop, such that the laser operates in the long cavity
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Fig. 7. Experimental chaotic time trace recorded by using a 16-GHz-
bandwidth digital scope with a sampling rate of 40 Gsamples/s (δs = 25 ps).

regime [55]. This regime is defined by the time delays of
the feedback loop being much longer than the relaxation
oscillation period. In our experiment, the length of the external
fiber cavity is about Lext = 3.5 m, i.e., the round trip time
delay is estimated to be around τext = 2nLext/c = 38.5 ns,
where n is the refractive index in the optical fiber and c is the
speed of light. When the laser is biased at I = 18 mA, the
relaxation oscillation period is TRO = 0.24 ns, which is much
shorter than the time delay. The threshold current of the laser
is reduced to 10.33 mA (12% threshold reduction) when the
feedback fiber loop is optimized.

The intensity dynamics are detected via an ac-coupled
13-GHz-bandwidth photodiode (Miteq DR-125G-A). The con-
verted electrical signal is then analyzed using a 16-GHz-
bandwidth digital scope with a sampling rate of 40 Gsamples/s
(LeCroy WaveMaster 816Zi) and by a spectrum analyzer with
a 9 kHz to 30 GHz bandwidth (Anritsu MS2667C). This is
close to the current technology limit for temporal detection
of long time series, with a sampling time of δs = 25 ps.
Time series with N = 2 · 106 data points were recorded.
Note that different sampling rates are selected in the numerical
and experimental analysis. This is because the small sampling
period we have chosen in the numerical study cannot be
experimentally attained.

The detected time trace of the intensity dynamics for a bias
current of I = 18 mA is shown in Fig. 7. The dynamic time
scales of the laser in the coherence collapse regime [56] are
associated with the relaxation oscillation frequency of several
GHz. Therefore, we can sufficiently resolve the temporal
dynamics of the laser output with the sampling time and fre-
quency resolution of our detection scheme. The fast intensity
dynamics of the laser displays irregular oscillations [54], as
can be seen in the inset of Fig. 7. The temporal separation
among individual pulses is in a range of 200 to 400 ps.

In Fig. 8, we plot the normalized permutation entropy
and the permutation statistical complexity obtained from the
experimental time series as a function of the embedding
delay τ for an embedding dimension D = 8. We verify
experimentally that the permutation entropy is minimized
and the permutation statistical complexity maximized when
the embedding delay τ of the symbolic reconstruction takes
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values near τext , i.e., for τ close to 1540 (τext/δs = 1540).
We have also found the other extrema when the embedding
delay matches harmonics and subharmonics of τext . In
analogy with the numerical case, they are less noticeable. The
differences in peak resolution found when comparing Figs. 2
and 8 are due to the different sampling periods. We consider
that these experimental results confirm the reliability and
robustness of our permutation information theory approach
to identify the feedback time delay in a real situation.

We have also analyzed the permutation information quanti-
fiers for small embedding delays looking for the other relevant
fast time scales of the laser. As can be seen from Fig. 9,
for the current experimental sampling time (δs = 25 ps)
the permutation information quantifiers take values near the
optimal ones, i.e., HS ≈ 0.7 and CJ S ≈ 0.5, for the
smallest embedding delay (τ = 1) and the largest embedding
dimension (D = 8). Comparing Figs. 3 and 9, we conclude
that the experimental sampling time is very close to the
minimal required sampling time for an embedding dimension
D = 8. Numerical and experimental results are not directly
comparable because τext � τS . However, we have numerically
checked that the minimal required sampling time is the same
for different feedback delays τs in the long cavity regime
(250 ps, 500 ps, 1 ns, 10 ns, 20 ns, 30 ns, and 40 ns). For these
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Fig. 9. Permutation entropy HS and permutation statistical complexity CJ S
as a function of the embedding delay τ with embedding dimensions 4 ≤ D ≤
8 for the experimental intensity time series. Small embedding time delays are
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bottom to top for CJ S . The relaxation oscillation signature is shown in the
inset.
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Fig. 10. Permutation entropy HS and permutation statistical complexity
CJ S as a function of the embedding delay τ with embedding dimensions 4 ≤
D ≤ 8 for the experimental intensity time series with lower bias current (I =
13 mA) and feedback strength. Small embedding time delays are considered
(1 ≤ τ ≤ 10). D increases from top to bottom for HS and from bottom to
top for CJ S .

different feedback time delays, there is hardly any change
in the chaotic bandwidth. Consequently, we find that the
minimal required sampling time, which is directly related to
the fastest relevant time scales in the system, is independent
of the feedback delay time in this regime. The signature of the
relaxation oscillation period appears around τ = 4, as shown
in the inset of Fig. 9. Notice the vertical enlargement necessary
to unveil the presence of the extremum.

In order to demonstrate experimentally the presence of the
maximum of the permutation statistical complexity for small
embedding delays, we have analyzed experimental chaotic
time traces obtained with lower bias current (I = 13 mA) and
feedback strength, where the bandwidth of the chaotic system
decreases. Hence, the minimal required sampling time should
increase. As can be seen in Fig. 10, a clear maximum for
CJ S is found for a small embedding delay (τM = 2), whereas



SORIANO et al.: TIME SCALES OF A CHAOTIC SEMICONDUCTOR LASER WITH OPTICAL FEEDBACK 259

HS is an increasing function of τ in this range. This is an
experimental confirmation of the identification of the fast time
scale of the laser with the permutation information analysis.
The other extrema observed in Fig. 10 for both quantifiers
when τ = 8 are associated to the relaxation oscillation
period (TRO). For this lower bias current, we have found that
fRO ≈ 2.2 GHz. Then, the location of the extrema is nearly
TRO/2, supporting the relaxation oscillation signature found
in the numerical analysis.

V. CONCLUSION

We have shown both numerically and experimentally that
a permutation information theory analysis, based on the
estimations of permutation entropy and statistical complexity,
is able to identify characteristic time scales present in the
chaotic dynamics of a semiconductor laser subject to optical
feedback. By analyzing the behavior of these quantifiers as
a function of the embedding delay of the symbolic recon-
struction, it is possible to identify the feedback time delay,
the relaxation oscillation period, and the picosecond pulsing
time scale of this relevant physical system. On one hand, the
feedback time delay and the relaxation oscillation period are
associated with embedding delay values that minimize the
permutation entropy and maximize the permutation statistical
complexity, simultaneously. The presence of additional peaks
at harmonics and subharmonics of the feedback time delay
allows us to distinguish between these two intrinsic time
scales. On the other hand, the fastest time scale defining
the minimal required sampling time can be estimated as
the embedding delay value where the permutation statistical
complexity is also maximized while the permutation entropy
has a monotonically increasing behavior around this domain.
According to these results, estimations of both quantifiers are
necessary to identify all the relevant time scales. Moreover,
we have also found that the minimal required sampling rate
decreases when the embedding dimension is increased. Thus,
all the information of the chaotic system is retained with
a smaller sampling frequency by increasing the embedding
dimension. This finding can be very valuable for experimental
analysis. Our analysis confirms that high bandwidth and high
sampling rates beyond the relaxation oscillation bandwidth
are required to allow for a full time series analysis of the
chaotic semiconductor laser dynamics. Fortunately, these high
experimental demands have finally come within reach and
promise further interesting insights into the complex dynamics
of semiconductor lasers and its functional utilization.
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