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Abstract
A cavity quantum electrodynamical Hamiltonian is solved to study spin observables, such as
the orientation and fluctuations of the total spin and entropy, in a system of N two-level atoms
placed in a resonant cavity. The eigenstates of the Hamiltonian are calculated, both exactly and
approximately. We calculate the time evolution of spin observables such as spin and entropy
squeezing. Conclusions are drawn about the validity of the approximations in the limit of a
large number of atoms.

1. Introduction

In this work, we shall look at the definition of spin squeezing
[1–3] in a system composed by two-level atoms interacting
with a cavity mode, as an indicator of the persistence of
the spin orientation and spin fluctuations in the device. As
discussed in the literature, an array of two-level atoms placed
in a cavity may be realized by an array of Josephson junctions
[4, 5]. Recently, interest in this problem has been renewed,
in connection with phase relaxation and decoherence [6] and
with coherence and entanglement [7] in bosonic systems. In
this paper, we shall focus on some of the mathematical aspects
of the problem, from the perspective of quantum many-body
techniques, to test the validity of approximations which may be
adopted to avoid the numerical complications inherent to high
dimensionality, as we shall discuss later on. Cavity quantum
electrodynamics (CQE) [8–10] allows for the formulation of
the problem at the Hamiltonian level. Since the Hamiltonian
of such a system should include the interactions between the
atoms and those of the atoms with the cavity mode, one may
expect to find a set of different solutions, depending on the
relative strength of the interactions. Thus, one open question is
related to the choice of the proper quantity which may be used
to identify these solutions. We have chosen the notion of spin
squeezing as a possible indicator of the persistence of the spin
properties of the system [1, 11, 12]. Since the number of atoms
in the array may be rather large, and therefore making the exact
treatment unfeasible, we shall also focus on the applicability
of approximations to construct the eigenvectors of the system.
Among the approximations which may be adopted to find

the eigenvalues and eigenvectors of the Hamiltonian, we have
chosen the boson mapping (BM) method [13, 14] in view
of the many-body nature of the system. In previous works
[15, 16], we have presented some considerations, based on
the use of a deformed quantum algebra, about fermion–boson
interactions, with reference to the excitations of Josephson
junctions [15, 16]. In order to complete the analysis of
spin observables, we have calculated the entropy squeezing
[17, 18] of the system to relate it with the spin squeezing
since, in principle, both quantities may signal the presence of
entanglement.

This paper is organized as follows. The formalism is
introduced in section 2. Therein, we define the Hamiltonian
of the system and solve the eigenvalue equation exactly. The
matrix elements of the Hamiltonian are also written in terms
of a collective representation, in terms of the BM scheme. The
observables, i.e. the spin- and entropy-squeezing parameters,
are defined at the end of the section. The results of the
calculations are presented and discussed in section 3. We have
performed the calculations by varying the number of atoms
and the average number of photons. As an initial state, we
have adopted coherent states for the atomic sector (a coherent
spin state (CSS)) and for the photon sector (a coherent boson
state with a fixed average number of photons). The conclusions
are drawn in section 4.

2. Formalism

In this section, we shall define the Hamiltonian of the system
and construct the exact eigenstates in a basis which is the direct
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product of Dicke states and photon-number states. The basis
is labelled by the eigenvalues of an operator which commutes
with the Hamiltonian. Next, we introduce the essentials of the
BM methods. Finally, we define the atomic population of the
states and relate it with the spin-squeezing parameter.

2.1. The Hamiltonian

We shall consider a system of N atoms, each of them having
two states. The energy gap between the states of a given atom
is the quantity ωat. The system of N atoms may interact with
a photon field of energy ωph. We write the Hamiltonian of the
system as

H = ωatSz + ωph

(
a†a + 1

2

)
+ η(a†S− + S+a)

+ λ

N∑
i, j = 1
i �= j,

(S( j)
+ S(i)

− + S(i)
+ S( j)

− ), (1)

which is a CQE-type Hamiltonian [8, 9].
The operators

S+ =
N∑

j=1

S( j)
+ ,

S− = S†
+,

Sz =
N∑

j=1

S( j)
z (2)

are the collective ladder operators which rise (S+) or lower
(S−) the states of the atoms, and Sz is the number operator for
the pseudo-spin excitations. They obey the commutation rules
of the su(2) algebra. The second term of the Hamiltonian is the
photon field of frequency ωph. The third term is the interaction
of the photon with the atoms. The last term represents an
effective atom–atom interaction [19, 20].

The correspondence between the set of parameters ωat,
ωph, η, λ and those of the central current, the activation energy,
the capacitance and the frequency of the cavity mode can be
found in [19–21]. For the present discussion, their values are
arbitrarily fixed (ωat ≈ ωph > λ ≈ η) since we are interested
in the determination of the possible correspondence between
spin observables and the population of atomic levels.

2.2. Exact solution

The operators S( j)
± and S( j)

z are the generators of the jth copy
su(2) j of the pseudo-spin algebra, where j is the atomic index.
We take the tensor product

∏N
j=1 su(2) j as the carrier space for

the representations of the fermionic part of the Hamiltonian.
The collective state with k � N atoms in the excited state is
represented by a Dicke state [22]:

|k〉at =
(

N
k

)−1/2 ∑
P

∣∣kP
1 ...kP

N

〉
,

∣∣kP
1 ...kP

N

〉 = NkP

N∏
j=1

S( j)
+

kP
j |0〉. (3)

The internal degeneracy of each of the two available atomic
states is included in the definition of the basis |kP

1 ...kP
N〉. The

state which represents l photons is written as the number state

| l〉ph = 1√
l!

a†l | 0〉. (4)

We shall then express the wavefunction of the photons and
atoms as the direct product

|l, k〉 = |l〉ph ⊗ |k〉at. (5)

The basis of equation (6) is labelled by the eigenvalues
L = l + k of the operator O,

O = a†a + Sz + 1
2 N, (6)

which commutes with the Hamiltonian of equation (1). Thus,
the matrix elements of the Hamiltonian are written in finite-
dimensional subspaces, each of them associated with a fixed
value of L [15].

2.3. Approximate solution: the boson mapping

In order to obtain approximate solutions of the Hamiltonian of
equation (1), we have expanded the spin operators in terms of
bosonic ones. We also request that the algebraic structure
of operators entering in the Hamiltonian remains invariant
after performing the mapping to the bosonic representation.
Since the algebra obeyed by S± and Sz is a su(2) algebra,
we shall look at the expression of these operators in terms of
boson operators b† and b, such that (i) [b, b†] = 1 and (ii) the
transformed operators S±(b, b†) and Sz(b, b†) obey the same
algebra. There are several possible schemes for a BM [14]. We
have adopted the Holstein–Primakoff BM

S+ → b†
√

N − b†b,

S− →
√

N − b†bb,

Sz → b†b − N

2
. (7)

In the limit of a large number of atoms (N), compared with
the average number of bosons (〈b†b〉), the operators S+ and S−
scale as

√
N and Sz tends to the limiting value −N

2 .

Transforming the operators of equation (2) by their BMs
(7) in the Hamiltonian of equation (1), and after expressing the
interaction between fermions as a scalar product, we obtain

HBM ≈ (ωat + λ(2N − 3))b†b + ωph

(
a†a + 1

2

)
− N

2
ωat

− 2λb†2
b2

+ η(a†
√

N − b†bb + b†
√

N − b†ba).

(8)

In the above expression, the terms which are proportional to
λ originate in the rearrangement (normal ordering) of the
fermionic interactions of the Hamiltonian of equation (1).
After performing the BM, the original spin–spin interaction
in H manifests, in HBM, as a Kerr nonlinearity of the effective
boson field, thus producing terms of the form b†2

b2. We recall
that some features of the Kerr nonlinearity in su(2) systems
have been studied in [23], and a nonlinear Kerr Hamiltonian

2
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has been related to a mesoscopic Josephson junction model in
[24]. Note also that the initial photon–atom interaction in H is
now replaced by an effective boson–boson term with couplings
of the type

√
N − b†b; furthermore, its expansion in powers of

the average boson number yields the scale factor
√

N [23].
All these features strongly simplified the numerical

problems associated with a large number of atoms. We
shall then compare the predictions of both Hamiltonians,
the original one and its boson-mapped version, for the spin
observables of the system.

2.4. Spin squeezing and atomic population parameters

Atomic spin-squeezed states are quantum-correlated systems
with reduced fluctuations in one of the collective spin
components. For a component of the spin vector

−→
S along a

general unit vector −→n ≡ (sin θ cos φ, sin θ sin φ, cos θ ),
−→
S n,

we shall define the squeezing factor as

ζ 2 = 2(�Sn)
2

|〈−→S ⊥〉|
, (9)

where
−→
S ⊥ is the spin component in the direction perpendicular

to −→n and �Sn is the deviation of the spin in the direction
specified by −→n . Consequently, Sn is squeezed if ζ 2 < 1 [1].
As pointed out in [25], the definition given in equation (9)
assumes SU (2) invariance, i.e. 〈−→S ⊥〉 = 〈−→S 〉.

Since we are interested in the study of the inversion of the
population from the ground state of the atoms to the excited
level, we shall analyse also the time evolution of the quadratic
deviation of the z-component of the total spin, �2Sz. In this
scheme, the optimal squeezing is achieved when the quantum
fluctuations of the z-component of the spin are minimal.

2.5. Entropy squeezing

The information entropies of the operator Sσ , (σ = x′, y′, z′),
for a two-level atom system are [17, 18]

H(Sσ ) =
∑

j

Pj(σ ) log(Pj(σ )), (10)

where

Pj(σ ) = 〈σ, j|ρA(t)|σ, j〉 (11)

are the probability measures of the operator Sσ (and |σ, j〉
are the corresponding eigenvectors). The quantities H(S′

x),
H(S′

y), H(S′
z), when nz′ is along the direction of 〈−→S 〉, satisfy

the condition

Hx′ + Hy′ + Hz′ � 2 log(2N ) − 2

2N

∑
k

(
N
k

)
log

(
N
k

)
. (12)

This condition may also be written as

δH(Sx′ )δH(Sy′ ) �
22N

∏
k

(
N
k

)− 2
2N

⎛
⎝N

k

⎞
⎠

δH(Sz′ )
, (13)

with δH(Sσ ) = exp(H(Sσ )). The atomic squeezing of the
system is determined by using the entropy uncertainty relation
of equation (13). The fluctuation in the component Sσ of

the spin of the atomic system is said to be squeezed if the
information entropy H(Sσ ) satisfies

E(Sσ ) = δH(Sσ ) −
2N

∏
k

(
N
k

)− 1
2N

⎛
⎝N

k

⎞
⎠

√
δH(Sz′ )

< 0. (14)

Thus, in what follows, we shall denote with E(Sσ ) the entropy-
squeezing parameter.

2.6. Initial condition

We shall study the time evolution of the system under the
action of H. The initial state, which is not an eigenstate of H,
is a product state of the form

| I〉 =| I〉ph⊗ | I〉at, (15)

where | I〉at is the atomic initial state and | I〉ph is the initial
radiation field. We adopt, as an initial condition for the
radiation field, a coherent state

|I〉ph = e−|z|2/2eza† | 0〉, (16)

with | z |2= 〈a†a〉. For the atomic initial state, | I〉at, we adopt a
CSS, which is defined as an eigenstate of the spin component
in the direction −→n 0 = (sin θ0 cos φ0, sin θ0 sin φ0, cos θ0), then−→
S .−→n 0|I〉at = S|I〉at, with eigenvalue S. The angles θ0 and φ0

are the polar and azimuth angles of the unit vector −→n 0. The
initial atomic state is written

| I〉at = ezatS+ | 0〉, (17)

with

zat = −e−iφ0 tan

(
θ0

2

)
. (18)

3. Results and discussion

Hereafter, we shall show and discuss the results of
the calculations, which have been performed by using
the eigenvalues and eigenvector of the Hamiltonian of
equation (1), obtained by exact diagonalization, and by
applying the BM method. We focus our attention on the
dependence of the results upon the number of atoms in the
cavity (N) and the average number of photons (〈nph〉), for two
different situations, namely: (a) for a manageable number of
atoms and photons (so that the exact diagonalization is easily
performed), and (b) for a large number of atoms, where the use
of the BM is expected to be valid, and for a large number of
photons. In doing so, we shall determine the validity of the BM
method in situations where the exact solution is unfeasible, due
to dimensional reasons. We shall compare the time evolution
of two observables, that is the spin-squeezing parameter of
equation (9), and the inversion of the population of atomic
levels (that is, by following the evolution of �S2

z ), and relate
these quantities with the information entropy of equation (14).
This may be relevant for experimental measurements of the
spin alignment and fluctuations because the spin-squeezing
parameter measures these quantities along the direction of the
total spin, while the inversion of the population of the atomic
levels refers to the changes in the z-component of the spin
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Figure 1. Squeezing parameter ζ 2 of equation (9) (inset (a)),
entropy squeezing of equation (14) (inset (b)) and the quadratic
deviation of the spin component Sz (inset (c)), as a function of time.
(The timescale is arbitrary because we are setting � = 1, and use
dimensionless coupling constants λ and η (λ =0.002, η = 0.001),
and frequencies ωat and ωph, (both of order unity), to construct the
Hamiltonian. The same timescale is used in the following figures.)
The system considered has N = 5 atoms, and the average number of
photons is 〈nph〉 = 4. The parameters of the CSS are
φ0 = θ0 = π/4. The results obtained with the exact and BM
eigenvectors are shown by solid and dotted lines, respectively.
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Figure 2. Squeezing parameter ζ 2 of equation (9), as a function of
time, and for different values of the number of photons. Insets (a)
and (b) correspond to 〈nph〉 = 1 and 〈nph〉 = 20, respectively. The
other parameters used in the calculation are given in the caption to
figure 1, and also for this case the number of atoms is N = 5. The
results obtained with the exact and BM eigenvectors are shown by
solid and dotted lines, respectively.
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Figure 3. Squeezing parameter ζ 2 of equation (9), as a function of
time, for different values of the number of atoms. Insets (a) and (b)
correspond to N = 5 and N = 100, respectively. The other
parameters used in the calculation are 〈nph〉 = 4, λ = 0.002 and
η = 0.015. The parameters of the CSS are given in the caption to
figure 1. The results obtained with the exact and BM eigenvectors
are shown by solid and dotted lines, respectively.

relative to the value of the spin-raising operator S+. The results
of the calculations are shown in figures 1– 3.

Figure 1 shows the results corresponding to the time
dependence of the spin-squeezing parameter ζ 2 (inset (a)), the
entropy-squeezing factor E(Sσ ) (inset (b)) and the quadratic
deviation of the z-component of the spin �S2

z (inset (c)), for
a system with N = 5 atoms and 〈nph〉 = 4 photons. From the
results obtained with the exact eigenvectors and eigenvalues,
it is seen that these quantities show the same oscillatory trend,
as a function of time. The agreement with the BM solution
is rather good at small values of time, in the domain where
the squeezing of the atomic spin shows up, while both sets of
results tend to different asymptotic values for larger values of
time. This discrepancy is due to the small number of atoms
(N = 5) used in the calculations. This is a feature of the BM
method which has been studied in detail in the literature [14].

In the region where squeezing is manifest (for time t < 1),
the agreement between the spin-squeezing factor and the
entropy squeezing is observed, as expected from the definition
of both observables. This correlation indicates that they are
measuring the degree of entanglement of the system.

Concerning the time dependence of �S2
z , it shows a

damping of the oscillations and reaches a constant value at
large t, in the interval where the atomic spin is squeezed.

Figure 2 shows the time evolution of the squeezing factor,
for two values of the number of photons 〈nph〉, for the system
of N = 5 atoms considered before (and with the same
couplings and frequencies). The rapid oscillatory behaviour,
characteristic of the spin–spin interactions, dominates for the
smallest number of photons, and it is modulated for the largest
number of photons. The exact and BM results tend to agree,
in spite of the small number of atoms considered in the

4
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calculations. Both results reach the same asymptotic value
and for 〈nph〉 = 20, the BM results show a larger modulation
of the oscillations.

The time dependence of the squeezing parameter, as a
function of the number of atoms, for a fixed value of the
number of photons is shown in figure 3. There, the increase
in the number of atoms washes out the correlations leading
to squeezing. The results obtained with the exact solution
and with the BM expansion become almost identical for
N = 100.

It is seen from the results depicted in figures 1–3 that the
spin-squeezing parameter and the information entropy exhibit
similar time dependence, which is oscillatory for values of
time larger than t = 1 and non-oscillatory at smaller values of
time3, where the atomic spin is squeezed. The conditions for
spin squeezing are satisfied for 0 < t < 0.5. Also, it is seen
that the exact solution and the one obtained by applying the
boson transformation do tend to agree at all times, when the
number of atoms is sufficiently large, but also at small times
when the number of atoms is small.

The fact that the BM approximation yields results which
are comparable to the exact ones for larger values of N confirms
the hand-waving notion that it should coincide with the exact
solution when N tends to the thermodynamic limit, and for N
much larger than the average number of photons, due to the
scaling properties of the spin operators.

Concerning the dependence of the results with the
number of photons, both the exact and BM results show the
disappearance of the squeezing as 〈nph〉 increases. This effect
is accompanied by the modulation of the oscillations induced
by the spin–spin interactions.

4. Conclusions

In this work, we have calculated spin-squeezing observables,
like the spin squeezing, the inversion of the atomic population
and the entropy squeezing, in a system of N two-level atoms
interacting with photons. We have performed the calculations
in two schemes: (a) an exact diagonalization and (b) using a
boson mapping (BM) method to transform the Hamiltonian.
From the results obtained in the calculations of these quantities,
we may conclude that the spin squeezing and the entropy
squeezing are correlated, as indicators of entanglement, in the
time interval where the atomic spin is squeezed. On the other
hand, from the comparison between exact and BM results,
one can conclude that the use of the BM technique seems to
be a good alternative to treat systems with a large number of
atoms. The dependence of the value of �S2

z with time seems
to indicate that an array of two-level systems may indeed
be a good device to keep the total spin oriented in quantum
non-demolition measurements since the quadratic deviation
�S2

z reaches a constant value at large values of time. In this
respect, we can mention the recent work on memory effects
in quantum systems, which consist essentially of two-level
atoms in interaction with photons, in an optical setup [26–28].

3 To correlate this timescale (and the timescale of all figures) with the coupling
constants, note that in this arbitrary scale, a unit of time is equivalent to (1./w f )
since we are using � = 1 in our calculations.

Finally, and concerning CQE devices [8, 9], because of
the features exhibited by the present results about the spin-
squeezing parameter, it could be possible to relate it with the
(expected) control of the excited state population of a qubit [8]
since the inversion of the population follows the evolution of
the spin-squeezing factor in the time interval where the atomic
spin is squeezed.
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