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Abstract

Because of its proximity, our Sun provides a unique opportunity to perform high resolution observations of its outer layers through-
out the whole electromagnetic spectrum. We can also theoretically model most of the fascinating physical phenomena taking place on the
Sun, as well as their impact on the solar system.

Many of these phenomena can be properly studied within the framework of magnetohydrodynamics. More specifically, we assume a
fully ionized hydrogen plasma and adopt the more comprehensive two-fluid magnetohydrodynamic approximation. For problems such
as the solar wind or magnetic loops in the solar corona, which are shaped by a relatively strong mean magnetic field, the reduced mag-
netohydrodynamic approximation is often used.

We will review the basic features of both two-fluid and one-fluid magnetohydrodynamics, and focus on two particular applications:
the turbulent heating of coronal active regions and the dynamics of the solar wind.
� 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetohydrodynamics (MHD) is a reasonable theo-
retical framework to describe the large-scale dynamics of
a plasma, which is also known as one-fluid MHD. Two-
fluid effects can be considered through a generalized Ohm’s
law which includes the Hall current, which is required for
phenomena with characteristic length scales comparable
or smaller than the ion skin depth c=xpi (c:speed of light,
xpi: ion plasma frequency). In an ideal plasma, the Hall
current causes the magnetic field to become frozen in the
electron flow instead of being carried along with the bulk
velocity field. Another relevant feature of the ideal Hall
MHD description is the self-consistent presence of parallel
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(to the magnetic field) electric fields, which can therefore
accelerate particles.

In astrophysical plasmas, a strong external magnetic
field is often present, thus breaking down the isotropy of
the problem and eventually causing important changes in
the dynamics of these plasmas. For one-fluid MHD, the
presence of an external magnetic field gave rise to the so-
called reduced MHD approximation (RMHD, see Strauss
(1976); Montgomery (1982)). The RMHD equations have
been used in a variety of astrophysical applications, such
as current sheet formation (van Ballegooijen, 1986; Long-
cope and Sudan, 1994), non-stationary reconnection (Hen-
drix and van Hoven, 1996; Milano et al., 1999), the
dynamics of coronal loops (Gómez and Ferro Fontán,
1992; Dmitruk and Gómez, 1999) or the development of
turbulence (Dmitruk et al., 2003). Dmitruk et al. (2005)
have numerically confirmed the validity of the RMHD
equations by directly comparing its predictions with the
compressible MHD equations in a turbulent regime. More
recently, Gómez et al. (2008) extended the “reduced”

approximation to include two-fluid effects, giving rise to
rved.
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the reduced Hall-MHD description (RHMHD, see also
Bian and Tsiklauri (2009)). A comparative study of numer-
ical simulations of the compressible three-dimensional
Hall-MHD equations and the reduced approximation,
has recently confirmed the validity of the RHMHD
description in the asymptotic limit of strong external mag-
netic fields (Martı́n et al., 2010).

We organize the paper as follows. After introducing the
Hall-MHD set of equations in Section 2, we perform the
asymptotic expansion corresponding to the dynamics of a
plasma embedded in a strong external magnetic field in
Section 3, and derive the set of RHMHD equations. In Sec-
tion 4 we integrate the RHMHD to simulate the develop-
ment of turbulence in the solar wind. More specifically,
we show that the presence of the Hall effect causes non-neg-
ligible changes in the energy power spectrum and also dis-
cuss the consequences of an electric field component which
is parallel to the magnetic field. We also applied the one-
fluid version of these equations (i.e. the RMHD equations)
to simulate the internal dynamics of loops of the solar cor-
ona. The main results from these simulations are summa-
rized in Section 5, showing the development of a
turbulent regime in these loops, which enhances Joule dis-
sipation to levels consistent with the energy requirements
to heat active regions. Finally, in Section 6 we summarize
our conclusions.

2. The Hall-MHD equations

The large-scale dynamics of a multispecies plasma can
be described through fluid equations for each species s

(see for instance Goldston and Rutherford (1995))

@tnsþr� ðnsU sÞ ¼ 0 ð1Þ

msns
dU s

dt
¼ nsqs Eþ 1

c
U s�B

� �
�rpsþr�rsþ

X
s0

Rss0 ð2Þ

where ms; qs are the individual mass and charge of particles
of species s, ns; U s; ps are their particle density, velocity
field and scalar pressure respectively, while rs is the viscous
stress tensor and Rss0 is the rate of momentum (per unit vol-
ume) gained by species s due to collisions with species s0. In
the presence of a strong magnetic field, pressure might de-
part from scalar and become anisotropic (i.e. pk – p?), but
we are neglecting this effect throughout this paper. The
momentum exchange Rss0 rate is proportional to the relative
speed between both species and is given by

Rss0 ¼ �msnsmss0 ðU s �U s0 Þ ð3Þ
where mss0 is the collision frequency of an s-particle against
particles of species s0. Since the total momentum must of
course be conserved, the corresponding exchange rates sat-
isfy Rs0s ¼ �Rss0 , from which it follows that collision
frequencies must obey msnsmss0 ¼ ms0ns0ms0s. The electric cur-
rent density for a multi-species plasma is defined as

J ¼
X

s

qsnsU s ð4Þ
The equations of motion for a fully ionized hydrogen
plasma, made of protons of particle mass mp and electrons
of negligible mass (since me � mp) are given by Krall and
Trivelpiece (1973)

mpn
dU

dt
¼ en E þ 1

c
U � B

� �
�rpp þr � rþ R ð5Þ

0 ¼ �en E þ 1

c
U e � B

� �
�rpe � R ð6Þ

where U ; Ue are the ion and electron flow velocities. The
viscous stress tensor for electrons has been neglected, since
it is proportional to the particle mass, and the friction force
between both species can be written as

R ¼ �mpnmpeðU �UeÞ ð7Þ

For the fully ionized hydrogen case, the electric current
density (see Eq. (4)) reduces to J ¼ enðU �UeÞ. Therefore,
the friction force R can be expressed as

R ¼ �mpmpe

e
J ð8Þ

The electron and ion pressures pe; pp are assumed to satisfy
polytropic laws

pp / nc ð9Þ
pe / nc ð10Þ

where the particle densities for both species are assumed to
be equal because of charge neutrality (i.e. np ¼ ne ¼ n). The
bulk flow in this two-fluid description is given by the ion
flow U , which satisfies

@tnþr � ðnUÞ ¼ 0 ð11Þ
The electric current density relates with the magnetic

field through Ampere’s law

J ¼ c
4p
r� B ¼ enðU �UeÞ ð12Þ

By adding Eqs. (5) and (6) and adopting a Newtonian pre-
scription for the viscous stress tensor (i.e.
rij ¼ lð@iUj þ @jU iÞ; l: viscosity) we obtain

mpn
dU

dt
¼ 1

c
J � B �rpþ lr2U ð13Þ

where p ¼ pp þ pe. On the other hand, after replacing
Ue ¼ U � J=en and Eq. (8) into Eq. (6), we obtain the
so-called “generalized Ohm’s law”

E þ 1

c
U � B ¼ 1

nec
J � B � 1

ne
rpe þ

mpmpe

e2n
J ð14Þ

which also expresses the force balance satisfied by the mass-
less electrons. In the last term, we can recognize e2n=ðmpmpeÞ
as the electric conductivity of a fully ionized hydrogen plas-
ma. The electric and magnetic fields can be cast in terms of
the electrostatic potential / and the vector potential A. In
particular, the curl of Eq. (14) yields the induction equation

@tB ¼ r� U � 1

en
J

� �
� B

� �
�r� ðgr� BÞ ð15Þ
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where

g ¼ mc2mpe

4pe2n
ð16Þ

is the electric resistivity. Eqs. (13)–(15) provide the two-
fluid description of magnetohydrodynamics. The set of
equations is completed by the continuity equation (Eq.
(11)), the adiabatic conditions given by Eqs. (9), (10) and
Ampere’s law (Eq. (12)).

We now turn to a dimensionless version of the preceding
set of equations using a typical longitudinal length scale L0,
an ambient density n ¼ n0, a typical value for the magnetic
field B0, a typical velocity equal to the Alfven speed
vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pmpn0

p
, and a reference pressure p0. The equa-

tion of motion becomes

n
dU

dt
¼ ðr � BÞ � B � brpþ 1

Re
r2U ð17Þ

while the induction equation can be written as

@tB ¼ r� U � �
n
r� B

� �
� B

h i
þ 1

Rm
r2B ð18Þ

The various dimensionless coefficients in these equations
measure the relative importance of different competing
physical effects. The plasma “beta”

b ¼ p0

mpn0v2
A

ð19Þ

is the approximate ratio of gas to magnetic pressure, while
the kinetic (Re ¼ vAL0=ðl=mpn0Þ) and magnetic
(Rm ¼ vAL0=g) Reynolds numbers express the ratio of con-
vective to dissipative effects in each equation. The Hall
parameter

� ¼ c
xpiL0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mpc2

4pe2n0L2
0

s
ð20Þ

expresses the relative importance of the Hall effect. For
�! 0, the induction Eq. (18) reduces to the one for one-
fluid magnetohydrodynamics.

Eqs. (17) and (18) are also known as the Hall-MHD
(HMHD) equations. The HMHD system has been exten-
sively studied in recent years, both analytically and numer-
ically. For instance, Hall-MHD has been applied to
advance our understanding of dynamo mechanisms (Min-
inni et al., 2003), magnetic reconnection (Mozer et al.,
2002; Smith et al., 2004; Morales et al., 2005), accretion
(Wardle et al., 303,; Balbus and Terquem, 2001) or the
physics of turbulent regimes (Matthaeus et al., 2003; Min-
inni et al., 2005; Galtier, 2006; Dmitruk and Matthaeus,
2006). Potential limitations in the validity of Hall-MHD
from the more comprehensive framework of Vlasov–Max-
well kinetic theory have been recently pointed out by
Howes (2009) and also by Schekochihin et al. (2009). In
particular, Howes (2009) shows that Hall-MHD is a valid
limit of kinetic theory whenever the electron temperature
is larger than the ion temperature.
3. Hall-MHD in a strong magnetic field

In the presence of a strong external magnetic field,
velocity and magnetic field fluctuations tend to develop fine
scale spatial structures across it, while parallel gradients
remain comparatively smoother (Shebalin et al., 1983;
Oughton et al., 1994; Matthaeus et al., 1998; Oughton
et al., 1998). Assuming the external field to point along
êz, the total (dimensionless) magnetic field is

B ¼ êz þ dB; jdBj � a� 1 ð21Þ
where a ¼ L?=Lk represents the typical tilt of magnetic field
lines with respect to the êz-direction. Therefore, one expects
(assuming L0 ¼ L? to be the typical lengthscale of the
problem)

r? � 1; @z � a� 1 ð22Þ
To ensure that B remains solenoidal, we assume

B ¼ êz þr� aêz þ gêxð Þ ð23Þ
The velocity field instead, is decomposed into a solenoidal
plus an irrotational flow, i.e.

U ¼ r uêz þ f êxð Þ þ rw ð24Þ
where the potentials aðr; tÞ; gðr; tÞ; uðr; tÞ and f ðr; tÞ are all
assumed of order a� 1 and wðr; tÞ is of order a2 (see details
in Gómez et al. (2008); and also Bian and Tsiklauri (2009)).

The standard RMHD approximation (Strauss, 1976)
only considers the potentials a and u, which restrict the
dynamics to velocity and magnetic field components per-
pendicular to the external magnetic field. When the Hall
effect becomes relevant (i.e. the term proportional to � in
Eq. (18)), potentials f ; g and w should be added to allow
nonzero dynamical field components along êz and therefore
capture the helical behavior introduced by this effect.

Assuming also @t � 1 (which corresponds to the fast
timescale L?=vA), we obtain, to first order in a in Eqs.
(17) and (18)

bþ bp ¼ constant ð25Þ
/þ u� �ðbþ bepeÞ ¼ constant ð26Þ
which are Bernoulli conditions constraining the pressures
and the electrostatic potential, and correspond to pressure
equilibria established over typical timescales of the fast
magnetosonic mode. The coefficient be in Eq. (26) is
be ¼ p0e=mpn0v2

A.
To follow the evolution of the system on the much

slower timescale Lk=vA (i.e. assuming @t � a� 1), Eqs.
(17) and (18) to order a2 describe the dynamical evolution
of the potentials (i.e. a;u; g and f)

@ta ¼ @zðu� �bÞ þ ½u� �b; a� þ
1

Rm
r2a ð27Þ

@tx ¼ @zjþ ½u;x� � ½a; j� þ
1

Re
r2x ð28Þ

@tb ¼ b�@zðu� �jÞ þ ½u; b� þ b�½u� �j; a� þ b�
1

Rm
r2b ð29Þ

@tu ¼ @zbþ ½u; u� � ½a; b� þ
1

Re
r2u ð30Þ
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where j ¼ �r2
?a and x ¼ �r2

?u are, respectively, the par-
allel current and vorticity components, and ½a; b� ¼
@xa@yb� @ya@xb indicate the standard Poisson brackets.
The parallel component of the dynamical magnetic field is
b ¼ �@yg, and that of the velocity field is u ¼ �@yf . The
coefficient b� is (see also Bian and Tsiklauri (2009))

b� ¼
cb

1þ cb
ð31Þ

where b is the coefficient defined in Eq. (19) and c is the
polytropic index (see Eqs. (9) and (10)). In summary, the
set of Eqs. (27)–(30) describe the dynamical evolution of
a Hall plasma embedded in a strong external magnetic
field.

Just as for three-dimensional Hall-MHD, this set of
equations display three ideal invariants: the energy

E ¼ 1

2

Z
d3r ðjU j2 þ jBj2Þ

¼ 1

2

Z
d3r ðjr?uj2 þ jr?aj2 þ u2 þ b2Þ; ð32Þ

the magnetic helicity

H m ¼
1

2

Z
d3r ðA � BÞ ¼

Z
d3r ab ð33Þ

and the hybrid helicity (Turner, 1983; Mahajan and Yos-
hida, 2000)

H h ¼
1

2

Z
d3r ðAþ �UÞ � ðB þ �XÞ

¼
Z

d3r ½abþ �ðaxþ ubÞ þ �2uxÞ� ð34Þ

where X ¼ r�U is the vorticity vector field.
Fig. 1. Energy power spectra for � ¼ 0:0 (thick gray trace) and � ¼ 0:1
(thick black trace) for a 512� 512� 32 run at t ¼ 20. The Kolmogorov
slope is displayed for reference, and the vertical dashed line indicates the
location of k� ¼ 1=� for � ¼ 0:1. The thin lines show the power spectra for
the corresponding kinetic energies.
4. Application of RHMHD to solar wind turbulence

The relative importance of the Hall effect in the Hall-
MHD equations (i.e. Eqs. (17) and (18)) is determined by
the coefficient �, which is only present in Eq. (18). From
the expression of � in Eq. (20), we find that the Hall effect
must become non-negligible in sufficiently low density plas-
mas. One of the many low-density astrophysical plasmas
for which the Hall effect is known to be relevant is the solar
wind, and it becomes progressively more important as we
move away from the Sun. Also, the solar wind plasma is
permeated by an external magnetic field (although the mag-
netic fluctuations can be a non-negligible fraction of the
external field).

To study the role of the Hall effect on the energy power
spectrum, we integrate Eqs. (27)–(30) numerically. We
assume periodicity for the lateral boundary conditions,
and specify the velocity fields at the boundaries z ¼ 0 and
z ¼ L (for a detailed description, see Dmitruk et al.
(2003)). These boundary motions pump energy into the
system and drives it into a turbulent regime. We use a
pseudo-spectral technique with dealiasing for the perpen-
dicular spatial derivatives and finite differences for the
(much smoother) êz-derivatives. We start all our simula-
tions with trivial initial conditions (i.e. a ¼ u ¼ u ¼ b ¼ 0).

We performed a set of simulations with different values
of the Hall parameter (see details in Gómez et al. (2008)).
Among the results arising from these simulations, we find
that the fraction of kinetic to total energy increases mono-
tonically with the Hall coefficient �.

In the MHD limit (� ¼ 0), the total energy reduces to
(Eq. (32))

Eperp ¼
1

2

Z
d3r ðjr?uj2 þ jr?aj2Þ ð35Þ

while for the general case (� – 0) there is a fraction of the
total energy directly associated to the parallel degrees of
freedom

Epar ¼
1

2

Z
d3r ðu2 þ b2Þ ð36Þ

The fraction Epar=Etot is also observed to increase mono-
tonically with �, even though we are not pumping parallel
energy from the boundaries. Parallel fluctuations are gener-
ated by the perpendicular part of the dynamics (i.e. by a

and u) via terms proportional to � in Eq. (29).
We expect the Hall current to affect the dynamics of spa-

tial patterns whose sizes are of the order of the ion skin
depth (i.e. c=wpi) or smaller. According to Eq. (20), this typ-
ical size corresponds to a k� ¼ 1=�. In Fig. 1 we compare
the spectral distributions of energy for � ¼ 0:0 and
� ¼ 0:1, once a stationary turbulent regime is reached for
each of these simulations. Even though these numerical
simulations have only a moderate spatial resolution of
512� 512� 32, the energy spectra are consistent with the
slope predicted by Kolmogorov (i.e. Ek / k�5=3) at interme-
diate and large scales (i.e. intermediate and small values of
k). We also find that both the total and kinetic energy spec-



Table 1
Hall and mean scales.

Run � kHall kmean

1 0 1 8.5
2 1/32 32 8.2
3 1/16 16 7.7
4 1/8 8 7.2

Fig. 3. Energy power spectra for a 512� 512� 32 run with � ¼ 0:1 at
t ¼ 20. Black full trace corresponds to total energy, dotted (dot-dashed)
trace to kinetic (magnetic) energy, and the gray full trace shows the power
spectrum of the electric field.
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tra for the simulation corresponding to � ¼ 0:1, strongly
depart from the purely MHD run (i.e. � ¼ 0:0) for k P k�.

The spectral distribution of energy dissipation is given
by 2gk2EðkÞ. Fig. 2 shows energy dissipation spectra for
different simulations corresponding to
� ¼ 0; 1=32; 1=16; 1=8. We find that the spectral distribution
of energy dissipation shifts to larger wavelengths as � rises,
which is quantitatively confirmed by the corresponding val-
ues of the mean scale defined as

k2
mean ¼

R
dkk2EðkÞR
dkEðkÞ ð37Þ

listed in the Table 1.
The scale kmean, also known as the Taylor scale, can be

regarded as the average curvature of magnetic fieldlines.
Its gradual shift with the Hall effect is consistent with a
reduction of the energy transfer rate associated to the direct
energy cascade for k > k�, which in turn leads to smaller
total dissipation rates (Gómez et al. (2010), see also Min-
inni et al. (2007)).

Another important feature of Hall-MHD in its ideal
limit (i.e. for g! 0) is the self-consistent presence of a
component of the electric field parallel to the total mag-
netic field, which is able to accelerate charged particles
(see also Bian and Kontar (2010) and Bian et al. (2010)).
Fig. 3 shows the power spectrum of the total electric field,
superimposed to the corresponding spectra of kinetic and
magnetic energy, for � ¼ 0:1. We can clearly observe an
excess of power in the electric field compared to the mag-
netic field at large wavenumbers (i.e. k > k�).

The dimensionless version of the electric field (see Eq.
(14)) is

E ¼ � U � �
n
r� B

� �
� B � �be

n
rpe þ gr� B ð38Þ

When computing the component of the electric field which
is parallel to the magnetic field (i.e. Ek ¼ E�B

jBj2) only two
Fig. 2. Spectral distribution of energy dissipation for simulations corre-
sponding to � ¼ 0; 1=32; 1=16; 1=8, displayed in gradually lighter shades of
gray.
terms contribute, the one proportional to the electron pres-
sure gradient and the one corresponding to electric resistiv-
ity. To second order in the expansion coefficient a (see Eq.
(21)) and using that bepe ¼ � be

b b, we obtain

Ek ¼ �
T e

T e þ T p
ð@zbþ ½b; a�Þ þ gj ð39Þ

In Fig. 4 we show two histograms corresponding to the
terms proportional to � (black) and g (gray) in Eq. (39),
assuming T e 	 T p. We can clearly see that the contribution
of the Hall effect to Ek, which is actually caused by therkpe

term in Eq. (38), is markedly larger than the contribution
of the plasma resistivity. Note that the electron pressure
is cast in terms of the parallel magnetic field component
b as a result of Eq. (25).

We need simulations at much higher spatial resolution
to make quantitative assessments about power spectra or
energy dissipation, but these simulations at moderate reso-
lution show that the behavior at small scales (i.e. k > k�) is
clearly affected by the presence of the Hall term. The
RHMHD framework has been numerically tested against
the more general compressible Hall-MHD description
(Martı́n et al., 2010). The results show that the degree of
agreement between both sets of simulations is very high
when the various assumptions for RHMHD are satisfied,
thus rendering RHMHD as a valid approximation of
Hall-MHD in the presence of strong external magnetic
fields.



Fig. 4. Histograms of the terms proportional to � (black) and g (gray) for
Ek (see Eq. (39) for a 512� 512� 32 run with � ¼ 0:1 and t ¼ 20.
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5. Application of RMHD to coronal heating

Another application of the reduced approximation to an
astrophysical problem, is the simulation of magnetic loops
of the solar corona, to study the heating of the plasma con-
fined in coronal magnetic structures. To model the internal
dynamics of coronal loops in solar (or stellar) active
regions, we assume these loops to be relatively homoge-
neous bundles of fieldlines, with their footpoints deeply
rooted into the photosphere. Individual fieldlines are
moved around by subphotospheric convective motions,
which in turn generate magnetic stresses in the coronal por-
tion of the loop. We therefore consider a magnetic loop
with length L and cross section 2plph � 2plph, where lph is
the lengthscale of typical subphotospheric motions. For
elongated loops, i.e. such that 2plph � L, we neglect toroi-
dal effects. The main magnetic field B0 is assumed to be uni-
form and parallel to the axis of the loop (the z axis) and the
perpendicular planes at z ¼ 0 and z ¼ L correspond to the
photospheric footpoints. For the coronal plasma, the Hall
effect is actually negligible, so we simply integrate the
RMHD equations (i.e. � ¼ 0:000).

As boundary conditions, we assume wðz ¼ 0Þ ¼ 0 and
wðz ¼ LÞ ¼ Wðx; yÞ where the stream function Wðx; yÞ
Fig. 5. Energy and dissipation rate time series. Upper panel: kinetic energy (thin
Poynting flux (thin).
describes stationary and incompressible footpoint motions
on the photospheric plane (see Dmitruk et al. (2003)). We
specify the Fourier components of Wðx; yÞ as Wk ¼ W0

inside the ring 3 < lphjkj < 4 on the Fourier plane, and
Wk ¼ 0 elsewhere, to simulate a stationary and isotropic
pattern of photospheric granular motions of diameters
between 2plph=4 and 2plph=3. The strength W0 is propor-
tional to a typical photospheric velocity V ph � 1 km s�1.
The typical timescale associated to these driving motions,
is the eddy turnover time, which is defined as tph ¼
lph=V ph � 103 s. We choose a narrowband and non-random
forcing to make sure that the broadband energy spectra
and the signatures of intermittency that we obtain are
exclusively determined by the nonlinear nature of the
MHD equations.

In Fig. 5 we show the results obtained from a simulation
extending from t ¼ 0 to t ¼ 100 tA, where tA ¼ L=vA is the
Alfven time of the loop. The upper panel shows the kinetic
(EU , thin trace) and total energy (E ¼ EU þ EB, thick trace).
We can see that after about ten Alfven times, the energy
reaches a stationary regime, since the work done by foot-
point motions statistically (i.e. in time average) reaches
an equilibrium with the dissipative processes (electric resis-
tivity and fluid viscosity). In this stationary regime most of
the energy is magnetic, while kinetic energy is only about
5% of the total. In the lower panel, we show the dissipation
rate (D, thick trace) and the incoming Poynting flux (P,
thin trace), showing that their time averages are approxi-
mately equal.

The observed stationary equilibrium has been shown to
correspond to a turbulent regime (Gómez and Ferro Fon-
tán, 1988, 1992), and therefore the associated energy cas-
cade bridges the gap between the large spatial scales
where energy is injected by footpoint motions, to the much
smaller scales where it dissipates (see Dmitruk and Gómez
(1997)). The dependence of the stationary dissipation rate
< D >¼< P > (< � � � >: time average) with the physical
parameters of the loop is (Dmitruk and Gómez, 1999)

hDi /
ql2

ph

t3
A

tA

tph

� �3
2

ð40Þ

In Fig. 5 we can clearly observe the spiky nature of these
time series, which is the result of the intermittency arising
), and total energy (thick). Lower panel: energy dissipation rate (thick) and
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in turbulent regimes. Dmitruk et al. (1998) associated these
spikes of energy dissipation with Parker’s nanoflares (see
Parker (1988)) and studied the statistical distribution of
these dissipation events. A detailed description of that sta-
tistical study is beyond the scope of this presentation, but
the main result (see also Gómez and Dmitruk (2008)) is
that the number of nanoflares (or spikes) as a function of
their energies NðEÞ follows a power law NðEÞ � E�3=2,
which is remarkably comparable to the result obtained
for larger dissipation events. The statistics of large energy
dissipation events such as microflares and flares, has been
reported by Aschwanden (2004), gathering a large number
of observational studies.

6. Conclusions

In this presentation we reviewed the basic features of
two-fluid magnetohydrodynamics as a valid theoretical
framework for astrophysical and space plasmas. Even
though two-fluid MHD is aimed at theoretically describing
the relatively large-scale behavior of plasmas, it does none-
theless retain the effects of the Hall current at scales com-
parable or smaller than the ion skin-depth. For plasmas
permeated by relatively strong external magnetic fields,
we introduce the reader to the so-called reduced magneto-
hydrodynamic approximation, which takes advantage of
the much smoother spatial structure of these plasmas along
magnetic fieldlines.

We also present new numerical results of the reduced
MHD equations which are relevant to the following two
astrophysical problems: the turbulent dynamics of the solar
wind plasma and the turbulent heating of coronal active
regions. In the solar wind plasma, the Hall effect becomes
progressively more important as we move away from the
Sun. Our RHMHD simulations show that the Hall effect
is able to produce measurable changes in the energy power
spectrum. In particular, the ratio of kinetic to total energy
increases with the Hall coefficient �, as well as the ratio of
parallel to total energy, confirming previous results
(Gómez et al., 2008) with smaller spatial resolution. More-
over, the energy spectrum departs quite noticeably from
the � ¼ 0:0 case.

We have also shown numerical results from RMHD
simulations (the Hall effect is not likely to be relevant
in the coronal plasma) of the internal dynamics of mag-
netic loops of the solar corona. These simulations show
the development of a magnetically dominated and sta-
tionary turbulent regime inside the loop, as a result of
the persistent action of convective subphotospheric
motions. The mean value of the heating rate arising from
these simulations is of the same order of magnitude of
the main cooling rates in coronal active regions (Dmitruk
and Gómez, 1997), namely, radiative losses and thermal
conductivity to the chromosphere. Superimposed to this
stationary heating rate, simulations also show the ubiqui-
tous presence of spiky heating events, as a result of the
intermittent nature of turbulence. The statistics of these
heating events or nanoflares (see Dmitruk et al. (1998)),
is remarkably similar to the one obtained for the much
larger dissipation events, known as flares (see Aschwan-
den (2004)).
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Dmitruk, P., Gómez, D.O., Matthaeus, W.H. Energy spectrum of
turbulent fluctuations in boundary driven reduced MHD. Phys.
Plasmas 10, 3584–3591, 2003.
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Dmitruk, P., Gómez, D.O. Turbulent coronal heating and the distribution
of nanoflares. Astrophys. J. 484, L83–L86, 1997.

Galtier, S. Wave turbulence in incompressible Hall magnetohydrodynam-
ics. J. Plasma Phys. 72, 721–769, 2006.

Goldston, R.J., Rutherford, P.H. Introduction to Plasma Physics. IOP
Publ., Bristol & Philadelphia, 1995.
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