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Abstract – The identification, analysis and mitigation of voltage events are relevant research 
areas in the context of smart grids. The analysis can be conducted by using predefined models that 
are representative of certain grid faults. One of the criteria that represents the largest number of 
fault types is the extended ABC, which is used as the basis of this paper. Some of the algorithms 
proposed in the specific bibliography that use this classification criterion have an acceptable 
performance under ideal conditions, but are affected by different disturbances related to the same 
fault or the power grid itself. Present work proposes a new algorithm that improves the 
classification performance evaluating the mean squared error of each event type using two different 
symmetrical components estimations. The algorithm is compared with different proposals reported 
on the bibliography and evaluated with several types of common electrical network disturbances by 
simulation. Results show a significant reduction of classification errors. Copyright © 2023 Praise 
Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
ADC Analog to Digital Converter 
AECA ABC Extended Classification Algorithm 
APAR Asymmetrical Phase Angle Rotation 
ASA Absolute Sequences Algorithm 
CB Circuit Breaker 
CIGRE International Council on Large Electric 

Systems 
DPV Deviation of Pre-fault Voltage related to 

nominal voltage 
E Average pre-fault voltage between the 

three-phase voltages 
EHV Extra High Voltage 
h Voltage event depth 
MSE Mean Squared Error 
PAJF Phase Angle Jumps due to Faults 
PAJN Phase Angle Jumps due to Network 
PCC Point of Common Coupling 
PMU Phasor Measurement Unit 
PQM Power Quality Meter 
RMS Root Mean Square 
SCA Symmetrical Components Algorithm 
SPAR Symmetrical Phase Angle Rotation 
SPA Six-Phase Algorithm 
SVA Space Vector Algorithm 
TACS Transient Analysis of Control Systems 
TRV Transient Recovery Voltage 
Va, Vb, Vc RMS voltages of a three-phase system 
Vab, Vbc, Vca RMS three line voltages 
Zf Impedance between PCC and the fault 

point 

ZF Impedance between the fault point and 
ground 

Zl Impedance between the fault point and the 
load 

Zs Impedance between PCC and the source 

I. Introduction 
In recent years, electricity distribution companies and 

regulatory agencies have increased their efforts on the 
monitoring, evaluation and improvement of power 
quality. Many of these efforts have been driven by the 
deployment of smart grids, which are characterized, 
among other features, by the improvement and control of 
power quality [1], [2].  

Among the different electric phenomena included in 
the general field of power quality, voltage events have a 
high interest for residential, commercial and industrial 
customers. Essentially, voltage events comprehend 
electrical disturbances such as voltage dips, swells and 
interruptions, that is, sudden variations in voltage with a 
defined start and end time. They are caused by abnormal 
increments of current, that results in voltage variations at 
the Point of Common Coupling (PCC), where the 
customer affected by the event is located (Fig. 1). These 
voltage events have different origins including line faults 
[3], induction motors starts [4], transformer energization 
[5], [6], etc. They can be characterized as transients or 
non-stationary phenomena, unlike other disturbances, 
which have a quasi-stationary behavior (frequency, 
voltage fluctuations, etc.).  
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Fig. 1. A sharp current variation causes a voltage drop 
in the PCC due to the source impedance (Zs), and the 

customers experience a voltage event (dip/swell) 
 
In order to evaluate, quantify, characterize and mitigate 

voltage events, it is necessary to detect and classify them 
in an automated way, in the shortest time and with the 
greatest possible accuracy [7], [8]. The classification of a 
voltage event consists on the event identification among a 
set of predefined event models. To accomplish this, it is 
reasonable to use models that represent the types of faults 
that are most commonly found, or that are most 
representative of the grid status. There are different ways 
of approaching this issue, but the two more cited in the 
specific bibliography are the symmetrical components and 
ABC criteria [9]. This last is adopted in the present work 
since it is more complete than symmetrical components 
criterion. In particular, is used the extended ABC criterion 
[10], which includes swells. However, many of the 
concepts developed here can be easily extrapolated from 
ABC to symmetrical components criterion [11]. The 
automatic classification of voltage events can be 
performed through different algorithms, based on 
classification criterion models, which must operate with 
real-time measured voltage values [11]. These algorithms 
have some deficiencies due to the presence of 
disturbances in the grid that may lead to a wrong 
classification. These disturbances have been analyzed in a 
previous work [11], showing that the same voltage event 
can be identified in different ways depending on the 
parameters of the grid. The same work also evaluated and 
quantified the classification errors of different algorithms 
operating under similar conditions of disturbances. The 
tests showed that, in certain conditions, the errors could 
easily exceed 50% of the analyzed cases. To address this 
drawback, the authors proposed an algorithm based on the 
comparison between predefined models and real 
measurements, denominated Absolute Sequences 
Algorithm (ASA) [12]. ASA has demonstrated 
advantages over other methods reported in the specific 
bibliography, although, it does not eliminate classification 
errors completely. This paper proposes a new algorithm, 
based on the previous experience with ASA, leading to a 
significant reduction of the classification errors under the 
influence of different disturbances. The reduction of 
classification errors is achieved by using the amplitude 
and phase information of the symmetrical components of 
the three-phase voltage in the PCC. The performance of 
the proposal is evaluated by testing all possible 
combinations of disturbances for voltage event model of 
the ABC criterion. The theoretical background of voltage 
event analysis is extensive, making it impossible to 

summarize in few pages. For this reason, the work is 
organized as follows. In Section II is presented a brief 
overview of voltage event classification criteria and some 
reference classification algorithms. Also a brief 
description of disturbances that can be found in a real 
electrical network is included. Section III describes the 
proposal, which focuses on addressing the error sources 
identified in the previous section. The analysis of the 
performance and classification errors is shown in Section 
IV. Finally, Section V summarizes the contributions of 
this work. 

II. Voltage Event Classification Overview 
In this section, a brief overview of voltage event 

classification is presented. The theoretical basis of the 
three-phase voltage event analysis, disturbances that 
affect the event models and the classification algorithms is 
very extensive and exceeds the length of a normal journal 
article. For this reason, basic concepts and definitions will 
be summarized below in order to advance with the 
proposal. A deeper discussion about critical definitions 
and terminology can be found in the works of Strack et al 
[11], [12].  

II.1. Classification Criteria 

Voltage events are defined as an abnormal and 
temporary variation of the magnitude of the voltage 
supply. They are one of the most important power quality 
disturbances in power systems because of their frequency 
of occurrence and the economic impact on commercial 
and industrial customers. There are different ways to 
classify a voltage event. It can be classified by the number 
and magnitude of affected phases, the phase relationship 
between voltages, etc. The key is to be able to extract the 
critical information of the event, for example whether the 
event has a primary origin or not. In the scientific 
bibliography, two types of classification criteria can be 
found that are based on the use of predefined models of 
events, with particular phase and voltage characteristics, 
which in turn correspond to certain types of typical faults: 
 Symmetrical components classification criterion. It is 

based on symmetrical components theory and 
distinguishes between line-to-neutral and line-to-line 
events [13]; 

 ABC classification criterion. It was developed as part 
of a stochastic prediction of voltage dips and can 
distinguish between 9 types of events (dips and 
swells). As result, it is more suitable to adequately 
characterize voltage events than the symmetrical 
components criterion, because it may discriminate 
between different electrical voltages. This criterion 
originally defined seven different voltage events 
(types A to G) [13], and later, it was extended with two 
additional events (types H and I) by Ignatova [14]. 

The extended ABC classification criterion is adopted in 
this paper because it describes the voltage events and their 
possible causes with more detail. Therefore it is more 
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complete than the symmetrical components criterion.  
However, it is possible to adapt the algorithms to both 

criteria without major difficulties. 

II.2. Algorithms for Voltage Event Classification 

Classification algorithms provide a methodology for 
criterion implementation in order to help in the 
identification of fault origin and possible mitigation 
actions. For this reason it is important to have some 
algorithm to classify the voltage event in an automated 
way by using voltage measurements as data input. The 
following algorithms stand out in the literature: 
 Symmetrical Components Algorithm (SCA) uses 

symmetrical components representation of measured 
voltage during an event and the information of phase 
between positive and negative sequences to classify 
voltage dips [15]. 

 Six-Phase Algorithm (SPA) uses the line-to-neutral 
and line-to-line fundamental Root Mean Square 
(RMS) voltage, removing the zero-sequence 
fundamental voltage, to classify voltage dips [15]. 

 Space Vector Algorithm (SVA) is based on analysis of 
the space vector trajectory in the complex plane of a 
phasor, whose magnitude and phase angle are 
representative of the three-phase voltages. This 
method is able to discriminate between voltage dips 
and swells [16], [17]. 

 Absolute Sequences Algorithm (ASA) uses 
symmetrical components representation of 
measurement voltage during an event and a Mean 
Squared Error (MSE) estimation in order to classify 
voltage events. Unlike others, it make use of adaptive 
thresholds in the classification process. In this case the 
event type is determined using models that are 
actualized at each sample, improving classification 
performance [12]. 

In recent years, proposals for classifiers based on 
machine learning algorithms have been published, but 
most of them are focused on classification according to 
whether the fault amount of phases [2]. This type of 
algorithms has a great potential for development, but its 
performance is directly related to the type of training used.  

This means that its performance is very good in the 
electrical networks where the training was done, but its 
results are not easily extrapolated to other places.  

Additionally, the use of classifiers based on neural 
networks does not allow to clearly identify the 
classification errors when the event is disturbed by the 
network itself, which has not been addressed in the 
specific bibliography [18], [19]. Therefore, the study and 
comparison presented in this work are focused on 
algorithms based on transforms and algebraic relations, 
such as those previously cited. 

II.3. Common Disturbances Associated 
with Voltage Events 

Impedances between the PCC, the source and the fault 
can affect the detection and register of the voltage event, 

which derives in a wrong classification. The following list 
is a summarize of different disturbances that can affect 
classification method performance during an event: 
 Phase Angle Jumps due to Faults (PAJF). This is a 

phase angle shift observed in the line-to-neutral 
voltage with the main voltage drop (Fig. 2). In general, 
it is caused by an abrupt change in the affected line 
impedances, generally with a resistive characteristic 
[3], [20]; 

 Phase Angle Jumps due to Network (PAJN). This is a 
phase angle shift observed in all line-to-neutral 
voltages (Fig. 2). It is caused by the difference in the 
ratio between the reactance and resistance in the 
impedance between fault and PCC; and PCC and the 
source [21], [22]; 

 Symmetrical Phase Angle Rotation (SPAR). This is an 
equal phase angle shift observed in all line-to-neutral 
voltages (balanced voltage event). Generally, this type 
of events is associated to the start of large three-phase 
loads, as induction motors [4], [23]; 

 Asymmetrical Phase Angle Rotation (APAR). This is a 
phase angle shift affecting all line-to-neutral voltages 
and it is observed when positive and negative 
sequence impedances between PCC and the source are 
different. This is the case in vicinity of rotating 
machines which, unlike cables and transformers, 
present a positive and negative sequence impedance of 
different magnitude and phase [11]; 

 Deviation of Pre-fault Voltage related to nominal 
voltage (DPV). It is a normal and expected condition 
in which the pre-fault voltage in the PCC differs from 
its nominal value. For example, this is the case when 
large reactive impedances are used or in electrical 
systems with high penetration of distributed 
generators. 

III. ABC Extended Classification 
Algorithm (AECA) 

This section describes the proposed event classification 
algorithm. The core of ABC Extended Classification 
Algorithm (AECA) is the comparison of measured 
voltages at the PCC with predefined models and the 
subsequent identification of the most probable event type.  

Both, measured voltages and event models, are 
mathematically represented by symmetrical components 
theory due to the advantages that this provides in the study 
of unbalanced signals.  

 

 
 

Fig. 2. Model of radial electrical network under fault situation with 
equivalent impedances, where PQM stand for power quality meter 
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Figure 3 shows a block diagram of the complete 
system, where it can be noted the two branches of the 
classification process. Each stage of the diagram will be 
described in the following items. 
(a) Sampling & filtering: Before start the classification 

process it is necessary to acquire the PCC grid voltage 
magnitudes. The acquisition process includes both 
sampling and filtering of the voltage values by means 
of an Analogue to Digital Converter (ADC) and the 
corresponding filtering (analogue and/or digital). This 
process can be done in different ways and is not a part 
of the classification algorithm, but rather a preliminary 
stage to be implemented following the guidelines of 
the IEC 61000-4-30 standard [24]. The purpose of this 
processing stage is to obtain a clean signal, with no 
harmonic content or noise. This can be achieved using 
different strategies. From the sampling perspective, it 
can be done with a constant sampling frequency or 
with a synchronous sampling technique. In the first 
case, the acquired samples must be filtered to suppress 
harmonic components and noise. In the second case, 
which is the approach used in this work and it is the 
recommended strategy, the use of a synchronous 
sampling method has a better performance to process 
the signal and extract only the fundamental component 
of the PCC voltages [25], [26]. Voltage samples are 
processed in order to obtain voltage fundamental 
components by eliminating harmonic components and 
noise. The results of this process are three complex 
values representing the fundamental three-phase 
voltage at PCC (Vi[k], where i = a, b, c); 

(b) Preprocessing: In this block it is determined whether 
the current condition of the power grid requires the 
execution of the classification algorithm. To 
accomplish this, the average pre-fault voltage between 
the three-phase voltages (E), i.e. the voltage 
magnitude before the event itself occurs, and the 
voltage event depth (h), are calculated. The estimation 
of E is made according to the sliding reference voltage 
criterion established in the IEC 61000-4-30 standard 
and adopted by the IEEE 1564 standard. It is basically 
a first-order digital filter with a time constant of 1 
minute, which is updated with the RMS voltage 
calculation in a window of 10/12 grid cycles [12]. The 
10-cycle window is used in systems with a nominal 
line frequency of 50 Hz, and the 12-cycle window in 
systems with a nominal line frequency of 60 Hz. The 
magnitude of E is determined by averaging the three 
estimated voltages of each phase: 
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where Va, Vb and Vc are the RMS voltages estimated by 
the digital filter for each phase of the system. 
Parameter h is estimated as the quotient h = V/E, where 
V is the retained voltage in the affected phase or 
between the phases where a fault is detected. This can 
be estimated as the lowest of the six fundamental RMS 

voltages (three phase voltage and three line voltages) 
scaled by a factor according to: 
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Additionally, the highest of the six fundamental RMS 
voltages, Vmax, which is used to detect overvoltages 
and triggers the classification process, is calculated as 
follows: 
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(c) Activation: From the calculation of the minimum and 

maximum values of the six fundamental RMS voltages 
Eqs. (2) and (3), it is decided whether the classification 
algorithm is executed. If Vmin is less than 90% of the 
nominal value or Vmax is greater than 110% of the 
nominal value, the classification algorithm is enabled. 
These values are based on Std. IEC 61000-4-30 [24] 
and Std. IEEE 1159 [27]. Otherwise, the state of the 
electrical network is considered normal; 

(d) Predefined models calculation: Once the event 
condition is detected, predefined models for the most 
representative grid faults are calculated based on 
parameters E and h. These predefined models are 
summarized in Table I. Parameters were obtained by 
applying the Fortescue’s theorem in a three-phase 
unbalanced system considering analytical expressions 
of extended ABC classification criterion [11], [16]. At 
the end of the predefined models calculation stage are 
available the magnitudes of the symmetrical 
components obtained from the events model. In 
parallel, the same symmetrical components are 
calculated using the Fortescue theorem, which 
requires a phase synchronization; 

(e) Phase synchronization: The predefined models 
calculated in the previous section are obtained 
considering the retained voltage as Va[k] for 
single-phase faults or Vb[k]−Vc[k] for two-phase faults. 
In order to reduce the classification errors and allow 
the comparison between PCC voltages and the 
predefined models, it is necessary to re-synchronize 
representative complex values of the three-phase 
voltage under fault conditions. First, the reference 
phase is determined from the calculation of Vmin (Eq. 
(2)) and then, the angle of that phase is used to rotate 
the three-phase system, as shown in Fig. 4(a). This 
process generates a new set of complex values, where 
the reference voltage has a phase angle of zero degrees 
(Va*[k]); 

(f) Symmetrical components calculation: This process 
allows representing the unbalanced three-phase 
voltage as the sum of three different balanced 
three-phase systems, known as positive sequence, 
negative sequence and zero sequence. The positive 
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sequence is directly related to the energy transfer from 
the generator to the user, while the negative sequence 
is a measure of the imbalance and therefore, of the 
inefficiency of the system [9]. On the other hand, the 
zero-sequence component of the fundamental voltage 
is a measure of the imbalance produced during an 
asymmetrical fault in a network with isolated neutral; 

 

 
 

Fig. 3. Block diagram of the proposed AECA 
 

 
(a) 

 

 
(b) 

 
Figs. 4. Example of (a) the phase synchronization previous the 

symmetrical components calculation and (b) phase compensation after 
the same calculation 

 
TABLE I 

TYPE OF EVENT AND SYMMETRICAL COMPONENTS REPRESENTATION 
Type VN0 VN+ VN- 

A 0 Eh 0 
B E(1-h)/3 E(2+h)/3 E(1-h)/3 
C 0 E(1+h)/2 E(1-h)/2 
D 0 E(2+h)/2 E(1-h)/2 
E E(1-h)/3 E(1+2h)/3 E(1-h)/3 
F 0 E(1+2h)/3 E(h-1)/3 
G 0 E(1+2h)/3 E(1-h)/3 
H E(h-1) E 0 
I* 2E(1-h) E 0 
I** E/2 E(1+2h)/3 E(1-2h)/3 

Note: type I event is defined as I** when h ≤ 0.75 or I* when h > 0.75 

(g) Phase compensation: As mentioned in Section II.3, 
voltages at the PCC during a grid fault may be affected 
by phase jumps and phase rotations. For this reason, 
the positive, negative and zero sequences obtained in 
the previous step may present phase angles different 
from 0° and/or 180°, unlike what happens with the 
predefined models. As result, the following phase 
correction is implemented: 
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where i=+,−,0 are the corrected positive, negative and 
zero sequence respectively and φi is the phase of 
original sequence (Fig. 4(b) example). As result, 
corrected sequences are always in phase or phase 
opposition to the system reference (0°). This approach 
may cause some errors in the classification, but only in 
the case of very high phase jumps and phase rotations, 
which are statistically rare. Next section shows that 
this correction significantly reduces errors introduced 
by the classification algorithm; 

(h) Calculation of the mean square error and event 
classification: Once the symmetric components of 
both, predefined models and PCC voltages, have been 
computed, the MSE is calculated for each type of 
event defined according to the extended ABC 
criterion. The most probable event type is determined 
as the one with the lowest error between the model and 
the measurements: 
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IV. Performance of AECA 
The performance of the proposed AECA was evaluated 

through a series of exhaustive computational tests. For 
this purpose, different magnitudes of each disturbance 
(Section II.3) and all predefined models in extended ABC 
classification criterion (type A to I) were considered.  

Voltage dips from 10% to 90% of the nominal voltage 
were analysed, using simulation steps of 1%. All voltage 
events were simulated considering phase angles between 
−90° and +90°, with simulation steps of 1°, and pre-fault 
voltage variations (DPV) from 90% to 110%, with 
simulation steps of 1%. Therefore, all possible 
combinations of the disturbances discussed in Section II.3 
were considered. In this way, each type of voltage event 
was simulated with 16200 different combinations of 
voltage dip depth and phase disturbance (PAJF, PAJN, 
SPAR and APAR) and with 1800 combinations of voltage 
dip depths and pre-fault voltage variations. The results of 
this set of simulations for the AECA are shown in Fig. 5. 

The horizontal axis of each figure is the residual 
voltage during the event (V) and the vertical axis is the 
phase angle introduced by each of the disturbances 
mentioned in Section II.3 (SPAR, APAR, PAJN, PAJF) or 
the pre-fault voltage (DPV).  



 
I. Carugati et al. 

Copyright © 2023 Praise Worthy Prize S.r.l. - All rights reserved  International Review of Electrical Engineering, Vol. 18, N. 3 

215 

 
 

Fig. 5. AECA performance considering all types of disturbances and voltage events 
 

Dots indicate the conditions where the algorithm fails 
in the event classification and the color indicates which 
type of event is detected in that case. However, there are 
extreme operation conditions that hardly ever happen in 
the real world (phase shifts near 90° or pre-fault voltages 
lower than 60% of the nominal voltage). The registers of 
the EPRI DPQ Statistical Summary Report [28] shown 

that 74.79% of the voltage dips present a minimum 
effective voltage between 60% and 90%, with phase 
jumps between −45° and 45°. For this reason, a green 
colored area was added to Fig. 5, to identify the region 
where can be found almost 75% of the voltage dips. As it 
can be seen in Fig. 5, proposal shows a very good 
performance for event classification. Events type A, B, I 
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and H, show an error lower than 3.2% of all analyzed 
cases. Events type C and D only show error regions for 
PAJF while events type E, F and G show error regions for 
PAJF, PAJN and APAR. However, only a maximum error 
of 21.3% was computed considering high severity of 
disturbances under study.  

Additionally, the algorithm is almost completely 
immune to SPAR and DPV disturbances in all the cases. 
All these items represent a significant improvement in 
comparison with other proposals and also, it is important 
to note, that some errors are difficult to solve with the 
classification algorithm since they are inherent to 
classification criteria [11]. For comparison purposes, 
Tables II and III report relative classification errors of 
AECA and the others algorithms presented in Section II.2 
for all tests.  

These errors were obtained by averaging the 
classification errors produced by all the disturbances 
defined in Section II.3.  

In Table II, each of these errors were calculated as the 
number of misclassified events (dots area of figures) over 
the total area of the figure while, in Table III, it was 
considered only the area in green color to compute the 
percentage error. Values related to methods SCA, SPA, 
SVA and ASA were extracted from the tests of the work 
of Strack et al [12]. It can be seen that in these conditions 
AECA is the algorithm with the lowest error levels in all 
the cases. It can be shown that the error reduction of 
AECA with regard to the best of the previous methods 
(ASA) is from a 44% in the case of voltage event type G  
to more than 98% in the case of voltage events type C. The 
analysis of the data corresponding to the green area (most 
probable cases, Table III) shows that the classification 
error is reduced in relation to the other algorithms, but it 
also increases with respect to the general case (Table II) in 
the cases of events B, D, F , G and H.  

This is the result of the form in which this error 
percentage is being calculated. The percentage 
classification error comprises the sum of all error 
produced by different disturbances (SPAR, APAR, PAJN, 
PAJF and DPV). By reducing the area of analysis, 
constraining the phase angles and residual voltage, the 
ratio of properly classified cases to those that are not is 
modified. In the event types mentioned above, a 
significant proportion of errors is present in the area of 
interest, so the error rate increases. Even so, the final 
classification is more accurate than the one obtained with 
other algorithms, which have a lower performance. The 
performance of AECA operation was evaluated with real 
data acquired at the PCC of Engineering Faculty of the 
National University of Mar del Plata.  

 
TABLE II 

CLASSIFICATION ERROR OF EACH ALGORITHM, OBTAINED BY 
AVERAGING THE RESULTS OF THE FIVE TESTS PERFORMED 

Alg. e% eB% eC% eD% eE% eF % eG% eH% eI% 
SCA 0 42.08 59.90 57.62 39.04 60.02 62.01 - - 
SPA 0 34.45 42.95 40.67 52.45 56.08 58.04 - - 
SVA 0 33.69 47.23 45.17 45.50 67.33 69.39 41.53 40.01 
ASA 0 25.74 32.75 27.29 27.23 49.52 53.48 13.89 10.29 

AECA 0 0.14 5.88 7.09 8.14 21.30 21.10 1.22 3.23 

TABLE III 
CLASSIFICATION ERROR OF EACH ALGORITHM, OBTAINED BY 

AVERAGING THE RESULTS OF THE FIVE TESTS PERFORMED TAKING 
INTO ACCOUNT ONLY THE GREEN COLORED AREA 

OF MOST LIKELY EVENTS 
Alg. eA% eB% eC% eD% eE% eF % eG% eH% eI% 
SCA 0 38.69 54.92 53.95 51.86 72.41 73.05 - - 
SPA 0 48.86 51.08 50.13 60.59 62.00 62.53 - - 
SVA 0 50.46 53.23 52.55 57.36 78.10 78.89 53.51 62.24 
ASA 0 3.57 41.57 40.28 8.95 55.33 56.16 17.17 27.16 

AECA 0 0.45 0.61 12.63 1.75 35.72 31.76 0.40 2.99 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 6. Classification of a voltage event acquired from the grid: (a) 

acquired instantaneous voltages, (b) estimated fundamental components 
and (c) automatic classification generated by the AECA 

 
Figures 6 show the results of processing a fault 

condition occurred on November 23, 2021, at 9:15 a.m.  
The fault starts as an asymmetrical voltage dip with 

main voltage drop in phase b, and a lower voltage drop in 
phases a and c (which it may corresponds to a B or G 
event). Initially, the classification algorithm determines 
that the voltage grid is in normal state (N), since RMS 
voltages are between 90% and 110% of nominal voltage.  

After the event is detected, it is classified as a type G 
event. In general, type G events are result of the power 
transformers propagation of events originated at other 
voltage levels. It may be the result of a type E event 
propagated through transformers that eliminate the zero 
sequence components. After almost one cycle of the 
mains voltage, voltage dip evolves to a symmetrical event 
and AECA changes the classification to a voltage event 
type A, resulting in an event segmentation. The maximum 
depth of the event is h = 0.77, after that the voltage grid 
normalizes the magnitude and the grid returns to the 
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normal state (N). It is important to note that the algorithm 
is executed with each new sample of the three-phase 
voltage and classification dynamic depends on the 
filtering technique and symmetrical components 
estimation method used. 

V. Discussion 
The proposed algorithm shows a significant 

improvement in comparison with the methods mentioned 
in Section II.2. Although errors are not completely 
removed, since some of them are inherent to the 
classification criterion, and therefore impossible to 
mitigate, the classification errors for all performed tests 
were from 2 to 50 times lower than the obtained with other 
methods. Also, the algorithm provides total immunity to 
Symmetrical Phase Angle Rotations (SPAR) and 
Deviation of Pre-fault Voltage related to nominal voltage 
(DPV). One of the most important things to highlight 
about the proposed algorithm is that the classification can 
be done using a standard criterion, such as ABC, based on 
predefined models and performing simple mathematical 
calculations. Although the AECA is slightly more 
complex than those proposed by other authors, the results 
obtained are much better without having to resort to more 
complex approaches such as machine learning. This is a 
point worth highlighting, since the whole process is based 
on linear transformations and algebraic calculations, 
which makes the results independent of historical data, 
and there is no need to train on previous data. As far as the 
classification errors of the AECA are concerned, they 
could be reduced by adding more information about the 
voltage event in question. Taking into account that 
classification errors are mainly due to the differences in 
impedance between the physical location of the electrical 
fault and the point where the measurement is made, or due 
to the differences between resistance and reactance, 
among others, it could reduce the percentage of errors by 
adding information from other points in the network. One 
way to do it would be by measuring the voltages at 
different points of the grid or by adding topological 
information about the network.  

VI. Conclusion 
In this work, a new algorithm for the classification of 

voltage events using the ABC criterion was proposed. The 
proposed algorithm shows a significant reduction of 
classification errors by using the phase information of 
positive, negative and zero sequences. It allows to 
distinguish among many different events that have the 
same absolute value of the sequence components. The 
algorithm also performs an error comparison between real 
components and those estimated from all models, 
classifying in a more flexible way, and eliminating some 
restrictions imposed in a previous proposal. A thorough 
evaluation of the proposal performance against different 
electrical network disturbances during the evolution of 
voltage events was presented (PAJF, PAJN, SPAR, 

APAR and DPV), showing a significant improvement 
over other methods reported in the specific bibliography 
(ASA, SVA, SCA and SPA). Although errors are not 
completely removed, since some of them are inherent to 
the classification criterion, and therefore impossible to 
mitigate, the reduction of errors in the classification for all 
performed tests is significant. Also, the algorithm 
provides a high disturbance mitigations related to 
Symmetrical Phase Angle Rotations (SPAR) and 
Deviation of Pre-fault Voltage related to nominal voltage 
(DPV). These are very common disturbances that affect 
other algorithms, independently of event type. The 
proposed algorithm has the potential to be further 
improved by incorporating additional features, such as the 
use of information of different sources. It is possible to 
develop a classification method that merges the 
information of all the analyzed algorithms, and that by 
means of a probabilistic method determines which is the 
most feasible event. In this way, using the information 
generated by the different classification algorithms and 
using a voting system that takes into account the response 
of each algorithm, it is possible to determine which is the 
most probable event. Another possible approach is to use 
Phasor Measurement Units (PMU) as a device to classify 
events, taking advantage of the synchronization based on 
a universal time clock. In this way, events could be 
classified from different measurement points, in order to 
correctly locate and identify faults. 
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