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A B S T R A C T

Shiga toxin-producing Escherichia coli (STEC) O91 has ranked in the top five of the non-O157 serogroups most
frequently associated with human cases. In order to gain insight into the genetic diversity of O91 Latin American
STEC strains, we analyzed their virulence properties and carried out a subtyping assay. A panel of 21 virulence
genetic markers associated with human and animal infections was evaluated and the relatedness among strains
was determined by a multiple-locus variable-number tandem repeats analysis (MLVA) comprising 9 VNTR loci.
Twenty-two STEC O91 isolated from cattle and meat food and belonging to 5 serotypes (O91:H21, O91:H8,
O91:H14, O91:H28, O91:H40) were studied. Eight virulence profiles were obtained for the O91 STEC strains: 4
for O91:H21 plus one for O91:H8, O91:H14, O91:H28 and O91:H40. All strains contained ehxA and lpfA0113
genes and only both stx1-positive strains lacked saa, which encodes the STEC autoagglutinating adhesin. Other
genes involved in adhesion were detected: ehaA (91%), elfA and espP (86%), ecpA (82%) and, hcpA (77%). The
gene encoding the cytolethal distending toxin type-V (CDT-V) was found only in O91:H8 and O91:H21, being
present in the majority (89%) of strains of this last serotype. MLVA typing divided the total number of strains
into 12 genotypes, and 9 of them were unique to a single strain. No association was observed between the
virulence profiles and the source of the strains. Although they lack the eae gene, most of the strains have the
genetic potential to adhere to host cells through other structures and possess cdt-V, which has been found in
STEC strains involved in serious diseases. The MLVA showed clonal relatedness among strains isolated from
cattle belonged to a same dairy farm and suggested that the same clone remains circulating throughout the year
and, on the other hand, the need to increase the number of VNTR loci which could allow a higher discrimination
among O91:H21 isolates.

1. Introduction

Shiga toxin-producing Escherichia coli (STEC) O91 has ranked in the
top five of the non-O157 serogroups most frequently associated with
human cases, and strains belonging to this serogroup are the most
common human pathogenic eae-negative STEC strains [1]. They have
been isolated from foods of different origins, such as beef, pork, lamb or
poultry [2–8] as well as animals [7,9–13].

Clinical cases related to STEC O91 have been regularly reported
since the 1990s [1,14–21]. Particularly, strains of the O91:H21 serotype
have caused severe infections, including haemolytic uremic syndrome
(HUS). However, unlike other strains that cause disease mainly in
young children, these have been commonly isolated from adult patients
[22–24]. The strains of this serogroup, at least in Germany, seem to be

transmitted mainly by food, since these have been identified as the only
risk factors for adults with sporadic infection by STEC O91 in that
country between 2001 and 2003 and, in addition, because O91 is the
second STEC serogroup most frequently isolated in food samples in that
region [22,23].

There has been an increase in the detection of O91 strains in
Germany from ∼5% of all STEC strains isolated from humans in 1999
to ∼15% in 2012 and 2013 [25]. Similarly from 2007 to 2012, the
serogroups O91 and O113 were among the most common non-O157
serogroups associated with human disease in Netherlands [26].

Pradel et al. [27] compared strains of serogroup O91 isolated from
patients, cattle and food from the central region of France and did not
find any characteristic that was specific to the strains originating from
HUS. Recently, Feng et al. [28] analyzed foods, environmental and
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clinical strains from United States and the European Union.
Multiple-locus variable-number of tandem-repeats analysis (MLVA)

has emerged as a valuable method for subtyping foodborne pathogens
and our laboratory has applied it successfully to investigate STEC di-
versity in several serotypes [29]. As far as we know, until now the
MLVA has not been used to study O91 strains diversity.

Most studies that have characterized STEC O91 strains have focused
on clinical isolates, and according to our knowledge, there is no specific
study of O91 STEC strains in Latin America. For these reasons and in
order to gain insight into the genetic diversity of STEC O91 strains, we
analyzed virulence properties of strains isolated from cattle and food in
Argentina and carried out a MLVA assay to define genetic relatedness
among the isolates.

2. Materials and methods

Twenty-two STEC O91 isolates obtained from cattle and meat food
in Argentina and belonging to 5 serotypes (O91:H21 (n = 18), O91:H8
(n = 1), O91:H14 (n = 1), O91:H28 (n = 1), O91:H40 (n = 1)) were
studied. They had been collected between 1995 and 2010 from cattle,
and beef and poultry products. Cattle isolates were obtained from 4
dairy farms (named A-C-D-E), one feedlot and one grazing farm. Strains
had been previously characterized by PCR regarding the presence of
stx1, stx2, eae, ehxA, and saa genes [6,30–32].

We evaluated a panel of 21 virulence genetic markers (cdt-V, ecpA,
ehaA, elfA, epeA, espP, hcpA, katP, lpfA0113, sfpA, stcE, subA, Z4321, Z4326,
Z4332, Z4333 plus the virulence genes mentioned in the above paragraph)
associated with human and animal infections by PCR [see Table 1].
Also, we determined the genetic relatedness by a Multiple-locus Vari-
able Number Tandem Repeat Analysis (MLVA) amplifying 9 generic

VNTR loci [42,43], with the conditions described by González et al.
[44].

3. Results

Eight virulence profiles were obtained for the O91 STEC strains: 4
for O91:H21 and one for O91:H8, O91:H14, O91:H28 and O91:H40,
respectively. All strains contained ehxA (encoding for a hemolysin) and
lpfA0113 (encoding for a fimbriae) genes and only both stx1-positive
strains lacked saa, which encodes the STEC autoagglutinating adhesin.
Other genes involved in adhesion were detected: ehaA (91%), elfA and
espP (86%), ecpA (82%) and, hcpA (77%). On the other hand, nine
virulence genes (eae, epeA, katP, sfpA, stcE, subA, Z4326, Z4332, Z4333)
were never detected in the studied isolates. The gene encoding the
cytolethal distending toxin type-V (CDT-V) was found only in O91:H8
and O91:H21, being present in the majority (89%) of strains of this last
serotype (Fig. 1).

MLVA typing divided the total number of strains into 12 distinct
genotypes, and 9 of them were unique to a single strain. This assay
detected a limited diversity considering that several loci were little
polymorphic. The isolates could be principally discriminated by alleles
of locus CVN014 (Nei's Diversity index: DN = 0.7) since other VNTR
loci showed considerably lower diversity index values (CVN016:
DN = 0.3; CVN001 and CVN004: DN = 0.17; CVN002, CVN007 and
CVN015: DN = 0.09). On the other hand, loci CVN003 and CVN0017
showed a null allele in all the isolates (Fig. 2). The value of Simpson's
diversity index, related to the discrimination power of the method, was
DS: 0.86.

Some isolates obtained from the same dairy farm (dairy farm D) but
in different seasons and identical virulence profile showed the same

Table 1
Virulence genes assessed by PCR in the present study. Primer sequences, annealing temperature, amplicon size and references are given. EHEC: Enterohemorrhagic
Escherichia coli.

Gene Encoded protein Primer sequence (5′-3′) Annealing
temperature

Amplicon (bp) Reference

ehxA EHEC hemolysin Fw- ACAGCTGCAAGTGCGGGTCTG
Rv- GGGATGCACTGGAGGCTGCAC

58 °C 262 [33]

subA Subtilase cytotoxin Fw- TATGGCTTCCCTCATTGCC
Rv- TATAGCTGTTGCTTCTGACG

58 °C 556 [34]

katP Periplasmic catalase peroxidase Fw- GCGCCAGTGGTGGTCAGCAA
Rv- ATATCGGGCTGCCGGTCCCA

58 °C 914 [33]

stcE Zinc metalloprotease Fw- GGCTCCGGAGGTGGGGGAAT
Rv- GAAGCCGGTGGAGGAACGGC

58 °C 399 [33]

espP Extracellular serine protease Fw- GCTGGCAACCAGCAACAGCG
Rv- CGGTAGCCCGCTTCTGCACC

58 °C 774 [33]

ehaA EHEC autotransporter Fw- AGGCATGAGACACGATC
Rv- AAGTCGTGCCATTGAGC

55 °C 500 [35]

lpfAO113 Long polar fimbriae Fw- ACTTGTGAAGTTACCTCC
Rv- CGGTATAAGCAGAGTCG

55 °C 360 [35]

ecpA E. coli common pilus Fw- GCAACAGCCAAAAAAGACACC
Rv- CCAGGTCGCGTCGAACT

55 °C 477 [36]

elfA E. coli laminin-binding fimbriae Fw- ACGATGAAAAAAAGTGTATTGACGG
Rv- CCGCATTCACATTACCAGAA

60 °C 511 [36]

hcpA Pilin subunit of hemorrhagic coli pilus Fw- TCGCTAGTTGCTGACAGATTT
Rv- AATGTCTGTTGTGTGCGACTG

48 °C ∼680 [37]

sfpA Sorbitol-fermenting EHEC O157 fimbriae plasmid-encoded Fw- AGCCAAGGCCAAGGGATTATTA
Rv- TTAGCAACAGCAGTGAAGTCTC

60 °C 440 [38]

epeA Serine protease autotransporter Fw- CACCCTGTAGAATCTTA
Rv- CTGAATAAATCCAGCCC

46 °C 1259 [39]

cdt-V Cytolethal distending toxin Fw- TTCATTGTTCGCCTCCTG
Rv- TTTATAAGCTGGTATCCTG

50 °C 755 [40]

Z4321 Protein homologous to PagC membrane protein of Salmonella serovar
Typhimurium

Fw- ATGAGTGGTTCAAGACTGG
Rv- CCAACTCCAACAGTAAATCC

56 °C 521 [41]

Z4326 Protein homologous to Shigella flexneri enterotoxin 2 Fw- GGATGGAACCATACCTGG
Rv- CGCAATCAATTGCTAATGC

56 °C 551 [41]

Z4332 Protein homologous to Efa1 (EHEC factor for adherence) Fw- CTCCCAGAGATAATTTTGAGG
Rv- CAACTGTATGCGAATAGTACTC

56 °C 504 [41]

Z4333 Protein homologous to Efa1 (EHEC factor for adherence) Fw- CTGTCAGACGATGACATTGG
Rv- GAAGGATGGGCATTGTGTC

56 °C 547 [41]
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MLVA type (isolates TRN5.1.1, VO7.4.4, VO10.1.4, VO59.1.1,
VO59.3.2, and VO69.3.2).

4. Discussion

No association was observed between the virulence profiles and the
source of the isolates. Strains of different serotypes within the O91
serogroup differed by the spectrum of putative virulence genes.
However, it should be taken into account that although the 22 STEC

isolates studied comprised 5 serotypes, mostly belonged to O91:H21,
with only a single isolate represented each of the other four serotypes.

Although isolates lack the LEE pathogenicity island, most of the
strains have the genetic potential to adhere to host cells through other
structures such as ehaA, elfA, espP, ecpA and, hcpA, and possess the cdt-V
gene, which has been found in STEC strains involved in serious diseases.
This gene encodes a genotoxin and cyclomodulin which causes DNA
damage, cell cycle arrest, and ultimately the death of the cells [45].
Also, Bielaszewska and colleagues [1] demonstrated that CDT-V

Fig. 1. Cluster analysis of STEC O91 strains
isolated from cattle and food based on
virulence-associated genes profiles. The
dendrogram was generated using the
BioNumerics v.6.6 software. The presence
(black) or absence (blank) of genes, the
name and the origin of the strains are
shown. Genes not found in the any of the
studied isolates: eae, epeA, katP, sfpA, stcE,
subA, Z4326, Z4332, Z4333.

Fig. 2. Multiple-locus variable-number tandem repeats analysis–based clustering of STEC O91 isolates investigated in this study. Similarities among MLVA profiles
were calculated using categorical coefficients and UPGMA clustering method.
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produced by STEC O91:H21 strains causes irreversible injury to the
human microvascular endothelium. In previous studies cdt-V was found
at lower frequencies, 70% and 65% of the O91:H21 strains, respectively
[1,28] than in this study (89%) and, this gene was also detected in two
O91:H14 strains [28].

All isolates had ehxA encoding a hemolysin. This gene was also
common in another O91 study, being found in 82% of the O91:H21 and
60% of the O91:H14 strains [28]. However, other common EHEC
(Enterohemorrhagic E. coli) plasmid genes, such as katP, epeA, stcE, and
subA, were not detected.

Interestingly, from the nine virulence genes which were not found
in the isolates, five (epeA, katP, sfpA, stcE, subA) are located on plas-
mids. In relation to katP and subA they were previously detected in
different percentages in O91:H14 [28]. It is possible that, if we could
have analyzed more O91:H14 isolates, we would have detected those
genes in some isolates. On the other hand, genes sfpA and stcE have
been only detected in O157 strains. The remaining four genes not de-
tected (eae, Z4326, Z4332, Z4333) are located on pathogenicity islands
(PAI), another kind of mobile genetic elements. The lack of eae is a
characteristic trait of O91 serogroup. In relation to the Z genes, located
on another PAI, OI-122, our results agree with those of Konczy et al.
[46] and Cadona et al. [47], which showed that when eae was absent,
only Z4321 was present.

The plasmidic serine protease gene espP, was present in 100% of the
O91:H21 strains versus the 82% detected by Feng et al. [28]. On the
other hand, the saa gene was found in all stx2-positive isolates of this
study, which represent 94% of all O91:H21 isolates. The lone O91:H14
strain of our study was stx1-positive/saa-negative and it was isolated
from a chicken burger. In Feng's study [28], saa was found in 78% of
the O91:H21 strains. Results suggest the presence of megaplasmids
harbouring different genes' combination. We conclude that STEC O91
isolates from Argentina harbor several toxin and adhesion genes and
show variability in relation to virulence factors, with the presence of
greater number of virulence traits in the O91:H21 serotype.

The MLVA results presented here showed genetic diversity within
the STEC O91 serogroup. But, although different MLVA profiles were
detected, the differences between profiles, in general, were given in a
single locus (SLV- Single Locus Variation) and, in many of the cases, by
a single repetition unit. By other hand, CVN003 and CVN017 did not
amplify in any isolates, and therefore we suggest excluding them from
the assay to analyze O91 genetic diversity. The MLVA showed clonal
relatedness among strains isolated from cattle belonged to a same dairy
farm and suggested that the same clone remains circulating throughout
the year. This fact is not totally stricking since the environment has
been highlighted as an important source of transmission of STEC. Once
contaminated the environment has the potential to act as a reservoir of
infection/re-infection for cattle [48]. Particularly, water contaminated
with fecal material is one of the major source of exposure of cattle to
enteric bacteria such as E. coli [49].

The O91:H21 strains seem to be a highly conserved group with
cattle or food strains with similar or nearly identical virulence profile to
those of the clinical strains that have caused HUS. Also, in relation to
Multi Locus Sequence Typing (MLST) data and regardless of the scheme
used, the results of previous studies are consistent, in that the O91:H21
strains are genetically uniform, sharing HUS-associated strains and
environment/foods strains the same clonal profile. Two of the isolates
here analyzed, one from cattle (AP 16-1) and one from food (HAB 14)
had the MLST profile ST89 (CG34, CC230) [50]. Feng et al. [28] using
the same MLST scheme (Whittam MLST) obtained ST89 or variants of it
for all O91:H21 strains from environment, food and cattle obtained in
USA. On the other hand, Mellmann and colleagues [51] detected, using
the Achtman MLST scheme, that all the twenty O91:H21 from European
Union patients had ST442, which describe de same clonal group [28].

The information on virulence genetic characteristics of O91 strains
circulating in Latin America, until now, has been very scarce. This is a
first report but further studies are needed to provide new data about

this group of STEC, especially from South America region.
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