Expression of the hybrid bacteriocin Ent35-MccV in *Lactococcus lactis* and its use for controlling *Listeria monocytogenes* and *Escherichia coli* in milk

Leonardo Acuña, Natalia Corbalan, Marcos Quintela-Baluja, Jorge Barros-Velázquez, Augusto Bellomio

PII: S0958-6946(20)30020-0

DOI: https://doi.org/10.1016/j.idairyj.2020.104650

Reference: INDA 104650

To appear in: International Dairy Journal

Received Date: 19 October 2019

Revised Date: 28 December 2019

Accepted Date: 31 December 2019

Please cite this article as: Acuña, L., Corbalan, N., Quintela-Baluja, M., Barros-Velázquez, J., Bellomio, A., Expression of the hybrid bacteriocin Ent35-MccV in *Lactococcus lactis* and its use for controlling *Listeria monocytogenes* and *Escherichia coli* in milk, *International Dairy Journal*, https://doi.org/10.1016/j.idairyj.2020.104650.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

1	Expression of the hybrid bacteriocin Ent35-MccV in Lactococcus lactis and its use
2	for controlling Listeria monocytogenes and Escherichia coli in milk
3	
4	
5	
6	
7	Leonardo Acuña ^{a,b,†} *, Natalia Corbalan ^{b,c†} , Marcos Quintela-Baluja ^b , Jorge Barros-
8	Velázquez ^b , Augusto Bellomio ^c
9	
10	
11	
12	
13	^a Instituto de Patología Experimental (CONICET-UNSa), Salta, Argentina.
14	^b LHICA, Department of Analytical Chemistry, Nutrition and Food Sciences, University
15	of Santiago de Compostela, Lugo, Spain.
16	^c Instituto Superior de Investigaciones Biológicas (CONICET-UNT), Tucumán,
17	Argentina.
18	
19	
20	
21	
22	*Corresponding author. Tel.:
23	E-mail address: leonardo.a@conicet.gov.ar (L. Acuña)
24	
25	[†] These authors contributed equally to this paper.

27 ABSTRACT

29	Bacteriocins are antimicrobial peptides synthesised ribosomally. One of the main
30	drawbacks of bacteriocins as food biopreservative agents is their restricted action
31	spectrum. To obtain a broad-spectrum bacteriocin-producing lactic acid bacterium, we
32	engineered a fusion protein between the enterocin P signal peptide and the broad-
33	spectrum chimerical bacteriocin Ent35-MccV. Lactococcus lactis NZ9000 transformed
34	with the recombinant plasmid (pRUK) was tested to identify the bacteriocin production
35	by antimicrobial activity and colony MALDI-TOF mass spectrometry. Additionally, we
36	performed mixed cultures in skim milk to determine the inhibition of Lc. lactis NZ9000
37	(pRUK) on both Listeria monocytogenes and Escherichia coli strains isolated from
38	food. The results showed that Lc. lactis NZ900 (pRUK) was able to diminish the growth
39	of both L. monocytogenes and E. coli in skim milk due to Ent35-MccV production.
40	Ent35-MccV is the first linear, genetically engineered bacteriocin produced in situ in
41	food products used effectively to control Gram-negative and Gram-positive foodborne
42	pathogens.
43	

1. Introduction

47	Pathogenic bacteria cause an important percentage of foodborne illnesses
48	resulting from consumption of contaminated food (Alegbeleye, Singleton, & Sant'Ana,
49	2018). Among them, Escherichia coli and Listeria monocytogenes are responsible for a
50	large number of outbreaks and deaths (WHO, 2015). In this regard, the implementation
51	of appropriate safety instrumented systems in the food industry has decreased the
52	incidence of foodborne illnesses, the application of hurdle technologies being an
53	effective approach to food processing (Leistner, 2000). The aim of this strategy is to
54	increase the shelf life and the microbiological safety of processed foods without
55	affecting their nutritional and organoleptic qualities. For this reason, the use of
56	bacteriocins in combination with different gentle physical treatments has been
57	increasingly described as an adequate alternative in food preservation (Gálvez,
58	Abriouel, Benomar, & Lucas, 2010; Gálvez, Abriouel, López, & Ben Omar, 2007).
59	Bacteriocins are bacterial antimicrobial peptides synthesised ribosomally
60	(Cotter, Hill, & Ross, 2005), which are capable of inhibiting many foodborne pathogens
61	and food spoilage bacteria. In particular, bacteriocins from lactic acid bacteria (LAB)
62	have been widely studied and considered candidates for use as preservatives in food
63	products (Johnson et al., 2017). Bacteriocins can be used as additives or produced in
64	situ in the food (Alvarez-Sieiro, Montalbán-López, Mu, & Kuipers, 2016; Camargo,
65	Todorov, Chihib, Drider, & Nero, 2018). The in situ production can be performed in
66	several ways: (i) as protective culture in non-fermented food; (ii) as starter culture
67	employing the bacteriocinogenic strain; and (iii) as adjunct with the starter culture. The
68	use of bacteriocin-producing bacteria as starter culture requires these bacteria to carry
69	out the fermentation process and produce enough quantities of bacteriocin to preserve

70	the food. Instead, if the bacteriocin-producing strain is added as co-culture, its
71	participation in the fermentation process is not required, and the strain should not
72	interfere with the process. In any case, cultures can be used as biopreservative agents
73	inhibiting the growth of undesirable bacteria during the shelf life of foods, LAB being
74	widely used for this purpose in the food industry.
75	Despite recent advances in food applications of antimicrobial peptides, a major
76	limitation of LAB bacteriocins is their activity primarily against related Gram-positive
77	bacteria. This condition makes these bacteriocins unsuccessful against Gram-negative
78	bacteria such as E. coli and/or Salmonella spp. Therefore, searching for alternatives to
79	control pathogenic Gram-negative bacteria is necessary (Chalón, Acuña, Morero,
80	Minahk, & Bellomio, 2012). To this end, we constructed a chimeric bacteriocin called
81	Ent35-MccV (Acuña, Picariello, Sesma, Morero, & Bellomio, 2012), where the
82	bacteriocin enterocin CRL35, produced by Enterococcus mundtii CRL35, was attached
83	to the linear microcin V, produced by E. coli. This hybrid bacteriocin gathers in a single
84	molecule the anti-listerial and anti-E. coli activity derived from its parental
85	antimicrobial peptides. This new bacteriocin proved to be active against Gram-positive
86	and Gram-negative emergent foodborne pathogens and spoilage strains and to be
87	capable of controlling E. coli an L. monocytogenes pathogenic strains in skim milk and
88	hamburgers (Acuña et al., 2015).
89	Our specific aims were to obtain a strain of Lactococcus lactis able to produce
90	the hybrid bacteriocin Ent35-MccV through the extracellular space using a signal
91	peptide (SP) recognised by the general Sec-dependent system (Cintas, Casaus,
92	Håvarstein, Hernández, & Nes, 1997) and to evaluate its use against foodborne
93	pathogens. Our interest in this bacterium lies in the fact that it is a well-known food-
94	grade LAB widely used in the production of some dairy products, where it is

95	responsible for flavor and textural properties as well as food preservation (Leroy & De
96	Vuyst, 2004; Tarazanova, Huppertz, Kok, & Bachmann, 2018; Topisirovic et al., 2006).
97	Interestingly, Lc. lactis is generally recognised as a safe (GRAS) bacterium, which
98	highlights its potential for in vivo delivery of bacteriocins in fermented food and for its
99	use as a host for in situ production (Dal Bello et al., 2012; Renye & Somkuti, 2010).
100	Thereby, we constructed a plasmid vector to produce Ent35-MccV using the enterocin P
101	signal peptide (SPentP) for extracellular expression and taking advantage of the
102	constitutive promoter P32. We transformed a Lc. lactis strain to evaluate the
103	heterologous bacteriocin expression and the in situ potential use against foodborne
104	pathogenic bacteria. We confirmed the Ent35-MccV expression by partial purification,
105	antimicrobial activity characterisation, and MALDI-TOF mass spectrometry.
106	Furthermore, using co-culture systems in sterile skim milk as a dairy food model, we
107	found that Lc. lactis producing the hybrid bacteriocin inhibited the normal growth of
108	food isolate strains of E. coli and L. monocytogenes.
109	
110	2. Materials and methods
111	
112	2.1. Bacterial strains and culture conditions
113	
114	The bacteria used in this work are listed in Table 1. The E. coli DH5a strain was
115	used for routine DNA transformation and plasmid propagation. E. coli strains were
116	grown in Luria Bertani (LB) medium (Sigma Chemical Co., St Louis, USA) and
117	incubated at 37 °C, 150 rpm or on LB with 1.5% agar. Lc. lactis NZ9000 was grown in
118	M17 broth (Difco-BD, Franklin Lakes, NJ, USA) with 0.5% glucose (GM17) or LAPTg
119	[peptone, 15 g L^{-1} ; tryptone, 10 g L^{-1} ; yeast extract, 10 g L^{-1} ; glucose, 10 g L^{-1} ; Tween

120	80, 0.1% (v/v; Sigma Chemical Co., St Louis, USA)] at 30 °C without agitation. When
121	required, erythromycin (Sigma Chemical Co) was used at a concentration of 100 μ g
122	mL ⁻¹ for <i>E. coli</i> and 5 μ g mL ⁻¹ for <i>Lc. lactis</i> . Strains of <i>L. monocytogenes</i> used as
123	indicators in the bacteriocin sensitivity assays were grown in BHI medium (Oxoid,
124	Hampshire, England) at 37 °C. All strains were maintained at 4 °C and -70 °C for short
125	and long periods, respectively.
126 127 128	2.2. Vector design and DNA manipulation
129	We constructed a lactococcal expression vector using polymerase chain
130	reactions (PCR) to fuse the regions of (i) P32 promoter, (ii) SPentP encoding for the
131	signal peptide of enterocin P, and (iii) <i>munA-cvaC</i> encoding for Ent35-MccV.
132	General molecular biology techniques were carried out by standard procedures.
133	E. coli plasmids were isolated using a Wizard plasmid DNA purification system
134	(Promega, Madison, WI, USA). AccuPrime [™] Taq DNA Polymerase High Fidelity
135	(Invitrogen) was used for PCR amplifications. The PCR products were purified using a
136	Gel Band Purification Kit (GE Healthcare Life Sciences, Pittsburgh, USA). T4 DNA
137	Ligase was purchased from Promega and restriction endonucleases from New England
138	Biolabs (Ipswich, England).
139	The primers used are listed in Table 2, and the procedure is shown schematically
140	in Fig. 1. The P32 promoter was amplified using pMG36e as a template with the
141	primers P32FSal and P32EntSac. DNA coding for enterocin P (a generous gift from
142	Carmen Herranz-Sorribes, Universidad Complutense de Madrid, Spain) was used as the
143	template to amplify the signal peptide of enterocin P. The sequence munA-cvaC coding
144	for Ent35-MccV was amplified from pMA24 (Acuña et al., 2012). The PCR

145	amplifications of all sequences were performed as follows: an initial step at 94 °C for 5
146	min, continued by 30 cycles of 50 °C for 30 s, 68 °C for 1 min, and 94 °C for 1 min, and
147	finally 1 cycle at 68 $^{\circ}$ C for 5 min (final elongation step). The resulting genes were
148	purified and used as templates for asymmetric reactions (Kitazono, Tobe, Kalton,
149	Diamant, & Kron, 2002) to fuse P32 with SPentP and munA-cvaC. The final
150	construction P32-SPentP-munAcvaC was performed by a sequential gene fusion as
151	follows: the PCR products of SPentP and munA-cvaC (1 μ L each one in a 50 μ L
152	reaction) were used as a template for the first reaction, while EntPSacPlactF and
153	NusColVR as primers at 0.4 μ M and the internal primer EntPRmunA at 0.4 nM were
154	introduced to obtain the fusion SPentP-munAcvaC. Then, P32 and SPentP-munA-cvaC
155	amplification products were used as templates for the subsequent reaction. P32FSal and
156	NusColVR were used as primers (0.4 μ M), and P32EntSac was used as an internal
157	fusion primer (0.4 nM). The program for asymmetric PCRs was as previously reported
158	(Acuña et al., 2012) with some modifications: 94 $^{\circ}$ C 5 min, followed by 10 cycles (94
159	°C 1 min, 55 °C 1 min, 68 °C 40 s), 20 cycles (94 °C 1 min, 40 °C 1 min, 68 °C 40 s)
160	and 68 °C 10 min. The P32-SPentP-munAcvaC chimeric gene was digested with SalI
161	and HindIII, ligated in pAK80 (Israelsen, Madsen, Vrang, Hansen, & Johansen, 1995),
162	which has two origins of replication, one for E. coli, and the other for Lc. lactis and
163	transformed into <i>E. coli</i> DH5 α $\Delta sdaC::km$ to obtain the plasmid named pRUK. Clones
164	exhibiting erythromycin resistance were screened by PCR to confirm the presence of the
165	chimeric gene. The insert of pRUK was sequenced by CERELA Sequencing Service
166	using an ABI/Hitachi Genetic Analyzer 3130 to confirm its identity.
167	

168 2.3. Expression and extracellular production of Ent35-MccV in Lc. lactis NZ9000
169

170	The hybrid bacteriocin Ent35-MccV was purified as previously described
171	(Acuña et al., 2012) and titrated against the E. coli ATCC 13706 strain. Ent35-MccV
172	was tested for its antimicrobial activity observing that it was unable to inhibit the
173	growth of Lc. lactis NZ9000 in LAPTg agar plates, even at the highest dose tested (500
174	AU mL ⁻¹). So, the recombinant plasmid (pRUK) was used to electro transform Lc. lactis
175	NZ9000 (Holo & Nes, 1989). The cross-streaking method was performed to test the
176	antimicrobial activity of the transformed strain. An overnight culture of Lc. lactis
177	NZ9000 (pRUK) was centrifuged (10 min 10,000 \times g) and diluted in phosphate-
178	buffered saline (PBS) to inoculate a centre streak on a BHI agar plate. The plate was
179	incubated at 30 °C for 24 h, and after growth, the bacteria were killed by exposure to
180	chloroform vapours for 10 min. Then, the plate was cross-streaked against each testing
181	strain from the edge to the centre of the plate and incubated at 37 °C for 24 h. The clear
182	zone of inhibition from the vertical streak to the closest edge of each cross-streaked
183	bacterium was observed.
184	
185	2.4. Partial purification and identification of Ent35-MccV produced by Lc. lactis
186	NZ9000
187	
188	To test the expression of Ent35-MccV in Lc. lactis, antimicrobial assays were
189	performed by a spot-on-lawn method. The strain Lc. lactis NZ9000 (pRUK) was
190	cultured at 30 $^{\circ}$ C for 16 h in LAPTg medium without antibiotics. The culture was
191	centrifuged (10 min for 10,000 \times g), and the cell-free supernatant was adjusted to pH 7
192	and precipitated with ammonium sulphate to a final concentration of 70% (w/v).
193	Proteins were harvested by centrifugation (30 min, $20,000 \times g$) and resuspended with
194	PBS. The resuspended pellet was heated (10 min, 100 °C) and centrifuged (10 min,

195	20,000 × g). Finally, to confirm the peptide nature of the inhibitory substance, the
196	supernatant was treated with chymotrypsin (10 IU; Sigma) and incubated at 37 $^{\circ}\mathrm{C}$ for 2
197	h. Aliquots (20 μL) of each fraction were spotted onto wells of BHI and LB agar plates.
198	After the drops had dried, the plates were overlaid with 8 mL of soft agar (0.6%)
199	containing the sensitive indicator strain L. monocytogenes CECT 4032 or E. coli ATCC
200	700728, in BHI or LB plates, respectively. The plates were incubated at 37 $^{\circ}\mathrm{C}$ for 12 h
201	before examination. The supernatant from Lc. lactis NZ9000 (pAK80) was used as
202	control.
203	
204	2.4. MALDI-TOF MS and proteomic analysis of Lc. lactis Ent35-MccV-producing
205	strain
206	
207	Lc. lactis NZ9000 transformed with either pRUK or pAK80 was grown on BHI
208	plates for 24 h supplemented with erythromycin. Then, a 1 μ L loop was collected and
209	placed in 100 μ L of a solution consisting of 50% acetonitrile (ACN) (Merck, Darmstadt,
210	Germany), 49% water, and 1% aqueous trifluoracetic acid (TFA) (Acros Organics,
211	Morris Plains, NJ, USA). The protein extraction protocol was as described elsewhere
212	(Böhme et al., 2010; Fernández-No et al., 2010), with some modifications. Briefly, three
213	extractions were performed for every strain and all extracts were measured in duplicate,
214	resulting in six spectra per bacterial strain. Mass spectra were obtained using a Voyager
215	"DE STR MALDI-TOF" Mass Spectrometer (Applied Biosystems, Foster City, CA,
216	USA) as previously described (Böhme et al., 2010; Böhme, Fernández-No, Gallardo,
217	Cañas, & Calo-Mata, 2011). Each spectrum was the accumulated sum of 1,000 laser
218	shots, obtained from 10 regions manually selected from each sample in a range of
219	1500–15,000 Da. After six spectral profiles for the same bacterial strain were obtained,

the mass spectra were analysed with Data Explorer® software (Version 4.0), applying 220 baseline correction and noise filter. Data lists containing m/z values with relative 221 intensities higher than 2% were taken from mass spectral data. The acquired peak mass 222 lists were examined and compared using values in the mass range of 2000–10,000 Da 223 due to the reproducibility of the spectral profile in that range. Mass lists were 224 additionally processed with the free web-based application SPECLUST, available at 225 "http://co.bmc.lu.se/speclust/" (Alm et al., 2006). The application permitted calculation 226 227 of the differences between peak lists and the resolution of common peak masses. This tool was used to analyse the six spectra of each sample, considering the representative 228 peaks present in all six spectra and a peak match score greater than 0.7, corresponding 229 to a measurement error of \pm 5 Da. Peak masses were analysed using the Expasy search 230 engine (https://web.expasy.org/findpept/). As we worked with whole bacteria cells to 231 232 detect soluble cytoplasmic proteins, we considered the presence of the signal peptide before cleavage (SPentP-Ent35-MccV) in our analysis. 233 234 235 2.5. In situ inhibition of food pathogen isolates by Ent35-MccV-producing Lc. lactis 236

Since Lc. lactis NZ9000 (pRUK) could have application as a bioprotective 237 238 product, co-cultures with the L. monocytogenes CECT 4032, Li01, Li02, Li03, Li04, E. coli ATCC 700728, D05, D41, D73, and D79 were performed in skim milk. We 239 conducted an experimental trial where each tube was composed by $\sim 10^6$ cfu mL⁻¹ of the 240 Lc. lactis strain (pRUK bacteriocinogenic or pAK80 non-bacteriocinogenic control) and 241 $\sim 10^4$ cfu mL⁻¹ of one of the pathogenic strains mentioned above. The effect of Ent35-242 MccV-producing Lc. lactis NZ9000 (pRUK) on the pathogenic strains was compared 243 with a non-bacteriocin producing control Lc. lactis NZ9000 (pAK80). Experimental 244

245	data are shown as means of triplicate measurements (Fig. 5). Lc. lactis NZ9000 (pRUK)
246	and NZ9000 (pAK80) cells cultured overnight were separately inoculated in sterile skim
247	milk, where a strain of L. monocytogenes or E. coli isolated from food was previously
248	seeded. The mixed cultures were incubated at 37 $^{\circ}$ C for 72 h without agitation, and
249	viable bacteria were measured by cfu counting at 0, 3, 7, 10, 24, 48, and 72 h. Cell
250	counts were performed by serial dilution in physiological saline solution (0.9% NaCl)
251	and enumeration on Palcam Listeria agar base (Merck) and Fluorocult Violet Red Bile
252	agar (VRB) (Merck) for L. monocytogenes and E. coli strains, respectively. Microbial
253	strains isolated from foods and used for evaluation of antimicrobial activities in the co-
254	culture assays are listed in Table 1.
255	
256	3. Results
257	
258	3.1. Construction of an expression vector for bacteriocins in Lc. lactis
259	
260	Lc. lactis is a GRAS bacterium commonly used in the food industry capable of
261	delivering antimicrobial peptides into fermented foods (Dal Bello et al., 2012). The
262	main objective of this study was to obtain a Lc. lactis strain able to produce the hybrid
263	bacteriocin Ent35-MccV to promote its biotechnological applications in food
264	preservation. Plasmid pAK80 was used to introduce our genetic construct. However, the
265	vector lacked the promoter that allows the transcription by the RNA polymerase. Thus,
266	a hybrid gene was prepared by asymmetric PCRs (Fig. 1), including the following
267	sequences from the 5' extremity: (i) the constitutive promoter P32 flanked by restriction
268	sites for SalI (5 [^]) and SacI (3 [^]); (ii) the gene portion coding for the secretory signal
269	peptide of enterocin P with its ribosome-binding site for efficient translation and

270	secretion; and (iii) the hybrid gene of Ent35-MccV (134 amino acid residues) with a
271	restriction site for HindIII (3 [^]). The construction was successfully cloned into pAK80,
272	yielding a new plasmid called pRUK. Fig. 1 shows the complete DNA sequence of the
273	insert and its translation, the construction of the complete vector, DNA fusion reactions,
274	and the electrophoresis gel, which verifies the construction.
275	
276	3.2. Antimicrobial activity of Ent35-MccV in Lc. lactis
277	
278	Lc. lactis NZ9000 strain was transformed with pRUK. To verify the secretion
279	and functional expression of the hybrid bacteriocin Ent35-MccV, we first analysed the
280	antimicrobial activity through the cross-streaking method. Fig. 2 shows that Lc. lactis
281	NZ9000 (pRUK) suppressed the growth of Ent35-MccV sensitive strains E. coli ATCC
282	700728, MC4100, L. monocytogenes CECT 4032, and Listeria innocua 7 (Acuña et al.,
283	2015, 2012). No inhibition was observed against the MccV- and enterocin CRL35-
284	producing strains E. coli MC4100 (pHK11) and Ent. mundtii CRL35, respectively,
285	which are also immune to Ent35-MccV (Acuña et al., 2012) (Fig. 2). In addition, no
286	growth inhibition was observed against the previously reported Ent35-MccV- and
287	MccV-Gram-negative resistant strains (Acuña et al., 2012), bearing mutations in the
288	cirA, tonB, or sdaC genes, nor against the Ent35-MccV- and enterocin CRL35-Gram-
289	positive resistant strains L. innocua 4L1Pe, SR 215, and L. monocytogenes EGDE (Fig.
290	2) (Acuña et al., 2012, 2015).
291	To better assess the presence of Ent35-MccV in the extracellular space, we also
292	measured the antimicrobial activity against the pathogenic strains E. coli CECT 4622
293	and L. monocytogenes CECT 4032 (Fig. 3). Cell-free supernatant from a Lc. lactis
294	NZ9000 (pAK80) culture was used as a control. Consistent with previous results,

295	inhibition halos were observed only in wells with the neutralised supernatant of NZ9000
296	(pRUK) culture, on both E. coli and L. monocytogenes indicator strains (Fig 3). To
297	confirm the peptide nature of the compound that produced the inhibition, the
298	supernatant was precipitated with ammonium sulphate to a final concentration of 70%
299	(w/v) and centrifuged. The antimicrobial activity was detected in the pellet after
300	resuspension but not in the supernatant. The resuspended active pellet was heated (10
301	min, 100 °C), and antimicrobial activity against both indicator strains remained. Finally,
302	after hot treatment, we treated the sample with 10 IU of chymotrypsin for 2 h. The
303	protease treatment led to the disappearance of inhibition zones (Fig. 3). Altogether,
304	these results suggest that the transformed strain produces and releases an active
305	antimicrobial peptide against Gram-positive and Gram-negative bacteria, which
306	indicates the presence of Ent35-MccV in the extracellular space.
307	
308	3.3. MALDI-TOF MS- based characterisation of Lc. lactis NZ9000 (pRUK)
309	
310	Characterisation of Lc. lactis NZ9000 (pAK80) and NZ9000 (pRUK) was
311	performed by MALDI-TOF MS. Six spectra were obtained for each strain. The
312	common peak masses in the spectra were searched using the SPECLUST application.
313	Table 3 shows the mass peak lists for these two strains. The spectral profiles include 19
314	peak masses for Lc. lactis NZ9000 (pRUK) and 15 peak masses for the control strain
315	NZ9000 (pAK80). All peaks found in the mass spectrometry profile of the control strain
316	are present in the strain that produces the hybrid bacteriocin. The four peak masses that
317	appear only in the MALDI spectra of NZ9000 (pRUK) are presented in Fig. 3. Peaks

assigned to fragments that arise from proteolysis of SPEntP-Ent35-MccV (Table 4),
which supports the identification of the bacteriocin.

321

322 3.4. In situ inhibition of food pathogen isolates co-cultured with Lc. lactis expressing
323 Ent35-MccV

324

The final purpose of this work was to know whether Lc. lactis NZ9000 (pRUK) 325 326 producing Ent35-MccV could inhibit or decrease the growth of pathogenic bacteria in foods. To address this question, we studied isolated, food-related E. coli and L. 327 monocytogenes in sterile skim milk co-cultured with Lc. lactis NZ9000 (pRUK). E. coli 328 ATCC 700728 and L. monocytogenes CECT 4032 were used as reference strains. As a 329 control, the same assays were carried out in co-cultivation with Lc. lactis NZ9000 330 331 (pAK80) strain. Fig. 4 shows the growth rate of all pathogenic strains co-cultured either 332 with Ent35-MccV-producing strain or with the non-producing strain. The viable cell count (cfu mL⁻¹) for both pathogenic strains, L. monocytogenes and E. coli, was 333 334 approximately two orders of magnitude lower when they grew up in the presence of NZ9000 (pRUK) than in the presence of NZ9000 (pAK80). The average growth of both 335 L. monocytogenes and E. coli is represented in Fig. 4A and B, reflecting their inhibition 336 growth under the action of the hybrid bacteriocin. 337 338 Discussion 339 4.

340

The hybrid bacteriocin Ent35-MccV is formed by enterocin CRL35 followed by
a hinge of 3 Gly residues and microcin V. Our results indicate that expression and
secretion of Ent35-MccV hybrid bacteriocin by *Lc. lactis* can decrease the bacterial load

344	of Gram-positive and Gram-negative pathogens when co-cultured with the bacteriocin-
345	producing strain. The genetic cassette includes a 5' P32 constitutive Lc. lactis promoter
346	followed by sequences of enterocin P signal peptide and mature Ent35-MccV region. In
347	this way, the secretion of Ent35-MccV was achieved through Sec-system.
348	Most of the described LAB bacteriocins are secreted by specific ABC
349	transporters or devoted transport systems (McCormick, Klaenhammer, & Stiles, 1999;
350	Pugsley, 1993; van Belkum, Worobo, & Stiles, 1997). Only a few bacteriocins, such as
351	enterocin P, are synthesised with an N-terminal signal peptide recognised by the general
352	Sec-dependent system (Cintas et al., 1997). The similarity in certain N-terminal ends
353	between bacteriocins allows us to believe that their processing and secretion systems
354	could be interchangeable. Different strategies have been employed to improve
355	bacteriocin production, mainly by analysing transporter systems and exchanging leader
356	peptides (Biet, Berjeaud, Worobo, Cenatiempo, & Fremaux, 1998; Martín et al., 2007a;
357	McCormick, Worobo, & Stiles, 1996). In this sense, many researchers have studied the
358	heterologous production of bacteriocins by exchanging the leader sequences with SP
359	recognised by the Sec pathway (Freudl, 2018; McCormick et al., 1996; Worobo et al.,
360	1995). Previous studies on Lc. lactis enterocin P high-level heterologous production
361	suggested that fusions between SPentP and other bacteriocins may permit Lc. lactis to
362	produce bacteriocins without the presence of specific secretion and immunity proteins
363	(Gutiérrez, Larsen, Cintas, Kok, & Hernández, 2006; Martín et al., 2007a).
364	Consequently, the use of Lc. lactis as a producer of antimicrobial peptides has been
365	reported (Arqués, Rodríguez, Gasson, & Horn, 2008; Martín et al., 2007b; Reviriego,
366	Fernández, & Rodríguez, 2007; Ribeiro, O'Connor, Ross, Stanton, & Silva, 2016).
367	The Ent35-MccV action spectrum against a great number of Gram-negative and
368	Gram-positive bacteria was previously reported (Acuña et al., 2012, 2015). Taking

369	advantage of this knowledge, we characterised the Ent35-MccV production from Lc.
370	lactis by antimicrobial assays against Gram-negative and Gram-positive strains already
371	known as sensitive, immune, or resistant to the hybrid bacteriocin (Acuña et al., 2012,
372	2015). From these results, we deduced that the transformed strain released a substance
373	with antimicrobial activity compatible with the Ent35-MccV hybrid bacteriocin.
374	Accordingly, the culture supernatant of Lc. lactis NZ9000 (pRUK) displayed
375	antimicrobial activity against the Ent35-MccV sensitive E. coli ATCC 700728 and L.
376	monocytogenes CECT 4032 strains. We also observed the antimicrobial activity against
377	both indicator strains after a partial purification performed by ammonium precipitation
378	and heat treatment. By contrast, the supernatant of the control strain (NZ9000
379	containing the empty vector) was unable to inhibit any of the strains, supporting the
380	hybrid bacteriocin identification in the Lc. lactis NZ9000 (pRUK) derived cell-free
381	supernatant. Thus, we demonstrated the Ent35-MccV release by a naturally resistant <i>Lc</i> .
382	lactis strain without the presence of specific immunity proteins. This is in agreement
383	with the fact that both parental bacteriocins of Ent35-MccV were heterologously
384	produced in LAB without requiring its specific immunity gene (McCormick et al.,
385	1999; Saavedra, 2005; van Belkum et al., 1997). However, the possibility of producing
386	Ent35-MccV in larger quantities by including immunity gene, as previously reported for
387	pediocin PA-1, is not totally excluded.
388	We further characterised the bacteriocin-producing strain by MALDI-TOF-MS.
389	To identify the presence of the hybrid bacteriocin, the obtained MS spectra were
390	compared with those obtained for the control strain. When performing analyses, we
391	found that all unique peak signals corresponding to the producer strain were compatible

with fragments of Ent35-MccV. These results together indicate that Ent35-MccV is

393 expressed and transported to the extracellular medium. As previously reported for other

394	Gram-positive bacteriocins, the enterocin P signal peptide was effective at secreting the
395	hybrid bacteriocin by means of the Sec-dependent secretion system (Herranz &
396	Driessen, 2005; Martín et al., 2007b; Natale, Brüser, & Driessen, 2008). This system
397	seems to be the most versatile and advantageous among heterologous expression
398	systems (Borrero et al., 2011; Freudl, 2018; Zheng & Sonomoto, 2018).
399	To evaluate the performance of Lc. lactis NZ9000 (pRUK), co-cultures with L.
400	monocytogenes and E. coli strains were carried out in milk. Interestingly, E. coli ATCC
401	700728 and L. monocytogenes CECT 4032 significantly decreased the growth rate and
402	bacterial load at 48 h when co-cultured with Ent35-MccV-expressing strain. Our results
403	indicate that continuous production of hybrid bacteriocin in milk controls the presence
404	of pathogenic Gram-positive and Gram-negative microorganisms. The main limitation
405	of the heterologously expressed bacteriocin is based on their industrial use, which could
406	be limited by restrictive legal regulations (Benmechernene et al., 2013). Furthermore,
407	although Ent35-MccV Lc. lactis expression is not capable of completely restricting
408	pathogen growth, the bacteriocin is likely to contribute to their total elimination when
409	used in addition to control processes such us osmotic shock, low pH exposure, or Gram-
410	negative lipopolysaccharide shed inducing agents (Ananou, Gálvez, Martínez-Bueno,
411	Maqueda, & Valdivia, 2005; Deegan, Cotter, Hill, & Ross, 2006; Sobrino-López &
412	Martín-Belloso, 2008). However, the presence of an antibiotic resistance gene in a strain
413	that could be used in food preservation is not an ideal feature. On the contrary, the study
414	of bacteriocin production in an in situ system co-cultured with isolated species of
415	contaminated foods reinforces the feasibility of the use of these substances in
416	biopreservation.
417	To conclude Ent25 MacV hybrid hastoricain was successfully expressed and

To conclude, Ent35-MccV hybrid bacteriocin was successfully expressed and
released by GRAS bacteria through a Sec-mediated secretion pathway. Ent35-MccV

	Journal Pre-proof
419	was able to diminish the E. coli and L. monocytogenes growth in skim milk. Thus, these
420	results are promising enough to justify further studies aimed at the application of broad-
421	spectrum bacteriocins like Ent35-MccV and the optimisation of antimicrobial activity
422	and production in dairy products.
423	
424	Acknowledgements
425	
426	We thank Carlos Franco and José M. Miranda (LHICA) for generously
427	providing E. coli and L. monocytogenes food isolates. We also wish to thank Carmen
428	Herranz-Sorribes (UCM) for providing the enterocin P- codifying DNA. Financial
429	support was provided by Grants PIP 0906CO from CONICET, PICT 4610 and 3776
430	from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), CIUNSa
431	2530/0 from Universidad Nacional de Salta and PIUNT D641/1 from Secretaría de
432	Ciencia, Arte e Innovación Tecnológica - Universidad Nacional de Tucumán (SCAIT-
433	UNT). This work was also funded by the project 10PXIB261045PR from Xunta de
434	Galicia and by the project AGL2010-19646 from the Spanish Ministry of Science and
435	Technology. The work of L. Acuña was supported by CONICET and USC-Santander
436	fellowships. N. Corbalán was a recipient of a CONICET fellowship. The work of M.
437	Quintela-Baluja was supported by the project IPT-2011-1290-010000 co-financed by
438	the Spanish Ministry of Economy and Competitivity and the European Regional
439	Development Fund 2007-2013 (FEDER).
440	
441	References

	Journal Pre-proof
443	Acuña, L., Corbalan, N.S., Fernández-No, I.C., Morero, R.D., Barros-Velázquez, J.,
444	Bellomio, A. (2015). Inhibitory effect of the hybrid bacteriocin Ent35-MccV on
445	the growth of Escherichia coli and Listeria monocytogenes in model and food
446	systems. Food Bioprocess Technology, 8, 1063–1075.
447	Acuña, L., Picariello, G., Sesma, F., Morero, R. D., & Bellomio, A. (2012). A new
448	hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against
449	pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio, 2, 12-
450	19.
451	Alegbeleye, O. O., Singleton, I., & Sant'Ana, A. S. (2018). Sources and contamination
452	routes of microbial pathogens to fresh produce during field cultivation: A
453	review. Food Microbiology, 73, 177–208.
454	Alm, R., Johansson, P., Hjernø, K., Emanuelsson, C., Ringnér, M., & Häkkinen, J.
455	(2006). Detection and identification of protein isoforms using cluster analysis of
456	MALDI-MS mass spectra. Journal of Proteome Research, 5, 785–792.
457	Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016).
458	Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology
459	and Biotechnology, 100, 2939–2951.
460	Ananou, S., Gálvez, A., Martínez-Bueno, M., Maqueda, M., & Valdivia, E. (2005).
461	Synergistic effect of enterocin AS-48 in combination with outer membrane
462	permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied
463	Microbiology, 99, 1364–1372.
464	Arqués, J. L., Rodríguez, J. M., Gasson, M. J., & Horn, N. (2008). Immunity gene pedB
465	enhances production of pediocin PA-1 in naturally resistant Lactococcus lactis
466	strains. Journal of Dairy Science, 91, 2591–2594.

	Journal Pre-proof
467	Bannister, B. A. (1987). Listeria monocytogenes meningitis associated with eating soft
468	cheese. Journal of Infection, 15, 165–168.
469	Benmechernene, Z., Fernandez-No, I., Kihal, M., Böhme, K., Calo-Mata, P., & Barros-
470	Velazquez, J. (2013). Recent patents on bacteriocins: food and biomedical
471	applications. Recent Patents on DNA & Gene Sequences, 7, 66–73.
472	Biet, F., Berjeaud, J. M., Worobo, R. W., Cenatiempo, Y., & Fremaux, C. (1998).
473	Heterologous expression of the bacteriocin mesentericin Y105 using the
474	dedicated transport system and the general secretion pathway. Microbiology,
475	144, 2845–2854.
476	Böhme, K., Fernández-No, I. C., Barros-Velázquez, J., Gallardo, J. M., Calo-Mata, P.,
477	& Cañas, B. (2010). Species differentiation of seafood spoilage and pathogenic
478	gram-negative bacteria by MALDI-TOF mass fingerprinting. Journal of
479	Proteome Research, 9, 3169–3183.
480	Böhme, K., Fernández-No, I. C., Gallardo, J. M., Cañas, B., & Calo-Mata, P. (2011).
481	Safety assessment of fresh and processed seafood products by MALDI-TOF
482	mass fingerprinting. Food and Bioprocess Technology, 4, 907–918.
483	Borrero, J., Jiménez, J. J., Gútiez, L., Herranz, C., Cintas, L. M., & Hernández, P. E.
484	(2011). Use of the usp45 lactococcal secretion signal sequence to drive the
485	secretion and functional expression of enterococcal bacteriocins in Lactococcus
486	lactis. Applied Microbiology and Biotechnology, 89, 131–143.
487	Camargo, A. C., Todorov, S. D., Chihib, N. E., Drider, D., & Nero, L. A. (2018). Lactic
488	acid bacteria (LAB) and their bacteriocins as alternative biotechnological tools
489	to control Listeria monocytogenes biofilms in food processing facilities.
490	Molecular Biotechnology, 60, 712–726.

	Journal Pre-proof
491	Chalón, M. C., Acuña, L., Morero, R. D., Minahk, C. J., & Bellomio, A. (2012).
492	Membrane-active bacteriocins to control Salmonella in foods: Are they the
493	definite hurdle? Food Research International, 45, 735–744.
494	Cintas, L. M., Casaus, P., Håvarstein, L. S., Hernández, P. E., & Nes, I. F. (1997).
495	Biochemical and genetic characterization of enterocin P, a novel sec-dependent
496	bacteriocin from Enterococcus faecium P13 with a broad antimicrobial
497	spectrum. Applied and Environmental Microbiology, 63, 4321–4330.
498	Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity
499	for food. Nature Reviews. Microbiology, 3, 777–788.
500	Dal Bello, B., Cocolin, L., Zeppa, G., Field, D., Cotter, P. D., & Hill, C. (2012).
501	Technological characterization of bacteriocin producing Lactococcus lactis
502	strains employed to control Listeria monocytogenes in Cottage cheese.
503	International Journal of Food Microbiology, 153, 58–65.
504	Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: Biological tools
505	for bio-preservation and shelf-life extension. International Dairy Journal, 16,
506	1058–1071.
507	Farías, M. E., Farías, R. N., de Ruiz Holgado, A. P., & Sesma, F. (1996). Purification
508	and N-terminal amino acid sequence of Enterocin CRL 35, a "pediocin-like"
509	bacteriocin produced by Enterococcus faecium CRL 35. Letters in Applied
510	Microbiology, 22, 417–419.
511	Fernández-No, I. C., Böhme, K., Gallardo, J. M., Barros-Velázquez, J., Cañas, B., &
512	Calo-Mata, P. (2010). Differential characterization of biogenic amine-producing
513	bacteria involved in food poisoning using MALDI-TOF mass fingerprinting.
514	Electrophoresis, 31, 1116–1127.

	Journal Pre-proof
515	Freudl, R. (2018). Signal peptides for recombinant protein secretion in bacterial
516	expression systems. Microbial Cell Factories, 17, Article 52.
517	Gálvez, A., Abriouel, H., Benomar, N., & Lucas, R. (2010). Microbial antagonists to
518	food-borne pathogens and biocontrol. Current Opinion in Biotechnology, 21,
519	142–148.
520	Gálvez, A., Abriouel, H., López, R. L., & Ben Omar, N. (2007). Bacteriocin-based
521	strategies for food biopreservation. International Journal of Food Microbiology,
522	120, 51–70.
523	Gilson, L., Mahanty, H. K., & Kolter, R. (1987). Four plasmid genes are required for
524	colicin V synthesis, export, and immunity. Journal of Bacteriology, 169, 2466-
525	2470.
526	Gutiérrez, J., Larsen, R., Cintas, L. M., Kok, J., & Hernández, P. E. (2006). High-level
527	heterologous production and functional expression of the sec-dependent
528	enterocin P from Enterococcus faecium P13 in Lactococcus lactis. Applied
529	Microbiology and Biotechnology, 72, 41–51.
530	Herranz, C., & Driessen, A. J. M. (2005). Sec-mediated secretion of bacteriocin
531	enterocin P by Lactococcus lactis. Applied and Environmental Microbiology,
532	71, 1959–1963.
533	Holo, H., & Nes, I. F. (1989). High-frequency transformation, by electroporation, of
534	Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized
535	media. Applied and Environmental Microbiology, 55, 3119–3123.
536	Israelsen, H., Madsen, S. M., Vrang, A., Hansen, E. B., & Johansen, E. (1995). Cloning
537	and partial characterization of regulated promoters from Lactococcus lactis
538	Tn917-lacZ integrants with the new promoter probe vector, pAK80. Applied and
539	Environmental Microbiology, 61, 2540–2547.

	Journal Pre-piooi
540	Johnson, E. M., Jung, D. YG., Jin, D. YY., Jayabalan, D. R., Yang, D. S. H., & Suh,
541	J. W. (2017). Bacteriocins as food preservatives: Challenges and emerging
542	horizons. Critical Reviews in Food Science and Nutrition, 58, 2743–2767.
543	Kitazono, A. A., Tobe, B. T. D., Kalton, H., Diamant, N., & Kron, S. J. (2002). Marker-
544	fusion PCR for one-step mutagenesis of essential genes in yeast. Yeast, 19, 141-
545	149.
546	Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M., & de Vos, W. M. (1998).
547	Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of
548	Biotechnology, 64, 15–21.
549	Leistner, L. (2000). Basic aspects of food preservation by hurdle technology.
550	International Journal of Food Microbiology, 55, 181–186.
551	Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for
552	the food fermentation industry. Trends in Food Science & Technology, 15, 67-
553	78.
554	Martín, M., Gutiérrez, J., Criado, R., Herranz, C., Cintas, L. M., & Hernández, P. E.
555	(2007a). Chimeras of mature pediocin PA-1 fused to the signal peptide of
556	enterocin P permits the cloning, production, and expression of pediocin PA-1 in
557	Lactococcus lactis. Journal of Food Protection, 70, 2792–2798.
558	Martín, M., Gutiérrez, J., Criado, R., Herranz, C., Cintas, L. M., & Hernández, P. E.
559	(2007b). Cloning, production and expression of the bacteriocin enterocin A
560	produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Applied
561	Microbiology and Biotechnology, 76, 667–675.
562	McCormick, J. K., Klaenhammer, T. R., & Stiles, M. E. (1999). Colicin V can be
563	produced by lactic acid bacteria. Letters in Applied Microbiology, 29, 37-41.

	Journal Pre-proof
564	McCormick, John K., Worobo, R. W., & Stiles, M. E. (1996). Expression of the
565	antimicrobial peptide carnobacteriocin B2 by a signal peptide-dependent general
566	secretory pathway. Applied and Environmental Microbiology, 62, 4095–4099.
567	Natale, P., Brüser, T., & Driessen, A. J. M. (2008). Sec- and Tat-mediated protein
568	secretion across the bacterial cytoplasmic membranedistinct translocases and
569	mechanisms. Biochimica et Biophysica Acta, 1778, 1735–1756.
570	Pugsley, A. P. (1993). The complete general secretory pathway in gram-negative
571	bacteria. Microbiological Reviews, 57, 50–108.
572	Renye, J. A., & Somkuti, G. A. (2010). Nisin-induced expression of pediocin in dairy
573	lactic acid bacteria. Journal of Applied Microbiology, 108, 2142–2151.
574	Reviriego, C., Fernández, L., & Rodríguez, J. M. (2007). A food-grade system for
575	production of pediocin PA-1 in nisin-producing and non-nisin-producing
576	Lactococcus lactis strains: application to inhibit Listeria growth in a cheese
577	model system. Journal of Food Protection, 70, 2512–2517.
578	Ribeiro, S. C., O'Connor, P. M., Ross, R. P., Stanton, C., & Silva, C. C. G. (2016). An
579	anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese
580	produces lacticin 481. International Dairy Journal, 63, 18-28.
581	Saavedra, L. (2005). Péptidos antimicrobianos producidos por enterococos: análisis
582	bioquímico y molecular (Thesis). San Miguel de Tucumán, Argentina: National
583	University of Tucumán.
584	Sobrino-López, A., & Martín-Belloso, O. (2008). Use of nisin and other bacteriocins for
585	preservation of dairy products. International Dairy Journal, 18, 329-343.
586	Tarazanova, M., Huppertz, T., Kok, J., & Bachmann, H. (2018). Altering textural
587	properties of fermented milk by using surface-engineered Lactococcus lactis.
588	Microbial Biotechnology, 11, 770–780.

Allrn		re	10	rn	$\mathbf{\Omega}$
UUU	aı	10		IU	U.

589	Topisirovic, L., Kojic, M., Fira, D., Golic, N., Strahinic, I., & Lozo, J. (2006). Potential
590	of lactic acid bacteria isolated from specific natural niches in food production
591	and preservation. International Journal of Food Microbiology, 112, 230-235.
592	van Belkum, M. J., Worobo, R. W., & Stiles, M. E. (1997). Double-glycine-type leader
593	peptides direct secretion of bacteriocins by ABC transporters: colicin V
594	secretion in Lactococcus lactis. Molecular Microbiology, 23, 1293–1301.
595	WHO. (2015). Food safety. Geneva, Switzerland: World Health Organisation. Retrieved
596	May 22, 2018, from: http://www.who.int/news-room/fact-sheets/detail/food-
597	safety
598	Worobo, R. W., Van Belkum, M. J., Sailer, M., Roy, K. L., Vederas, J. C., & Stiles, M.
599	E. (1995). A signal peptide secretion-dependent bacteriocin from
600	Carnobacterium divergens. Journal of Bacteriology, 177, 3143–3149.
601	Zheng, S., & Sonomoto, K. (2018). Diversified transporters and pathways for
602	bacteriocin secretion in Gram-positive bacteria. Applied Microbiology and
603	Biotechnology, 102, 4243–4253.

Figure legends

Fig. 1. Genetic constructs for Ent35-MccV production in *Lc. lactis*. Panel A: nucleotide sequence of the 655-bp fragment containing the P32 promoter sequence, the sequence codifying for enterocin P signal peptide and the *munA-cvaC* hybrid gene; amino acid sequences of SPentP-Ent35-MccV are shown below the DNA sequence, the cleavage site of the pre-bacteriocin is indicated by a vertical arrow, the enzyme restriction sites are underlined, the ribosome binding site (RBS) is overlined and the hinge region between *munA* and *cvaC* is in bold and underlined. Panel B: schematic representation of the PCR strategy used to fuse *P32*, *SPentP* and *munA-cvaC*. Panel C: electrophoretic analysis of the fusion gene into pRUK in 1% agarose gel stained with (GelredTM (Biotium); lane 1, DNA step ladder 1 Kb (Promega); lanes 2, 3, 4, and 5 show amplified DNA fragments from *P32*, *P32-SPentP-munA*, and *P32-SPentP-munA-cvaC*, respectively.

Fig. 2. Cross-streaking assay demonstrating the heterologous production and release of the hybrid bacteriocin Ent35-MccV. *Lc. lactis* NZ9000 (pRUK) strain was streaked across a BHI, glucose 0.6% agar plate. On the left side, *E. coli* strains [(sensitive or resistant to Ent35-MccV and MccV or immune (MccV-producing)] were streaked perpendicular to the NZ9000 (pRUK): a, ATCC 700728; b, MC4100; c, MC4100 (pHK11); d, MC4100 $\Delta sdaC::km$; e, MC4100 $\Delta tonB::km$; f, MC4100 $\Delta cirA::km$. On the right side, Gram-positive strains [(sensitive or resistant to Ent35-MccV and enterocin CRL35 or immune (CRL35-producing)] were streaked: g, *L. monocytogenes* CECT 4622; h, *L. innocua* 7; i, *Enterococcus mundtii* CRL35; j, *L. innocua* 4L1Pe; k, *L. innocua* SR 215; l, *L. monocytogenes* EGDE.

Fig. 3. Antimicrobial activity of extracellular Ent35-MccV produced by *Lc. lactis* as determined by the agar well diffusion test. The sensitive strains *L. monocytogenes* CECT 4032 (left) and *E. coli* ATCC 700728 (right) were used as Gram-positive and Gram-negative indicator microorganisms, respectively: a and b, neutralised cell-free supernatants derived from non-bacteriocinogenic strain *Lc. lactis* NZ9000 (pAK80) and*Lc. lactis* NZ9000 (pRUK), respectively; c and d, supernatant and resuspended pellet, respectively, obtained after protein precipitation of sample b; e, sample c after hot treatment; f, sample d after chymotrypsin treatment. Pure Ent35-MccV was used as a positive antimicrobial control.

Fig. 4. MALDI-TOF MS spectral profile of *Lc. lactis* NZ9000 (pRUK). Specific peaks missing in *Lc. lactis* NZ9000 (pAK80) are indicated by vertical arrows and they are zoomed in the upper panels. The other signals are shown in Table 3.

Fig. 5. In situ growth inhibitory effect of Ent35-MccV in sterile skim milk against food pathogens. Curves show the growth of different strains of *L. monocytogenes* (A) and *E. coli* (B) co-cultured with *Lc. lactis* NZ9000 (pRUK) expressing Ent35-MccV (empty symbols) or *Lc. lactis* NZ9000 (pAK80) as control (filled symbols) Panel A: ●, ○, 4032; ▲, △, Li01;
◆, ◇, Li02; ■, □, Li03; ▼, ▽, Li04. Panel B: ●, ○, 700728; ▲, △, D05; ◆, ◇, D41; ■, □, D73; ▼, ▽, D79. Cell viability was expressed as cfu mL⁻¹ as the mean of three independent experiments. The insets show the mean growth ± SEM of all strains evaluated, exposed (empty circle) and not exposed (filled circles) to Ent35-MccV.

Bacterial strains used in this study. ^a

Strain	Source, relevant genotype or reference
Gram-positive	
Lc. lactis NZ9000	Kuipers, de Ruyter, Kleerebezem, & de Vos (1998)
Ent. mundtii CRL35	CERELA; (Farías, Farías, de Ruiz Holgado, & Sesma (1996)
L. innocua 7	INRA
L. innocua 4L1Pe	INRA
L. innocua SR 215	IHT
L. monocytogenes EGDE	ATCC: BAA-679
L. monocytogenes 4032	CECT: 4032 – CI ; Bannister (1987)
L. monocytogenes Li01	LHICA - FI
L. monocytogenes Li02	LHICA – FI
L. monocytogenes Li03	LHICA – FI
L. monocytogenes Li04	LHICA – FI
Gram-negative	
E. coli DH5a	Invitrogen
<i>E. coli</i> O157:H7	ATCC: 700728
<i>E. coli</i> MC4100	CGSC
<i>E. coli</i> MC4100 (pHK11)	Gilson, Mahanty, & Kolter (1987)
E. coli LA1	FBQF; MC4100 Δ <i>sdaC</i> :: <i>km</i> ; (Acuña et al. (2012)
E. coli LA2	FBQF; MC4100 Δ <i>cirA</i> :: <i>km</i> ; Acuña et al. (2012)
<i>E. coli</i> NC1	FBQF; MC4100 Δ <i>tonB</i> :: <i>km</i> ; Acuña et al. (2012)
E. coli D05	LHICA-FI
E. coli D41	LHICA-FI
E. coli D73	LHICA-FI
E. coli D79	LHICA-FI

^a Abbreviations are: CERELA, Centro de Referencias para Lactobacillos, Tucumán, Argentina; INRA, Jouy-en-Josas, France; IHT, Institute of Hygiene and Toxicology, Karlsruhe, Germany; ATCC, American Type Culture Collection; CGSC, E. coli Genetic Stock Center; FBQF, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Argentina; LHICA, Laboratorio de Higiene, Inspección y Control de Alimentos, USC, Spain; CI, clinical isolate; FI, food isolate.

Synthetic oligonucleotides used in this study. ^a

Primer	Specificity	Nucleotide sequence $(5' \rightarrow 3')$	Sites inserted
	and direction		
NusColVR	cvaC(R)	GGTGGT <u>AAGCTT</u> TTATAAACAAACATCACTAAG	HindIII
P32FSal	<i>P32</i> (F)	GGTGGT <u>GTCGAC</u> ATAGTTTTAGCTATTAATCTTTTT	SalI
P32EntSacR	P32 (R)	ACCTCCTTGAGCTCCCGAATATTTTTTACCTACCTAG	SacI / fusion fragment with EntPSacPlactF
EntPSacPlactF	SPentP (F)	G<u>GAGCTC</u>AAGGAGGT ATTGATTTATGAGAAAAAAATTATTTAGTTTAGC	SacI / fusion fragment with P32EntSacR
EntPRMunA	SPentP (R)	CCGTAGTATTTTGCATCAACTTTTGTACCAAAATTTG	Fusion fragment with MunAFEntP
MunAFEntP	munA (F)	GTTGATGCAAAATACTACGGTAATGGAGTCTC	Fusion fragment with EntPRMunA

^a F and R in parentheses indicate the forward (F) or reverse (R) amplification direction; the underlined sequences are the restriction sites; the sequences in bold represent the fusion and overlapping fragments of complementary genetic sequences with those from another primer.

pAK80		pRUK		
Mass (average)	<i>m/z</i> (std)	Mass (average)	<i>m/z</i> (std)	
2037.98	1.47	2038.23	0.73	
2075.41	1.17	2075.98	0.65	
2108.36	1.66	2107.86	1.00	
2124.98	1.05	2124.31	0.91	
2210.45	0.24	2210.90	0.19	
2224.22	1.20	2224.20	0.53	
2649.42	1.18	2648.77	0.92	
		3092.39	0.61	
3225.59	1.03	3224.13	1.19	
		3520.72	1.69	
3868.24	0.84	3867.25	0.49	
3906.33	0.63	3905.64	1.03	
3930.29	0.08	3928.83	2.09	
		4118.69	1.49	
4421.37	0.95	4419.77	0.62	
4459.67	1.09	4457.76	1.4	
5983.37	1.43	5983.34	2.03	
		6060.04	0.93	
8425.43	0.35	8422.61	1.99	

Characteristic peak masses of transformed Lc. lactis NZ9000. ^a

^a Peak masses are presented as [M+H]⁺ values; specific peaks are highlighted in bold.

MALDI-TOF MS assignment of SPentP-Ent35-MccV proteolytic fragments for specific peaks of Lc. lactis NZ9000 (pRUK). ^a

Measured <i>m/z</i>	Expected <i>m/z</i>	Δ mass (daltons)	Assignment	Position
3092.39	3092.47	0.083	(G)NGVSCNKKGCSVDWGRAIGIIGNNSAANLAT(G)	32-62 (Ent35)
	3092.47	0.083	(N)GVSCNKKGCSVDWGRAIGIIGNNSAANLATGG(A)	33-64 (Ent35)
3520.70	3520.94	0.244	(S)AANLATGGAAGWKSGGGASGRDIAMAIGTLSGQFVAGGI(G)	57-95 (Ent35-MccV)
4118.69	4118.57	-0.117	(A)ANLATGGAAGWKSGGGASGRDIAMAIGTLSGQFVAGGIGAAAGGVAGG(A)	58-105 (Ent35-MccV)
	4118.57	-0.117	(A)NLATGGAAGWKSGGGASGRDIAMAIGTLSGQFVAGGIGAAAGGVAGGA(G)	59-106 (Ent35-MccV)
	4118.61	-0.073	(T)GGAAGWKSGGGASGRDIAMAIGTLSGQFVAGGIGAAAGGVAGGAGTIK(Q)	63-110 (Ent35-MccV)
	4118.63	-0.058	(G)TKVDAKYYGNGVSCNKKGCSVDWGRAIGIIGNNSAANLAT(G)	23-62 (SP-Ent35)
6060.04	6059.81	-0.232	(A) SGRDIAMAIGTLSGQFVAGGIGAAAGGVAGGAGTIKQKPEGIPSEAWNYAAGRLCNWSPNNL(S)	75-136 (Ent35-MccV)
	6059.81	-0.232	(S) GRDIAMAIGTLSGQFVAGGIGAAAGGVAGGAGTIKQKPEGIPSEAWNYAAGRLCNWSPNNLS(D)	76-137 (Ent35-MccV)

^a The expected m/z of the SP-Ent35-MccV fragments were calculated using average masses of the occurring amino acid residues, interpreting peptide masses as $[M + H]^+$, and considering Cys in reduced form. Peptides are displayed with the adjoining residues before cleavage in parentheses.

Jour

