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Noise resilient exceptional-point voltmeters
enabled by oscillation quenching
phenomena

Arunn Suntharalingam 1, Lucas Fernández-Alcázar 2,3,
Rodion Kononchuk 1 & Tsampikos Kottos 1

Exceptional point degeneracies (EPD) of linear non-Hermitian systems have
been recently utilized for hypersensitive sensing. This proposal exploits the
sublinear response that the degenerate frequencies experience once the sys-
tem is externally perturbed. The enhanced sensitivity, however, might be
offset by excess (fundamental and/or technical) noise. Here, we developed a
self-oscillating nonlinear platform that supports transitions between two dis-
tinct oscillation quenching mechanisms – one having a spatially symmetric
steady-state, and the other with an asymmetric steady-state – and displays
nonlinear EPDs (NLEPDs) that can be employed for noise-resilient sensing. The
experimental setup incorporates a nonlinear electronic dimer with voltage-
sensitive coupling and demonstrates two-orders signal-to-noise enhancement
of voltage variation measurements near NLEPDs. Our results resolve a long-
standing debate on the efficacy of EPD-sensing in active systems above self-
oscillating threshold.

The underlying mathematical structures of non-Hermitian wave
systems1–4 have inspired the last few years new technologies5–8. Many
of these are reliant on the existence of exceptional point degeneracies
(EPDs)8. These are non-Hermitian degeneracies where a set of
N eigenvalues and their corresponding eigenvectors coalesce1,2. In
the proximity of an Nth order EPD (EPD-N), the eigenvalue detuning
Δ f≡ | f − fEPD|, due to a small external perturbation ε, follows a sublinear
response (SLR) Δf ∼

ffiffiffi
εN

p
≫ ε that can be utilized for enhanced

sensing9–15.
A principal requirement for efficient EPD sensing is the increase

of the resolution limit via the narrowing of the resonance linewidth.
This can be achieved by judicious design of cavity amplification
mechanisms. The downside of this strategy is that it introduces
additional noise that, in some EPD platforms, might offset the
enhanced signal sensitivity13,16–19. Furthermore, nonlinear effects
might become important—requesting the development of theore-
tical tools that treat them on equal footing with the sensitivity
enhancement near EPDs. However, most current studies rely on

linear mathematical constructs, such as the Petermann factor20–22,
which describes the linewidth enhancement near EPDs due to the bi-
orthogonal nature of the eigenmodes of the underlying linear non-
Hermitian systems16. Obviously, this approach is not suitable when
the response of a system is influenced by nonlinearities. An example
case is a laser at an EPD. Fortunately, an appropriate language exists
from the area of dynamical systems and bifurcation theory23–27, which
can be adopted for the analysis of nonlinear EPDs (NLEPDs). Exam-
ples of systems that are amenable to such analysis are shown in
Fig. 1a. In fact, some recent theoretical studies have utilized this
approach to address issues like the formation of NLEPDs and the
emulation of neuronal dynamic functions using parity-time ðPTÞ
symmetric systems that involve gain and loss nonlinear channels26,27.
These neuromorphic functionalities, belong to the general category
of oscillation quenching mechanisms, whose characteristics are
determined by the underlying dynamical symmetries of the
system28–30. Oscillation quenching mechanisms occur in systems of
coupled nonlinear oscillators, and can be classified in two different
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types30: oscillation death (OD), which is associated with the forma-
tion of an inhomogeneous steady state, and amplitude death (AD),
which results in a homogenous steady state. These mechanisms have
been observed in a variety of dynamical systems ranging from cli-
mate, lasers, electronic circuits, chemical systems, neurons, and
more (for indicative references, see review paper30). Recently, in the
framework of non-Hermitian photonic systems with PT-symmetry,
oscillation quenching mechanisms have been proposed, theoreti-
cally, for topological protection, signal processing26,27 and memory
devices31. The interplay of PT-symmetry and oscillation quenching
were also theoretically discussed in the framework of electronic
circuits. These theoretical studies highlighted a connection between
a broken (exact) PT-symmetric phase and an OD (AD) oscillation
quenching mechanism, see Fig. 1b.I and Fig. 1b.II, respectively. The
transition between these two regimes is characterized by the for-
mation of a NLEPD (see Fig. 1b right and Fig. 1c). Can these NLEPDs be
used for sensing and what is the signal-to-noise enhancement (SNE)
factor in their proximity? A definite answer to this question requires
not only a theoretical modeling24,25,32–36, but, most importantly, the
establishment of controllable experimental platforms that will scru-
tinize the predictions of the theory, and guide the theoretical lan-
guage as it is developing.

Here, we address the viability of NLEPD sensing protocols using
twononlinearRLC tankswhosecapacitive coupling is used as a sensing
platform for voltage variations. The RLC circuits have anharmonic
parts consisting of a complementary amplifier (gain) and a dissipative
conductor (loss), see Fig. 1a and “Methods.”Thenonlinear supermodes
(NS) are the fixed points of the dynamical equations, and their prop-
erties arise from the underlying dynamical symmetries and stability.
We focus on stable NS that are experimentally accessible and these are
identified from the (negative) real part of the eigenvalues {λn} of the
Jacobianmatrix—which describes the linearized dynamics around each
of these fixed points23. Their properties lead to the partition of the
parameter space into three distinct domains (see domains I, II, III in
Fig. 1b right). The last of them, domain III, involves trivial NS with zero
amplitude at each RLC tank (see inset of right subfigure of Fig. 1b) and
is therefore irrelevant to our investigations. The other two domains,
are separated by a NLEPD (see red line in right subfigure of Fig. 1b and

red point in Fig. 1c) and contain one (two) non-trivial stable hyperbolic
fixed points in theOD (AD) phase, see Fig. 1c (and Fig. 1b.I and Fig. 1b.II,
respectively). The stable NS in the AD phase coalesce at the NLEPD-
point at a voltage variation δV = 0, where δV controls the capacitive
coupling between the two resonators. The detuned eigenfrequencies
follow a characteristic SLR, Δf ± � f ± � f NLEPD / ±

ffiffiffiffiffiffiffi
δV

p
, leading to

two-orders enhancement of sensitivity to small voltage variations, and
a similar SNE near the NLEPD, see Fig. 1c. Our results challenge the
validity of linear concepts (e.g., Petermann factor) for the noise ana-
lysis near NLEPDs, and confirm beyond doubt that self-oscillating
systems above threshold have an enhanced signal-to-noise sensing
performance in the proximity of the NLEPDs.

Results
Experimental platform
The sensor consists of a pair of nonlinear RLC resonators37–40 (see
Fig. 1a)with natural frequency f 0 =

1
2π

1ffiffiffiffiffi
LC

p ≈ 338 kHz, and an impedance

(at resonance) Z0 =
ffiffiffi
L
C

q
≈424Ω. One of the resonators (gain—indicated

with red in Fig. 1a) incorporates a nonlinear amplifier, −R1(V1), which is

characterized by an I–V curve of I1ðV 1Þ= � V 1

R 0ð Þ
1

+bV 3
1 while the other

one (loss—indicatedwith green in Fig. 1a) incorporates a nonlinear loss,

R2(V2), with an I–V curve of I2ðV2Þ= V2

R 0ð Þ
2

+ bV3
2 (where b ≈ 7 · 10−4 AV−3

and V1(2) are the voltages at the nodes 1(2)). The two resonators are
coupled together via a capacitance voltage controlled (CVC) capacitor
Cκ(V) = κ · C where κ is a dimensionless parameter representing the
strength of the coupling. The linear conductances, 1

R 0ð Þ
1

> 1
R 0ð Þ
2

, were tuned

such that the system undergoes a transition from AD to OD as the
voltage at the coupling capacitor varies (see Fig. 1b, c and “Methods”).
A transmission line (TL)with impedance z0 = 50Ω is weakly coupled to
each resonator via capacitors Ce ≪ C. The TLs were used to collect and
direct the signal generated by the circuit to a VNA for further pro-
cessing (see “Methods”). The NLEPD (occurring at δV = 0) can be
experimentally identified as the point forwhich the voltage amplitudes
V 1
V2

of each RLC resonator deviates from unity (AD domain) and begins

to acquire larger values (OD domain)—see Fig. 2b.

Fig. 1 | EPDs at the transition between OD and AD. a Physical systems that
demonstrate oscillation death (OD) and amplitude death (AD) oscillation
quenching. b (Right) The parameter space of the circuit in (a), is partitioned in
three distinct domains that host stable nonlinear supermodes (NS) (fixed points of
the dynamical equations associated with Jacobian eigenvalues {λn; n = 1,2,3} with

Re λn
� �

<0) with distinct dynamical symmetries. Transition from one domain to

another is dictated by the relative gain γ 0ð Þ
1 =γð0Þ2 and voltage variation δV that

controls the capacitive coupling between the two nonlinear RLC tanks. The three
domains are: (I) the OD domain, (II) the ADdomain, and (III) the trivial steady-state
solution domain. The steady-state field amplitude An of each resonator n = 1,2
differs from one another in domain (I) while it is the same in domain (II). Typical
examples of (A1,A2,φ)-phase-space trajectories, φ being the relative phase, are

shown on the subfigures. The black dots indicate initial conditions while the blue
dots the steady-state (fixed point). The red solid line indicates nonlinear excep-
tional point degeneracies (NLEPDs) associated with the coalescence of two stable
NS. The red dashed line indicates NLEPDs associated with the coalescence of two
non-trivial unstable NS (see Supplementary Note 5 and Supplementary Fig. 3).
c (Horizontal plane) Parametric evolution of the nonlinear eigenfrequencies f
versus δV for a fixed value of the relative gain corresponding to a transition from
OD to AD via a NLEPD, see red dot. (Vertical plane) The signal-to-noise enhance-

ment factor, SNE= χ
αVRW

(where χ � ∂
�
Δf +
f0

�
∂ δVð Þ is the sensitivity and αVRW is the noise-

equivalent voltage variations), diverges as 1ffiffiffiffiffi
δV

p in the proximity of NLEPD.
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Theoretical analysis of nonlinear supermodes
The voltage dynamics Vn at each RLC tank (n = 1,2), is described via a
temporal coupled mode theory (TCMT) (see Supplementary Notes 1
and 2)

i
d
dτ

a1

a2

� �
=

νκ + iγ1
κ
2

κ
2 νκ � iγ2

� �
a1

a2

� �
; ð1Þ

where an �
ffiffiffiffiffiffiffiffiffiffiffiffi
3
8bZ0

q
Vn + i

1
2π

_Vn
f 0

� �
,γn = γ

0ð Þ
n + �1ð Þnðjanj2 +ηÞ, νκ = 1� κ

2 �ffiffiffiffiffiffiffi
η
2
Z0
z0

q
and τ � 2πf 0t is the rescaled time. The parameters γð0Þn are the

linear gain (n = 1) and loss (n = 2) coefficients associated with the gain

and loss RLC resonator, respectively, while η � 1
2
z0
Z0

Ce
C

� �2
models the

coupling of the circuit to theTLs. Theglobal frequency shift fκ= f0 · νk is
associated with the renormalization of the natural frequency f0 of the
RLC resonators due to the capacitive coupling between them (κ-term)
and the coupling with the TLs (η-term). The κ-dependence could be, in
principle, avoided if we choose another type of coupling (e.g., induc-
tive coupling). Below, we analyze the steady-state properties of Eq. (1)
in terms of the coupling parameter κ = κ(δV), which is used as a sensing
platform of voltage variations δV (see “Methods”).

The nonlinearities in our system have been chosen carefully to
prevent the system from evolving towards undesirable unbounded
states where A1 and/or A2 → ∞. This can be easily realized from Eq. (1)
by recognizing that whenever the field intensity of the gain resonator
exceeds a critical value a1

		 		2>γð0Þ1 � η the gain coefficient γ1 becomes
negative, thus turning the gain RLC tank into a lossy one. The NS of
Eq. (1) may be expressed in the polar representation an =Ane

iφn e�
if τ
f0

and are identified as the fixed points of the dynamical system whose
evolution is defined in a three-dimensional phase space (A1,A2,φ ≡ φ2

− φ1). We classify these fixed points according to their underlying
(dynamical) symmetry, and stability. The latter is determined by the
eigenvalues {λ1,λ2,λ3} of the 3 × 3 Jacobianmatrix, J, when evaluated at
the fixed point (see Supplementary Note 5)23. When Re(λn) ≠ 0 (∀n =
1,2,3), the fixed point is a hyperbolic equilibrium and there is a
homeomorphism that maps the phase portrait in its proximity onto

solutions of its linearized systemdescribed by J41. When all Re(λn) < 0,
the fixed point is stable, and it is unstable if at least one Re(λn) > 0.
Hyperbolic equilibria are robust to small variations which do not,
qualitatively, change the phase portrait. The opposite scenario of
non-hyperbolic equilibria is associatedwith cases where either one of
the eigenvalues of the Jacobian matrix is zero or has a zero real part.
These are structurally unstable cases, and one can numerically test
the nature of the stability of these fixed points by direct dynamical
simulations with Eq. (1).

Wehave found that onefixedpoint of Eq. (1) is a trivial state (A1,A2)
= (0,0). The dynamical simulations indicate that it is stable in the
parametric domain III (see Fig. 1b) while it is unstable in the other two
domains. Below, we analyze the stable non-trivial fixed points occur-
ring in domains I and II of Fig. 1b. In these cases, the real-valued
amplitudes An > 0 take the form (see Supplementary Note 4 and
Supplementary Fig. 2):

An =ρ
n�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ 0ð Þ
1 � η� κρ

2

q
for κ ≤ γ 0ð Þ

1 + γ 0ð Þ
2 domain Ið Þ;

Að± Þ
1 =Að± Þ

2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð0Þ1 �γð0Þ2 �2η

2

q
for κ ≥ γ 0ð Þ

1 + γ 0ð Þ
2 domain IIð Þ;

ð2Þ

where the real-valued variable ρ � A2
A1
>0 is a solution of the quartic

algebraic equation 1� 2ρ
� γ 0ð Þ

2 +η
κ

�� 2ρ3
� γ 0ð Þ

1 �η
κ

�
+ρ4 = 0. The physical

requirement Að± Þ
1,2 2RðAn2RÞ leads to the condition γð0Þ1 � γ 0ð Þ

2 � 2η≥0

(γð0Þ1 � η� κρ
2 ≥0) which determines the boundary between domains II

and III (domains I and III), see Fig. 1b. Finally, the relation

κNLEPD = γð0Þ1 + γð0Þ2 defines the transition between domains I and II—
which is characterizedby the formation of aNLEPD associatedwith the
coalescence of two stable NS (see solid red line in Fig. 1b). This is
further confirmed by evaluating the nonlinear eigenfrequencies f±(κ)
associated with the solutions of Eq. (2). From the TCMT, we have that
(see Supplementary Note 4a, b):

f ± =
f κ

f κ ±
f 0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 � κ2

NLEPD

q(
for κ ≤ κNLEPD domain Ið Þ;
for κ ≥ κNLEPD domain IIð Þ; ð3Þ

Fig. 2 | Stability analysis andbasins of attraction. a Eigenvalues λn of the Jacobian
evaluated at the stable (unstable) nontrivial nonlinear supermodes (NS), indicated
with turquoise (red) circles. b Field amplitude A1(A2) of the NS versus voltage
variations δV. The solid lines indicate stable fixed points (see Eq. (2)) while the
dashed lines indicate unstable solutions evaluated numerically using Eq. (1) toge-
ther with the eigenvalue analysis of the Jacobian matrix in panel a (see also Sup-
plementary Note 5). The fixed relative gain

γ 0ð Þ
1

γ 0ð Þ
2

= 1.46 is chosen in a way that the
systemundergoes a transition fromoscillation death (OD) to amplitude death (AD)
as the voltage variation δV increases. The nonlinear exceptional point degeneracy
(NLEPD) occurs at δV = 0. (Inset) Measured average logarithmic voltage ratio (red

symbols) V 1
V 2

of the NS. Each point represents an average of five independent mea-
surements and the error bars indicate ±1 standard deviation. The black line is the
prediction of temporal coupled mode theory (TCMT). The blue line indicates the
results fromNGSPICE. In panels a andb, the gray shadowhighlights the presenceof
nontrivial unstable NS. c Phase-space analysis and basins of attraction for the stable
fixed points associated with the upper (f+) (blue highlighted domain) and lower (f−)
(yellow highlighted domain) branches of the NS in the AD domain. The voltage
variation is δV ≈ 2 mV corresponding to a circuit configuration in the proximity of
the NLEPD.
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where the square-root dependence of the eigenfrequencies from the
coupling detuning κ reflects the presence of the NLEPD. In the range of
voltage variations that have been used in our experiment (−1.1 V ≤ δV ≤
2 V with resolution of 1mV), the coupling is κ(δV) ≈ κNLEPD − (0.0234
V−1)⋅δV with κNLEPD � γ 0ð Þ

1 + γ 0ð Þ
2 ≈0:30 (where γ 0ð Þ

1 ≈0:18; γ 0ð Þ
2 ≈0:12).

The two fixed points in domain II (κ ≥ κNLEPD), are associated with
the AD phase where the field amplitudes at each resonator are the
same and the two stable NS differ only by the relative phase φ± (see
Supplementary Note 4a). In this parameter range, the system respects
an exact parity-time symmetry—where both the system and the cor-
responding NS are invariant under a joint parity (i.e., space inversion 1
↔ 2) and time-reversal (i.e., complex conjugation) symmetry. In
domain I (κ ≤ κNLEPD), instead, there is only one non-trivial stable NS.
This domain is associated with the OD phase where the field ampli-
tudes at each RLC resonator differ from one another. A detailed fixed
point numerical analysis using a MATLAB fsolve routine confirms the
above theoretical predictions and provides more general information
about other (unstable) fixed points, as well as the stability analysis of
the nontrivial NS via the eigenvalues of the Jacobian (see Fig. 2a, b). In
the inset of Fig. 2b, we also report some represented values of the
measured voltage ratios V 1

V2
versus the voltage variation δV. These

results compare nicely with the TCMT predictions (black line) indi-
cating that the NLEPD occurs at the transition between AD and OD
phases. The slight deviations for large negative δV are attributed to the
small detunings of various components in our circuit from its ideal
(TCMT) parameters (see Supplementary Note 7 and Supplementary
Fig. 4) and to the limitations of theTCMT. The applicability of the latter
is subject to a number of approximations: high-Q factors of each RLC
resonator, weak coupling between the two RLC tanks, and the elim-
ination of fast-oscillating terms (see Supplementary Note 1). Never-
theless, the overall agreement between the predictions of TCMT, the
NGSPICE simulations (blue solid line) and the experimental results are
satisfactory. Additionally, the TCMT predicts that the voltage contrast
follows a Puiseux expansion, V 1

V2
≈1 + jδV j23 +OðjδV j43Þ, resulting in

log V 1
V2

� �
∼ jδV j23. This sublinear response of the voltage contrast sug-

gests that it could also be used as another physical observable for
sensing purposes. Further analysis on the SNE of such observable is
necessary to establish it as sensing measurand and will be reported
elsewhere.

The existence of a stable NS does not guarantee the evolution of
the system to this specific state. Instead, the systemmay evolve either
to a stable trivial state, or to another stable NS in case of bistabilities
(AD domain). The former scenario is easily excluded by an appropriate
choice of the relative gain parameter (see Fig. 1b). The latter scenario
can be controlled by realizing that the final state depends strongly on
the initial conditions {A1(0), A2(0), φ(0)} (see Supplementary Note 6).
The phase-space volume that contains the initial conditions which
converge to a specific stable fixed point constitute a basin of attrac-
tion, and its size provides a measure of how attractive this fixed point
is. Detailed dynamical simulations using Eq. (1)—for various κ values
along with a fine mesh of initial conditions {A1, A2, φ}—allowed us to
identify the basins of attraction of the two fixed points in the AD
domain.We find that initial excitationswith a relative phase φ

		 		> π
2 end

up at the AD fixed point associated with the f− mode while an initial
preparation with a phase φ

		 		< π
2 leads to a f+ supermode. In Fig. 2c, we

show the basins of attraction for the f+(f−) fixed points which are
indicated with blue (yellow) color for the example case of δκ ≡ κ(δV) −
κNLEPD ≈ 5 ⋅ 10−5 (corresponding to δV ≈ 2 mV). In fact, further analysis
using TCMT indicated that a small detuning between the resonant
frequencies of the two RLC resonators smoothens the frequency
splitting in the close proximity of the NLEPD without drastically
affecting the square-root response of f+. At the same time, it has
important consequences on the stability of the NS in the vicinity of the
NLEPD by favoring only the upper branch f+ which remains stable—as
opposed to the lower branch f− that turns unstable (see Supplementary
Note 7 and Supplementary Fig. 4). Away from the NLEPD the bistable
nature at the ADdomain persists. Eitherway, the square-root scaling of
the NS frequency f+ from fNLEPD (see Eq. (3)) is unaffected.

Sensing protocol
In Fig. 3a, we report a density-plot of the voltage power spectrum
|V1(ω)|2 for various voltage variations δV by performing a Fourier
transform of the temporal field—which were evaluated via time-
domain simulations of the TCMT Eq. (1). To achieve the asymptotic
states associatedwith the f+(f−) supermodes in theADdomain,we have
prepared the initial excitation at relative phase φ

		 		< π
2 ð φ
		 		> π

2Þ as dis-
cussed above. The numerical data agree nicely with the theoretical
predictions of Eq. (3). In Fig. 3b, we show a density plot of the
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Fig. 3 | Sublinear frequency detuning and sensitivity to applied voltage var-
iations. a Density plot of the normalized emitted spectrum evaluated from
dynamical simulations of the temporal coupledmode theory (TCMT)model versus
voltage variations of the coupling capacitor. The nonlinear frequencies for δV > 0
have been obtained using different initial conditions which belong to the basin of
attraction of the corresponding stable fixed point. The dashed black line indicates
the frequency domain for which each initial condition has been used.
b Experimentally measured emitted spectrum as a function of voltage variations.
The red dashed line in both a and b is the TCMTprediction Eq. (3) of the nonlinear
frequencies. The magenta dotted line indicates the position δV = 0, where the

nonlinear exceptional point degeneracy (NLEPD) is located. c The measured rela-
tive frequency detunings (circles) for the stable fixed point associated with the
upper branch versus the applied voltage variations. The black dashed line is drawn
to guide the eye and has a slope of 1

2 that is characteristic of a NLEPDof orderN = 2.
d The sensitivity of the active nonlinear circuit demonstrating two orders
enhancement in the proximity of the NLEPD as opposed to a system configuration
away from the NLEPD. The black dashed line in panels b, c and d indicates the
numerical results using NGSPICE. Error bars in panels c and d indicate ±1 standard
deviation obtained from ten independent measurements.
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measured power spectrum of the emitted signal together with the
TCMT predictions of Eq. (3) for the f+ frequency (red dashed line). The
absence of f− from the measured power spectrum, is associated with
the fact that the experimental initial preparation favors a field excita-
tionwith a small relativephase φ

		 		< π
2. In the samefigure, we also report

the f+ frequency (versus δV) that has been extracted by a Fourier
transform of the voltage V1(t) using NGSPICE simulations (black dot-
ted line).

The sublinear detuning is better appreciated by reporting Δf+ ≡ f+
− fNLEPD versus δV in a double-logarithmic plot. The experimental data
(cyan circles) nicelymatch the results from the NGSPICE (dashed black

line) showing the predicted behavior Δf+ /
ffiffiffiffiffiffiffi
δV

p
from TCMT, see

Fig. 3c. This sublinear response offers an opportunity to develop an
enhanced sensing protocol for detecting small voltage variations, δV,
using the coupling capacitor Cκ(δV) as a sensing platform. At the same
time, the square-root SLR extends the dynamical range (DR) of the
sensingmeasurements up to relatively large values of δV. The DR is the
other important metric that characterizes the efficiency of a sensor,
and it is defined as the ratio between the maximum and the minimum
δV variation that the sensor canmeasure. Furthermore, thepresenceof
gain elements guarantees the narrowing of the emission peaks and
promotes an enhanced resolution. To further quantify the efficiencyof

our sensing protocol, we have introduced the sensitivity, χ � ∂
�
Δf
f0

�
∂ δVð Þ. In

Fig. 3dwe report themeasured sensitivity (violet circles) together with
the NGSPICE results (black dashed line). We find that, within the
experimental resolution, χ ∼ 1ffiffiffiffiffi

δV
p in the proximity of the NLEPD.

Obviously, the frequency smoothening of Δf+ around the NLEPD (see
Fig. 3b), whose origin is traced back to small unavoidable resonant
mismatch between the resonances of the two RLC tanks (see Supple-
mentary Note 7 and Supplementary Fig. 4), will eventually set a
saturation value for the sensitivity.

Noise analysis
The sublinear frequency detuning Eq. (3) guarantees an enhanced
transduction function from the voltage variation to the sensitivity χ.
However, it does not, address another important characteristic of
high-performance sensors that is related to the precision of the mea-
surements. The latter is identified with the smallest measurable var-
iation in the input signal that can be identified by the sensor due to
noise at the output signal.

To better understand the effects of noise in the measurement
process, we have analyzed the Allan deviation, σ eΔf +

ðτÞ, of the nor-

malized frequency detunings, eΔf + � Δf +
f 0

, as a function of the sampling

time τ42,43. The measured Allan deviation is reported in Fig. 4a for
representative δV values—both well within the NLEPD-enhanced sen-
sitivity regime and away from it. We observe that as δV decreases, and
the system approaches towards the NLEPD, the noise increases. To
better appreciate the effects of noise in the measured voltage varia-
tion, we report in Fig. 4b the normalized Allan deviation,
σα τð Þ= σ eΔf +

τð Þ=χ ½V �. Our measurements show that the noise grows

slower than the signal enhancement aswe are approaching the NLEPD.
Therefore, we conclude that the proposed protocol can provide an
enhanced SNR in the proximity of a NLEPD. Based on the behavior of
Allan deviation, we candistinguish different regimes depending on the
duration of the sampling time τ. Each regime is influenced by a dif-
ferent type of noise source. At the limiting case of long sampling times,
theAllandeviationbehaves asσDRR

α =αDRRτ:This is typical of adrift rate
ramp (DRR) noise associated with the presence of systematic (deter-
ministic) errors. For intermediate sampling times, the Allan deviation
reaches a saturation value σBI

α τð Þ=αBIτ
0, which is indicative of the bias

instability (BI) noise. The value of αBI sets the smallest possible reading
of our sensor. Its origin is traced to the randomflickering of electronics
or other components of the system. Finally, the short-time behavior of
Allan deviation exhibits voltage (variations) random walk (VRW) noise
which decreases with the sampling time τ as σVRW

α =αVRW � τ�1=2. The
origin of the VRW is traced to noise sources, such as thermal (Johnson-
Nyquist) noise from the circuit elements (resistors and the amplifier)
and attached TLs; the readout noise; and other noise sources asso-
ciated with fluctuations of the voltage applied to the coupling capa-
citor or fluctuations of the capacitance due to thermal variations. Each
of them is described by a separate noise coefficient αcir, αTL, αdet, αadd,
respectively, and contributes to the noise equivalent voltage variation

given by αVRW =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
JN +α2

det +α
2
add

q
, where α2

JN =α2
cir +α

2
TL. Since αdet can

be actively minimized, the thermal noise, αJN, together with αadd,
represent the best obtainable limit for αVRW.

In Fig. 4c, we provide a panorama of αVRW for all δV-values that
we have used in our measurements (blue circles). From the mea-
surements, we conclude that αVRW≈0:002 δV

0:5½Vs1
2�, indicating a

robustness to the VRW noise, which is attributed to the stable

Fig. 4 | Noise analysis at various voltage variations. a The Allan deviation σ eΔf+ ðτÞ
of the circuit readout versus the sampling time τ is measured at various voltage
variations δV of the coupling capacitor both in the proximity (small δV values) and
away (large δV values) from the nonlinear exceptional point degeneracy (NLEPD).
b The rescaled (with respect to the sensitivity χ) Allan deviation σαðτÞ= σ eΔf+ τð Þ=χ
decreases as we are approaching the NLEPD indicating that the sensitivity
enhancement offsets the noise enhancement. c The measured (blue circles)

voltage random walk coefficient αVRW versus the voltage variations for all δV vol-
tage variations that we have used. The red diamonds are the results of NGSPICE
simulations where we have considered thermal (Johnson–Nyquist) noise at the
resistors, amplifiers and at the transmission lines (TLs) described by an ambient
temperatureT = 300K. In all cases, the error bars are indicated by the shadow area
and correspond to ±1 standard deviation evaluated over four different
measurements.
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hyperbolic nature of the f+ supermode. Specifically, the phase-space
around these hyperbolic fixed points are structurally stable41, and
the associated basin of attraction is relatively broad—even for vol-
tage variations close to the NLEPD (see Fig. 2c). Therefore, the VRW
noise is not able to significantly push the phase-space trajectories
out of the basin of attraction. In the same figure, we also show the
noise coefficient αJN from NGSPICE (red diamonds), where we have
incorporated thermal noise at the resistors, the amplifier, and the
TLs described by an ambient temperature of T = 300 K. The simu-
lated value of αJN is over an order of magnitude smaller than our
experimental measurements for αVRW. We conclude that the
detection noise αdet combined with αadd overwhelms the thermal
noise αJN. Eventually, the absolute bound of αVRW will be determined
by the noise due to coupling fluctuations that originate from
applied voltage uncertainties and temperature-dependent capaci-
tive effects.

Discussion
We have demonstrated a SNE sensing of an NLEPD-based voltmeter.
The proposed sensing protocol is based on a square-root frequency
detuning from the NLEPD induced by a small voltage variation that
modifies the coupling between two nonlinear RLC tanks. The NLEPD
occurs at the transition between two types of oscillation quenching
regimes, i.e., OD and AD domains, in the parameter space, which are
consequences of the nonlinear gain/loss channels assigned to each
RLC tank. The underlying phase space is structurally stable in the
proximity of the (stable) fixed points associated with the degenerate
NS, while the corresponding basins of attraction are relatively broad,
even for voltage variations that are close to the NLEPD. These char-
acteristics, shield the sensing signal from noise resulting in a two
orders of magnitude enhancement of signal-to-noise ratio in the
proximity of the NLEPD. Our results establish EPD-sensing from self-
oscillating systems as an efficient platform with a dramatically
improved SNE factor in the proximity of the NLEPD. Our scheme can
guide the design of oscillation quenching-based hypersensitive sen-
sors with enhanced dynamical range that can be utilized in electro-
encephalography, electrocardiography and neuroprosthetics. Other
applications that can utilize the current design include sensitive
manometers, flow sensors, accelerometers, inclinometers for
telemetry44 and implantable microsensors45. Many of these applica-
tions could also be realized in other frameworks, such as photonics,
where circuits with neuromorphic functionalities have already been
reported46.

Let us finally point out that while the specific form of the non-
linearity used in our design leads to an enhanced signal-to-noise ratio
in the proximity of the NLEPD, this is not necessarily the case for just
any self-oscillating system. For example, in refs. 13,16, the EPD-based
Brillouin ring-laser gyroscope was found to enhance the noise in the
proximity of the EPD, offsetting the enhancement in sensitivity. In this
respect, it will be interesting to extend the current investigation of SNE
sensing schemes to other self-oscillating systems whose nonlinear
nature allows for the presence of limit cycles and Hopf bifurcations47.
Sublinear sensing protocols based on nonlinear mechanisms are a
promising direction for building hypersensitive SNE sensors. For
example, a recent theoretical proposal that advocates for SNE48 utilizes
sublinear intensity variations due to a dynamic hysteresis occurring in
nonlinear resonators. Its experimental implementation, however,
could be problematic for fast sensing purposes, since it requires up-
down sweeping of a control parameter which can be time-consuming.
Further exciting future research includes the identification of other
physical observables, such as scattering cross-section anomalies (e.g.,
Wigner cusps)49,50 and transmission peak degeneracies15, whose sub-
linear response for sensing purposes has thus far been utilized in linear
settings.

Methods
Circuit design and fabrication
The circuit schematic used for this experiment can be seen in
Supplementary Fig. 1. It features two RLC resonators which are
coupled to each other via voltage-controlled capacitors. The main
elements that make up each RLC resonator are a resistor, Ri, an
inductor, Li, and a pair of in-parallel grounded capacitors, Cv and Ci,
where i = 1,2, denotes the gain and loss RLC units, respectively. The
inductors, Li = 200 μH, used in both the gain and loss resonators are
API Delevan 807-1537-90HTR. The total capacitance in each reso-
nator is made up by a combination of a tunable capacitor, Cv, con-
nected in parallel with a fixed capacitor, Ci. The tunable capacitor,
Cv, is a Murata 81-LXRW19V201-058 with a capacitance range of
100–200 pF. A voltage of 0.5 V was applied to the tunable capacitor
in each RLC resonator, and it was controlled by a EG&G Instruments
7265 DSP lock-in amplifier, that was connected via a Bayonet
Neill–Concelman (BNC) port to a resistor, Rv, model Yageo 603-
RC0402FR-074K99L, with a resistance of Rv = 4.99 kΩ. This resistor
was connected to a grounded fixed capacitor, Cv1, a Murata 81-
GCM32EL8EH106KA7L, with a capacitance of Cv1 = 10 μF. The fixed
capacitors in each resonator unit, Ci, is a Kemet 80-C0603C911F5G
with a capacitance of 910 pF. This gives a total capacitance in each
RLC resonator of 200 pF + 910 pF = 1110 pF.

Each RLC resonator has resistive elements that collectively pro-
vide gain and loss. The former is provided by an operational amplifier
(op-amp) model Analog Devices 584-ADA4862-3YRZ-R7. The power
supply for the op-amp was connected by a standard 3 pin connector,
with one going to ground, and the other two being connected to V+ = 6
V andV− = −6V, respectively. To producegain, the op-amphas a pair of
internal resistances, RG1 and RG2, of 550Ω each. RG1 is connected in
between the output of the op-amp and the inverting input of the op-
amp. RG2 is connected on one end to the inverting input of the op-amp
and, grounded on the other end. The mechanically tunable variable
resistor in the gain RLC tank, R1, is a Vishay 71-PHPA1206E2001BST1
component that has a resistanceofR1 = 2000Ω.R1 is connectedonone
end to theoperational amplifier’s non-inverting input. Theother endof
R1 is connected to a capacitor, Ce1, model Kemet 80-
C0805C100FDTACTU where Ce1 = 10 pF, capacitively couples each
RLC resonator to transmission lines. A mechanically tunable variable
resistor, RT1, is connected in parallel to R1, and the op-amp, is a Bourns
652-3269W-1-102GLF with RTi = 720 ± 200Ω. The set value of RT1 = 720
Ω, and it is connected to a pair of grounded back-to-back of diodes,Di,
Onsemi512-1N914BWS—which represent thenonlinear elements of this
RLC dimer. The fixed resistor in the loss resonator, R2, is a Vishay 71-
PCNM2512E2501BST5 component with a resistance of R2 = 2500 Ω. R2

is connected in parallel to RT2 = 750 Ω. On the other end, RT2 is con-
nected to a pair of back-to-back grounded diodes—the same model of
diodes as in the gain resonator was used.

The coupling between the two resonators was achieved using two
parallel variable capacitors, Cvc. The component used in Cv, a Murata
81-LXRW19V201-058 is the samemodel as the variable capacitors in the
resonator units, Cvc. As in the RLC tanks, Cvc is connected to a
grounded Cv1 which in turn is connected to Rv. The same lock-in
amplifier is used to control the tuning voltage via a BNC port. One of
the two capacitors is held fixed at 200 pF with a constant applied
voltage of 0.5 V, whereas the other is tuned in voltage range between
0.4 and 3.5 V.

Voltage and frequency detuning measurements
The emitted signal from the electronic circuit was collected for dif-
ferent applied voltage variations of the capacitance voltage control
(CVC) capacitor. These voltage variations where electronically con-
trolled via an EG&G Instruments 7265 DSP lock-in amplifier. The
imposed voltage variations were in the range between 0.4 and 3.5 V
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associated with −1.1 V ≤ δV ≤ 2 V with resolution of up to 1mV. At each
specific voltage variation, the emitted spectrum was collected using a
network analyzer Keysight E5080A. The individual frequency sweeps
contain 4001 points in a range of 295–320 kHz. A single measurement
was obtained from the collected spectrum with an intermediate fre-
quency bandwidth (IFBW) of 100 Hz giving a sampling time of 40.01 s.
The peak frequencies of the spectrum f+ were then identified from the
resulted spectrum, which allows the calculation of the frequency
detuning Δf+.

Allan deviation measurement
The Allan deviation σ eΔf+ ðτÞ of the frequency associated with the vol-

tage power spectrum peak of the emitted signal is defined as

σ eΔf+ τð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðM � 1Þ
XM�1

n = 1

eΔf n+ 1ð Þ
+


 �
� eΔf nð Þ

+


 �� �2
vuut ; ð4Þ

where τ is the sampling time, M is the total number of frequency

measurements and h eΔf nð Þ
+ i indicates the average rescaled frequency

detuning during the sampling time interval [nτ,(n + 1)τ]. For the
extraction of Allan deviation, the rescaled emitted peak detuningseΔf+ � Δf +

f 0
were sampled with an IFBW of 10 kHz for 101 points in a

frequency range of 7 kHz centered around the expected Δf+ for the
associated δV. Twenty thousand consecutive spectral measurements
were performed over a period of approximately 2700 s for each δV.
This results in a sampling time of 0.1337 s.

NGSPICE simulations
We use NGSPICE, an open-source software for electronic circuits, to
simulate the dynamical behavior of our experimental platform. We
consider two RLC tanks coupled by a capacitor using the same char-
acteristics as the experimental platform, where, unless specified
otherwise, uses the same parameters of the electronic components
described in “Circuit Design and Fabrication” sub-section of “Meth-
ods.” The op-amp in the gain resonator is represented by a high
impedance Norton amplifier by designating its constituent compo-
nents—a transconductance that quantifies gain, a capacitor and diode
clippers. Nonlinearity in the gain and loss resonators is modeled with
back-to-back diodes via 1N914 diodes—the same type as used in the
experimental platform—using the appropriate parameters that
describe its behavior. To compensate for the detuning due to the
capacitor in the op-amp, the capacitor in the gain resonator, Cv + C1,
was detuned slightly to 0.9955(Cv + C1), to fit the experimental data
obtained. In conjunction with that Li (i = 1,2) was set at 0.965Li, in the
simulations. Using this setup, we evaluate the signal generated by the
circuit for a total time of t = 6000

f 0
≈0:017 s with the time steps of

dt = 1
ð80f 0Þ ≈ 37ns. In our analysis of the power spectrum, we dropped

the first 0.0017 s, which correspond to the short time transient, to
consider only the steady-state behavior.

To add noise, we modeled Johnson–Nyquist noise—electronic
noise due to thermal fluctuations. This was added to our simulations
by adding random voltage sources at every resistor in our circuit
(including the TLs). The amount of noise added at each resistor
using the TRNOISE function of NGSPICE at these resistors are dic-
tated by the root mean square of the voltage due to
Johnson–Nyquist noise. This is given by vrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBTRB

p
where kB is

Boltzmann’s constant; R is the value of the respective resistor at
which the random voltage source was added; B is the bandwidth of
the noise for which the natural frequency of the resonator ≈ 338 kHz
was assumed; and T is the temperature for which the ambient value
of 300 K was chosen.

Data availability
The datasets generated during and/or analyzed during the current
study are available in the Zenodo repository51 (https://doi.org/10.5281/
zenodo.8250657).

Code availability
The codes for reproducing TCMT data are deposited at the Zenodo
repository51 (https://doi.org/10.5281/zenodo.8250657).

References
1. Kato, T. Perturbation Theory for Linear Operators (Springer Berlin/

Heidelberg, 1995).
2. Ma, Y. & Edelman, A. Nongeneric eigenvalue perturbations of Jor-

dan blocks. Linear Algebra Appl. 273, 45–63 (1998).
3. Moiseyev, G. N. Non-Hermitian Quantum Mechanics (Cambridge

Univ. Press, 2011).
4. Bender,C.M.PTSymmetry inQuantumandClassical Physics (World

Scientific, 2018).
5. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat.

Phys. 14, 11–19 (2018).
6. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on

parity–time symmetry. Nat. Photonics 11, 752–762 (2017).
7. Özdemir, Ş. K. et al. Parity–time symmetry and exceptional points in

photonics. Nat. Mater. 18, 783–798 (2019).
8. Miri, M.-A. & Alu, A. Exceptional points in optics and photonics.

Science 363, eaar7709 (2019).
9. Wiersig, J. Enhancing the sensitivity of frequency and energy

splitting detection by using exceptional points: application to
microcavity sensors for single-particle detection. Phys. Rev. Lett.
112, 203901 (2014).

10. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional
points. Nature 548, 187–191 (2017).

11. Chen, W. et al. Exceptional points enhance sensing in an optical
microcavity. Nature 548, 192–196 (2017).

12. Hokmabadi, M. P. et al. Non-Hermitian ring laser gyroscopes with
enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

13. Lai, Y. H. et al. Observation of the exceptional-point-enhanced
Sagnac effect. Nature 576, 65–69 (2019).

14. Wiersig, J. Prospects and fundamental limits in exceptional point-
based sensing. Nat. Commun. 11, 2454 (2020).

15. Kononchuk, R. et al. Exceptional-point-based accelerometers with
enhanced signal-to-noise ratio. Nature 607, 697–702 (2022).

16. Wang, H. et al. Petermann-factor sensitivity limit near an excep-
tional point in a Brillouin ring laser gyroscope. Nat. Commun. 11,
1610 (2020).

17. Lau, H. K. & Clerk, A. A. Fundamental limits and non-reciprocal
approaches in non-Hermitian quantum sensing. Nat. Commun. 9,
4320 (2018).

18. Langbein, W. No exceptional precision of exceptional-point sen-
sors. Phys. Rev. A 98, 023805 (2018).

19. Wiersig, J. Robustness of exceptional point-based sensors against
parametric noise: the role of Hamiltonian and Liouvillian degen-
eracies. Phys. Rev. A 101, 053846 (2020).

20. Petermann, K. Calculated spontaneous emission factor for double-
heterostructure injection lasers with gain-induced waveguiding.
IEEE J. Quantum Electron. 15, 566 (1979).

21. Siegman, A. E. Excess spontaneous emission in non-Hermitian
optical systems. I. Laser amplifiers. Phys. Rev. A 39, 1253 (1989).

22. Goldberg, P., Milonni, P. W. & Sundaram, B. Theory of the funda-
mental laser linewidth. Phys. Rev. A 44, 1969 (1991).

23. Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Applied
Mathematical Sciences, 112) (Springer, 2013).

24. Kominis, Y., Kovanis, V. & Bountis, T. Spectral signatures of excep-
tional points and bifurcations in the fundamental active photonic
dimer. Phys. Rev. A 96, 053837 (2017).

Article https://doi.org/10.1038/s41467-023-41189-7

Nature Communications |         (2023) 14:5515 7

https://doi.org/10.5281/zenodo.8250657
https://doi.org/10.5281/zenodo.8250657
https://doi.org/10.5281/zenodo.8250657


25. Zhiyenbayev, Y., Kominis, Y., Valagiannopoulos, C., Kovanis, V. &
Bountis, A. Enhanced stability, bistability and exceptional points in
saturable active photonic couplers.Phys. Rev. A 100, 043834 (2019).

26. Yu, S., Piao, X. & Park, N. Neuromorphic functions of light in parity-
time-symmetric systems. Adv. Sci. 6, 1900771 (2019).

27. Yu, S., Piao, X. & Park, N. Topologically protected optical signal
processing using parity-time-symmetric oscillation quenching.
Nanophotonics 10, 2883 (2021).

28. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006)
29. Saxena, G., Prasad, A. & Ramaswamy, R. Amplitude death: the

emergence of stationarity in coupled nonlinear systems. Phys. Rep.
521, 205–228 (2012).

30. Koseska, A., Volkov, E. & Kurths, J. Oscillation quenching mechan-
isms: amplitude vs. oscillation death. Phys. Rep. 531, 173–199 (2013).

31. Choi, S., Kim, J., Kwak, J., Park, N. & Yu, S. Topologically protected
all-optical memory. Adv. Electron. Mater. 8, 2200579 (2022).

32. Hassan, A. U., Hodaei, H., Miri, M.-A., Khajavikhan, M. & Christo-
doulides, D. N. Nonlinear reversal of the PT-symmetric phase tran-
sition in a system of coupled semiconductor microring resonators.
Phys. Rev. A 92, 063807 (2015).

33. Ge, L. & El-Ganainy, R. Nonlinear modal interactions in parity-time
(PT) symmetric lasers. Sci. Rep. 6, 24889 (2016).

34. Kominis, Y., Choquette, K. D., Bountis, A. & Kovanis, V. Exceptional
points in two dissimilar coupled diode lasers. Appl. Phys. Lett. 113,
081103 (2018).

35. Zhu, B.,Wang,Q. J. &Chong, Y. D. Laser-modebifurcations induced
by PT-breaking exceptional points. Phys. Rev. A 99, 033829 (2019).

36. Benzaouia, M., Stone, A. D. & Johnson, S. G. nonlinear exceptional-
point lasing with ab initio Maxwell-Bloch theory. APL Photonics 7,
121303 (2022).

37. Lin, Z., Schindler, J., Ellis, F. M. & Kottos, T. Experimental observa-
tion of the dual behavior of PT-symmetric scattering. Phys. Rev. A
85, 50101 (2012).

38. Bender, N. et al. Observation of asymmetric transport in structures
with active nonlinearities. Phys. Rev. Lett. 110, 1 (2013).

39. Lee, J. M. et al. Reconfigurable directional lasing modes in cavities
with generalized PT-symmetry. Phys. Rev. Lett. 112, 253902
(2014).

40. Chitsazi, M. et al. Experimental observation of lasing shutdown via
asymmetric gain. Phys. Rev. A 89, 43842 (2014).

41. Hartman, P. On the local linearization of differential equations. Proc.
Am. Math. Soc. 14, 568–573 (1963).

42. El-Sheimy, N., Hou, H. & Niu, X. Analysis and modeling of inertial
sensors using Allan variance. IEEE Trans. Instrum. Meas. 57,
140–149 (2008).

43. Quinchia, A. G., Falco, G., Falletti, E., Dovis, F. & Ferrer, C. A com-
parison between different errormodeling of MEMS applied to GPS/
INS integrated systems. Sensors 13, 9549–9588 (2013).

44. Chen, P. Y. et al. Generalized parity–time symmetry condition for
enhanced sensor telemetry. Nat. Electron. 1, 297–304 (2018).

45. Dong, Z. et al. Sensitive readout of implantable microsensors using
a wireless system locked to an exceptional point. Nat. Electron. 2,
335–342 (2019).

46. Prucnal, P. R. & Shastri, B. J. Neuromorphic Photonics (CRC
Press, 2017).

47. Valagiannopoulos, C. & Kovanis, V. Injection-locked photonic
oscillators: legacy results and future applications. IEEE Antennas
Propag. Mag. 63, 51–59 (2021).

48. Peters, K. J. H. & Rodriguez, S. R. K. Exceptional precision of a
nonlinear optical sensor at a square-root singularity. Phys. Rev. Lett.
129, 013901 (2022).

49. Tuxbury, W., Kononchuk, R. & Kottos, T. Non-resonant exceptional
points as enablers of noise-resilient sensors. Commun. Phys. 5,
210 (2022).

50. Kononchuk, R., Knee, J., Feinberg, J. & Kottos, T. Enhanced avionic
sensing based on Wigner’s cusp anomalies. Sci. Adv. 7,
eabg8118 (2021).

51. Suntharalingam, A., Fernández-Alcázar, L., Kononchuk, R. & Kottos,
T. Data and codes for “Noise resilient exceptional-point voltmeter
enabled by oscillation quenching phenomena”. zenodohttps://doi.
org/10.5281/zenodo.8250656 (2023).

Acknowledgements
A.S., R.K., and T.K. acknowledge partial support from MPS Simons Col-
laboration via grant No. 733698 and from NSF-CMMI-1925543. A.S. and
T.K. also acknowledges partial support from grant NSF ECCS 2148318,
which is supported in part by funds from OUSD R&E, NIST, and industry
partners as specified in the Resilient & Intelligent NextG Systems
(RINGS) program. L.F.-A. acknowledges support by CONICET Grant No.
PIP2021 (11220200100170CO).We acknowledge useful discussionswith
Professor U. Kuhl on improvements of noise analysis, Professor F. Ellis on
circuit design and Mr. W. Tuxbury for assisting with the experimental
platform. We also acknowledge useful discussions with Professor G.
Aaron and Professor K. Perks on neuronal functionalities.

Author contributions
A.S. and R.K. designed and fabricated the electronic circuit. A.S. and R.K.
characterized the electronic circuit and performed the experimental mea-
surements. A.S. and L.F.-A. developed the theory and carried out simula-
tions and data analysis. T.K. formulated the project. All authors discussed
the results. A.S., L.F.-A., and T.K. wrote themanuscript with input from R.K.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41189-7.

Correspondence and requests for materials should be addressed to
Tsampikos Kottos.

Peer review information Nature Communications thanks Vassilios
Kovanis, Sunkyu Yu, and the other anonymous reviewers for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41189-7

Nature Communications |         (2023) 14:5515 8

https://doi.org/10.5281/zenodo.8250656
https://doi.org/10.5281/zenodo.8250656
https://doi.org/10.1038/s41467-023-41189-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena
	Results
	Experimental platform
	Theoretical analysis of nonlinear supermodes
	Sensing protocol
	Noise analysis

	Discussion
	Methods
	Circuit design and fabrication
	Voltage and frequency detuning measurements
	Allan deviation measurement
	NGSPICE simulations

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




