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1. Introduction

In solving differential equations, wavelets provide a robust and accurate alterna-
tive to traditional methods and their advantage is really appreciated when they
are applied to problems having localized singular behavior. The solution is approxi-
mated by an expansion of scaling functions and wavelets, with the convenience that
multiscale and localization properties can be exploited. The choice of wavelet basis
is governed by several factors including the desired order of numerical accuracy and
computational effort.

A good feature of wavelet methods is the possibility to apply adaptive tech-
niques. In some cases multiscale bases are combined with finite element methods
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and adaptive refinement strategies are designed. Examples are the multiscale lifting
method and the dynamically adaptive algorithm developed by Chen et al.3 and
Bindal et al.4 respectively.

On the other hand, some authors applied adaptive procedures in wavelet collo-
cation methods, as the method introduced by Cai et al.13 and Kumar et al.14 which
uses cubic splines and allows the optimization of the number of basis functions used
for the solution of the problem.

The Galerkin method using variational equations and appropriate elemental
functions, is a good alternative, producing an efficient regularization action: in weak
formulations for a given equation, the approximating functions can be relatively less
regular and easier to construct, see Ref. 16.

Vampa et al. in Ref. 5, used Daubechies scaling functions to solve differential
equations -in a finite element context- for structural mechanics problems. Later, in a
recent article, Ref. 17, Vampa et al. presented a modified Wavelet–Galerkin method
using B-spline scaling functions to solve boundary value problems. This proposal
combines variational equations with a collocation scheme and gives an approximation
at an initial scale. In this work, a refinement process using wavelets is developed. It
improves the approximation recursively with minimal computational effort.

Numerical examples are used to demonstrate the applicability of the proposed
method, whose approximate solutions are computed in scaling-spline form and
improved with wavelets. The approximations were validated and convergence of
the proposed method was found to compare favorably to other numerical solutions.

The outline of the paper is as follows: a Wavelet–Galerkin method using scal-
ing functions as basis functions for a second order linear differential operator is
introduced in Sec. 2. How to design a multiresolution structure on the interval to
solve the boundary value problem presented is described in Sec. 3. In 3.1 a Mul-
tiresolution Analysis (MRA) structure on the interval is defined. In 3.2 we give a
summary of basic B-spline properties and the construction of subspaces of scaling
functions and wavelets corresponding to cubic B-splines on the interval is shown, in
an MRA framework. In 3.3 a Modified Wavelet–Galerkin Method to approximate
the solution of the boundary value problem, combining variational and collocation
equations, is developed. In 3.4 we describe how wavelets can be designed and can
be used to improve the approximate solution. In Sec. 3.5 the error is analyzed and
convergence is demonstrated. A bound of the approximation error is presented.
Numerical examples are described and analyzed in Sec. 4. A comparison of the pro-
posed method in contrast with other numerical methods is also shown. In Sec. 5,
conclusions are presented.

2. Wavelet–Galerkin Method

We consider the following one dimensional linear boundary value problem on the
interval I = [0, 1]:

Lu = −u′′(x) + p(x)u′(x) + q(x)u(x) = f(x) u(0) = u(1) = 0 (2.1)
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where p(x), q(x) and f(x) are continuous functions on I and u is a function in
certain Hilbert space V . If Eq. (2.1) cannot be solved exactly, one has to rely on
approximation methods. We seek an approximation ũ of u which lies in a certain
finite dimensional subspace Vh = span{Φ1,Φ2, . . . ,ΦN} ⊂ V .

Let 〈·, ·〉 be the inner product of the space V . Note that a(u, v) = 〈Lu, v〉 defines
a bilinear form on V ×V , so that the variational or weak formulation corresponding
to the problem Eq. (2.1), is to seek u ∈ V , such that

a(u, v) = 〈f, v〉 , ∀ v ∈ V. (2.2)

The analogous finite dimensional problem is to find ũ ∈ Vh such that:

a(ũ, vh) = 〈f, vh〉, ∀ vh ∈ Vh. (2.3)

It is well known that if a(·, ·) is continuous, V -elliptic and 〈f, v〉 is a continuous
linear form in V , both problems Eqs. (2.2) and (2.3) have a unique solution, (Lax-
Milgram theorem1). From Céa’s lemma1 the following error bounds are valid:

‖u− ũ‖2
V ≤ C

γ
inf v∈bVh

‖u− v‖2
V (2.4)

where C and γ are constants corresponding to continuity and coercivity of the
bilinear form a(·, ·), and h is a measure of the partition of I considered, and

‖u− ũ‖2
V ≤ Chr|u|2Hr+1 (2.5)

where r depends on the regularity of the solution.
Going back to Eq. (2.1), the associated bilinear form is:

a(u, v) =
∫ 1

0

(u′(x)v′(x) + p(x)u′(x)v(x) + q(x)u(x)v(x))dx (2.6)

for u and v ∈ V 0 ⊂ L2(I), the subspace of functions with homogeneous boundary
conditions.

As we are looking for the approximate solution ũ ∈ Vh, ũ =
∑N

k=1 αkΦk, from
Eq. (2.3), we have

N∑
k=1

αka(Φk,Φn) = 〈f,Φn〉, n = 1, 2, . . . , N (2.7)

and we arrive at the problem of solving a matrix equation

Aα = b (2.8)

where A(n, k) = a(Φk,Φn) and b(n) = 〈f,Φn〉.
For computational aspects, it is convenient to have a sparse matrix A with a low

condition number and basis functions with a small support, regularity and orthog-
onality. It is also desirable that the basis functions should be simple to evaluate,
differentiate and integrate. Finally, one wants the scheme to be refinable in order
to allow that the approximation ũ can be improved, modifying recursively the sub-
space Vh. If the basis functions Φk are generated from dilations and translations
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of a mother generating function, calculations become simpler. This suggests con-
sidering an MRA structure. Furthermore, if self-similarity given by scale relations
is satisfied, a hierarchical approximation to the exact solution is obtained and it is
possible to refine and improve the precision of the approximate solution.

In conclusion, MRA schemes, see Ref. 12, would provide a powerful mathemat-
ical tool for function approximation and multiscale representation of the solution
of differential equations corresponding to the problem in Eq. (2.1). It is important
to point out that, as these structures are generally defined on the whole real line,
they must be restricted adequately to the interval I where the differential problem
is formulated.

3. A New Method in the Context of an MRA on the Interval

As described by Chui,12 a MRA on L2(R) consists of a sequence of embedded closed
subspaces Vj ⊂ L2(R), j ∈ Z,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·
that satisfies several properties and typically is constructed by first identifying the
subspace V0 and the scaling function φ. Denoting

φj,k(x) := 2j/2φ(2jx− k), (3.1)

for each j ∈ Z, the family {φj,k : k ∈ Z} is a basis of Vj .
Associated with the scaling function φ there exists a function ψ called the mother

wavelet such that the collection {ψ(x − k), k ∈ Z} is a Riesz basis12 of W0, the
orthogonal complement of V0 in V1. If we consider,

ψj,k(x) := 2j/2ψ(2jx− k), (3.2)

for each j ∈ Z, the family {ψj,k : k ∈ Z} is a basis of Wj , the orthogonal com-
plement of Vj in Vj+1. It is noteworthy that wavelets allow the refinement of the
representation space taking into account that

Vj+1 = Vj ⊕Wj . (3.3)

As was mentioned at the end of Section 2, multiresolution structures in L2(R),
have to be restricted to L2(I), to solve boundary value problems on I, see Ref. 9 and
Ref. 11. If Haar bases are considered for L2(R), it suffices to take the restrictions
of these functions to I. Things are not so trivial when one starts from smoother
wavelets on the line. It is not clear a priori how to adapt the functions in such a
way that the result is an orthonormal basis of L2(I). Several solutions have been
proposed for this problem. A first solution is to extend the functions supported on I
to the whole line by making them vanish for x 	∈ I. This approach may introduce a
discontinuity at the edges and consequently, large wavelets coefficients are obtained
near the edges, and too many wavelets are used. Another alternative consists in
periodizing, but, unless the function itself is already periodic, it again introduces a
discontinuity.
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In the following section an MRA on the interval with B-splines as scaling func-
tions is described, and is constructed using orthogonality conditions in a way similar
to when it is designed in L2(R).

3.1. Definition of an MRA structure on an interval

An MRA in L2(I) is defined as a sequence of finite dimensional subspaces,

V̂ I
J min ⊂ V̂ I

J min +1 · · · ⊂ V̂ I
−1 ⊂ V̂ I

0 ⊂ V̂ I
1 ⊂ V̂ I

2 ⊂ · · · (3.4)

which starts at a scale Jmin ≤ 0 (which depends on the interval I) that verifies
the following properties:

• dim V̂ I
j+1 ∼ 2 dim V̂ I

j ,

• V I
J min contains all polynomials up to a certain degree m

• ⋃
V̂ I

j = L2(I),

• Ŵ I
j ⊂ V̂ I

j+1 is the orthogonal complement of V̂ I
j in V̂ I

j+1 of dimension 2j.

Let us assume that the support of the scaling function φ(x) ∈ V0 is [0, S], S ∈ N ,
and the support of the wavelet ψ ∈W0 is [−S + 1, S]. Then, at scale j, 2j + S − 1
basis functions intersect the interval [0, 1], 2j − S + 1 are interior and 2S − 2 are
boundary functions ((S − 1) such that 0 ∈ int(sop(φj)) and (S − 1) such that
1 ∈ int(sop(φj))).

Considering j0 such that 2j0 ≥ S, we define for j ≥ j0, φI
j,k(x) = φj,k(x)χ[0,1](x)

and

V̂ I
j = gen{φI

j,k, 1 − S ≤ k ≤ 2j − 1}. (3.5)

It is easy to see that V̂ I
j ⊂ V̂ I

j+1 and also that the above properties can be demon-
strated (see Refs. 7 and 11).

The way to construct wavelets is different. As the sop(ψj,k) = [(1+k−S)/2j, (S+
k)/2j], k ∈ N , then wavelets ψj,k intersect [0, 1] if 1−S ≤ k ≤ 2j +S− 2 and they
are interiors if S − 1 ≤ k ≤ 2j − S. This imposes that 2j0 ≥ 2S − 1.

On the other hand, the orthogonal complement of V̂ I
j in V̂ I

j+1, Ŵ
I
j , has dimen-

sion 2j. As 2j + (2S − 2) wavelets intersect the interval [0, 1], this implies that the
restrictions ψj,kχ[0,1] do not constitute a basis for Ŵ I

j , these wavelets are overcom-
pleted. As shown by Meyer in Ref. 10, designing boundary wavelets to generate a
basis for Ŵ I

j must be done carefully.

3.2. Cubic-B-spline subspaces

Spline wavelets are extremely regular and usually symmetric or anti-symmetric.
They can be designed to have compact support and they have explicit expressions
which facilitate not only theoretical formulation, but also numerical implementa-
tions with a computer, see Refs. 9 and 19.
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Let us consider B-spline functions of order m+ 1, that is, connected piecewise
polynomials of degreem having m−1 continuous derivatives. The joining points are
called knots and they are typically equally-spaced and positioned at the integers.

These functions can be defined recursively by convolutions:12

ϕ1(x) = χ[0,1](x)

ϕm+1(x) = ϕm ∗ ϕ1(x) (3.6)

and constitute the scaling functions of the MRA structure.
Among many properties that B-splines have, the most important ones for our

method are the following:

• Two-scale relation

ϕm+1(x) = 2−m
m+1∑
k=0

(
m+ 1
k

)
ϕm+1(2x− k). (3.7)

• Differentiation
dk

dxk
ϕm+1(x) = ∆kϕm+1−k(x) (3.8)

where ∆k is the k-order difference operator and 1 ≤ k ≤ m − 1 i.e. corresponds
to a reduction of the spline degree by k.

• Inner products∫
R

ϕm+1(x− k)ϕn+1(x− l)dx = ϕm+n+2(n+ 1 + l − k) (3.9)

i.e., correspond to simple evaluations of higher order splines at integer points.
This property is obtained from the convolution product and is useful in weak
formulations of differential problems.

In the B-spline MRA,9,11 V0 is the subspace generated by the translates of the
scaling function ϕm+1 and for each j ∈ Z, the family {ϕm+1,j,k:k ∈ Z} where

ϕm+1,j,k(x) := 2j/2ϕm+1(2jx− k), (3.10)

is a basis of Vj . These subspaces, Vj , constitute an MRA in L2(R).
B-splines of order m = 3 are used in this work. As they are functions in C2, a

hierarchical approximation of the solution for the second order problem Eq. (2.1)
can be obtained and accurate results can most likely be expected (see Ref. 18).

In the cubic B-spline MRA framework, the scaling function ϕ4 has support in
[0, 4] and ϕ4,j,k(x) := 2j/2ϕ4(2jx− k) is a basis of Vj . For simplicity, ϕ4,j,k(x) will
be denoted by ϕj,k(x).

In order to define the MRA restricted to the interval I = [0, 1] let us denote
by ϕI

j,k(x) = ϕj,kχ[0,1](x) for j ≥ 2. These scaling functions satisfy interesting
properties (see Ref. 6), they are supported on [2−jk, 2−j(k + 4)] and are splines
in Z/2j. They are interior splines if 0 ≤ k ≤ 2j − 4 and boundary splines if
−3 ≤ k ≤ −1 or 2j − 3 ≤ k ≤ 2j − 1.
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According to Eq. (3.5), subspaces V̂ I
j constitute an MRA in [0, 1], and dim

V̂ I
j = 2j +3. Each subspace consists of piecewise polynomials of degree m = 3 with

knots in 0 ≤ k/2j ≤ 1 and can reproduce polynomials of degree r ≤ 3 (see Ref. 18).
The scaling functions ϕI

j,k(x) form a Riesz basis for V̂ I
j , (see Ref. 12), and satisfy

the two-scale relation. If we denote

[ϕ̂I
j ] = (ϕI

j,−3, ϕ
I
j,−2, . . . . . . , ϕ

I
j,2j−1) (3.11)

a 1×(2j+3) dimensional array, and Ĥj , the two scale matrix of dimension (2j+1+3)
× (2j + 3), the following relation is satisfied,6

[ϕ̂I
j ] = [ϕ̂I

j+1] · Ĥj . (3.12)

The grammian matrix P̂ I
j ∈ R(2j+3)×(2j+3), associated with the bases [ϕ̂I

j ], is

P̂ I
j = [ϕ̂I

j ]
t · [ϕ̂I

j ] = (〈ϕI
j,k, ϕ

I
j,n〉)−3≤n,k≤2j−1. (3.13)

The following step is the definition of a suitable basis for the wavelet space Ŵ I
j ,

the orthogonal complement of V̂ I
j in V̂ I

j+1 in such a way that (similar to Eq. (3.3)),

V̂ I
j+1 = V̂ I

j ⊕ Ŵ I
j (3.14)

is verified.
As was mentioned before there exist different proposals such as those designed

by Mallat9 and Meyer.10 In this work, the construction of suitable wavelets is
motivated by the construction for the whole line, and it is described in the following
proposition:

Proposition 3.1. Suppose matrix Ĝj of dimension (2j+1 − 3)× and 2j, j ≥ 2 is
such that its columns are in the null space of Ĥt

j .P̂
I
j+1 of dimension 2j, then

[ψ̂I
j ] = [ϕ̂I

j+1] · Ĝj (3.15)

is a basis for the orthogonal complement Ŵ I
j .

Proof. Requiring the orthogonality condition,

[ϕ̂I
j ]

t · [ψ̂I
j ] = 0 (3.16)

and taking into account Eqs. (3.12) and (3.15) gives the desired result.

The simple and recursive structure of both matrices Ĥj and P̂ I
j+1 can be

exploited in the construction of the matrix Ĝj in such a way that a band matrix is
obtained.

Consequently, with the construction described in the proposition above, interior
wavelets are not modified. The same occurred with scaling functions: only wavelets
basis corresponding to the edges are different and are adequately designed (see
Refs. 7 and 10). It is important to point out that the edge functions -as they are
finite linear combinations of some shifts of ϕ4- have the same regularity.
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Let us now consider the space of interior scaling functions

V I
j = gen{ϕI

j,k, 0 ≤ k ≤ 2j − 4}, j ≥ 2 (3.17)

of dimension 2j − 3 and denote by W I
j the orthogonal complement of V I

j in V I
j+1

of dimension 2j .
It can be demonstrated that

⋃
V I

j = L2[0, 1] and that the sequence of subspaces
V I

j defines an interior MRA in [0, 1].
The construction of a basis for W I

j is analogous to the method described in
Proposition 1. In this case, matrix Gj is of dimension (2j+1 − 3) × 2j, j ≥ 2 with
columns in the null space of Ĥt

j · P I
j+1 of dimension 2j , then [ψI

j ] = [ϕI
j+1] ·Gj is a

basis for the orthogonal complement W I
j .

In Fig. 1 splines corresponding to scale j = 3 (six boundary splines and five inte-
rior splines) are shown. For the same scale, wavelets constructed following Proposi-
tion 1 (three boundary wavelets designed at the left edge and two interior wavelets)
are presented in Fig. 2.

3.3. Modified Wavelet–Galerkin method

If we consider the variational problem Eq. (2.7) in V I
j , the following (2j − 3)-

dimensional matrix system has to be solved:

A4,j αj = b4,j (3.18)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1. Boundary and interior scaling functions, corresponding to cubic B-splines.
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0
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Fig. 2. Boundary and interior wavelet functions corresponding to cubic B-splines.

where (see Ref. 6 for details) for 0 ≤ n, k ≤ 2j − 4,

A4,j(n, k) = −22jϕ′′
8(4 + n− k) + 2jpj(n, k)ϕ′

8(4 + n− k)

+ qj(n, k)ϕ8(4 + n− k) (3.19)

and, according to the notation introduced in Sec. 3.2, ϕ8 is the B-spline of order
eight.

b4,j(n) = 〈f, ϕj,n〉 (3.20)

Taking into account the drawbacks described in Ref. 17 concerning convergence,
our proposal is to combine variational equations with a collocation scheme, using
both spaces V I

j and V̂ I
j to construct an algebraic system to obtain ûj. We called

this method the Modified Wavelet–Galerkin Method which is described below and
yields a better approximation ûj in scale j (with a higher rate of convergence), of
the form ûj =

∑2j−1
k=−3 α̂j,kϕ

I
j,k:

(1) Algebraic system:

(a) Variational equations: they are obtained from the variational formulation,
considering that the unknown function u is in V̂ I

j and the test function v is
in V I

j . This leads to a rectangular system of dimension (2j − 3)× (2j + 3):

Â4,jα̂j = b̂4,j. (3.21)

The matrix and vector elements are similar to the ones described in
Eqs. (3.19) and (3.20), considering ϕI

j,k in V̂ I
j .

1350015-9
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(b) Collocation equations: they are obtained from the requirement that the
residual should vanish at the ends of the interval and at collocations points,
2−j and 1 − 2−j ,

u′′(0) + p(0)u′(0) + q(0)u(0) = f(0)

u′′(2−j) + p(2−j)u′(2−j) + q(2−j)u(2−j) = f(2−j)

u′′(1 − 2−j) + p(1 − 2−j)u′(1 − 2−j) + q(1 − 2−j)u(1 − 2−j) = f(1 − 2−j)

u′′(1) + p(1)u′(1) + q(1)u(1) = f(1)

(3.22)

(c) Boundary conditions : are obtained from the requirement that the solution
satisfies the boundary conditions of the problem,

α̂−3 ϕj,−3(0) + α̂−2 ϕj,−2(0) + α̂1 ϕj,−1(0) = 0

α̂2j−2 ϕj,2j−2(1) + α̂2j−1 ϕj,2j−1(1) + α̂2j ϕj,2j (1) = 0
(3.23)

(2) Approximate solution in V̂ I
j : After assembling all of the equations listed above,

the 2j + 3 coefficients α̂jk corresponding to the approximate solution are
obtained by solving the square algebraic system.

It is important to notice that the matrix corresponding to the algebraic system
Eqs. (3.21)–(3.23) is a Toeplitz and a band matrix. When rows corresponding to
additional equations (from collocation and boundary equations) are added, the
matrix maintains structure properties and an efficient resolution of the algebraic
system is possible. This is also valid for the nonconstant coefficients case.

3.4. Wavelet formulation for refinement

An a-posteriori error estimation of the approximation in V I
j may indicate the con-

venience of increasing the scale.
In this section we describe how wavelets can be used to increase the scale i.e. to

obtain an approximation in scale j + 1, once the approximation ûj in scale j,

ûj =
2j−1∑
k=−3

α̂j,k ϕ
I
j,k (3.24)

has been obtained. One possibility is to repeat the process described previously.
Another attractive strategy consists of improving the approximation recursively
using wavelets to express the details at higher scales. In this way, large computa-
tional savings could be achieved.

In the first alternative, the algebraic system Eqs. (3.21)–(3.23) should be solved,
in j + 1 scale, thereby obtaining an expression similar to that of Eq. (3.24).

It is important to remark that in this case, as only scaling functions are used,
the MRA structure is not exploited.
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In the second option another basis of V̂ I
j+1 is considered, giving the following

expression for ûj+1

ûj+1 =
−1∑

k=−3

α̂j+1,k ϕ
I
j+1,k +

2j+1−4∑
k=0

α̂j+1,k ϕ
I
j+1,k +

2j+1−1∑
2j+1−3

α̂j+1,k ϕ
I
j+1,k (3.25)

ûj+1 =
−1∑

k=−3

α̂j+1,k ϕ
I
j+1,k +

2j−4∑
k=0

βI
j,kϕ

I
j,k +

2j+1−1∑
k=2j+1−3

α̂j+1,kϕ
I
j+1,k +

2j∑
k=1

νj,kψj,k

(3.26)

taking into account the relation of Eq. (3.14).
In this proposal, the 2j+1 − 3 variational equations

〈Lûj+1, ϕ
I
j+1,n〉 = 〈f, ϕI

j+1,n〉, 0 ≤ n ≤ 2(j+1) − 4 (3.27)

are replaced with:

〈Lûj+1, ϕ
I
j,n〉 = 〈f, ϕI

j,n〉, 0 ≤ n ≤ 2j − 4 (3.28)

〈Lûj+1, ψ
I
j,n〉 = 〈f, ψI

j,n〉, 1 ≤ n ≤ 2j (3.29)

while the equations corresponding to both edges in this new base are similar to
the ones obtained before. Concerning the new algebraic system to solve, we are in
position to establish the following result:

Proposition 3.2. Let us consider the 2j+1−3 variational equations (3.27) obtained
with the Modified Wavelet–Galerkin Method in scale j + 1. If variational equa-
tions (3.27) are replaced by (3.28) and (3.29), both algebraic systems are equivalent.

The practical implication of the proposition above is that, using this new struc-
ture of the variational equations, the number of unknowns is reduced and the refine-
ment with wavelets leads to a very efficient algorithm.

Our goal is to use a representation of the approximation in the space V̂j+1 in
the following form,

ûj+1 = ûj + [ûj+1 − ûj] = ûj + v̂j (3.30)

and consider for the increment v̂j ∈ V̂j+1 the expansion:

v̂j =
2j+1−1∑
k=−3

γj+1,kϕ̂
I
j+1,k = [ϕ̂I

j+1] · [γj+1] (3.31)

with the scaling functions of the space V̂j+1.

Remark 3.1. It is important to note that v̂j and ûj are not orthogonal.

The way in which the number of unknowns is reduced is made explicit by the
following theorem:
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Theorem 3.1. (Reduction of the number of unknowns) Let Dj be the matrix corre-
sponding to the interior products 〈LϕI

j,k, ϕ
I
j,n〉−3≤n,k≤2j−1 and let v̂j = [ϕ̂I

j+1]·[γj+1]
be the increment in Eq. (3.30). If v̂j satisfies the orthogonality condition

〈Lv̂j , ϕ̂
I
j,n〉 = 0 0 ≤ n ≤ 2j − 4 (3.32)

then, there exists a matrix Nj of dimension (2j+1 + 3) × (2j + 6), recursive and of
simple structure such that the increment coefficients in the basis of scaling functions
of V̂j+1 are

[γj+1] = Nj [α̂j+1]. (3.33)

In this way the number of unknowns is reduced from (2j+1 + 3) to (2j + 6).

Proof. The condition Eq. (3.32), which is associated to an homogeneous linear
system of 2j − 3 equations and 2j+1 + 3 unknowns, follows directly if we substitute
(3.30) in (3.28),

〈Lûj , ϕ̂
I
j,n〉 + 〈Lv̂j , ϕ̂

I
j,n〉 = 〈f, ϕ̂I

j,n〉, (3.34)

and taking into account variational equations in scale j, 〈Lûj, ϕ̂I
j,n〉 = 〈f , ϕ̂I

j,n〉.
Replacing (3.31) in (3.32) and considering matrices derived from the differential

operator L (as the grammian matrix, P̂ I
j Eq. (3.13)), a homogeneous system is

obtained. The reduction is a consequence of the null space dimension, which is
(2j+1 + 3) − (2j − 3) = (2j + 6).

Remark 3.2. It is very important to point out that the number of equations to
be solved is minimal. In addition, in the theorem above, it is supposed that matrix
Nj is of full rank. This will depend on the matrix Dj , and so depends on L. If this
is not the case and the matrix Nj is not of full rank, the reduction of unknowns
will not be altered.

The previous discussions about the linear system that has to be solved in this
new proposal are summarized in the following theorem.

Theorem 3.2. Let ûj be the approximation obtained from Modified Wavelet–
Galerkin Method at scale j, from Eqs. (3.21)–(3.23) and v̂j the increment (v̂j =
[ϕ̂I

j+1] · [γj+1]). Then, coefficients [α̂j+1] are obtained solving the system which con-
sists in 2j variational equations,

〈Lv̂j , ψj,n〉 = 〈f − Lûj, ψj,n〉 (3.35)

and six equations corresponding to the edges.

Proof. If we substitute ûj+1 with the decomposition Eq. (3.30) in Eq. (3.29), 2j

variational equations are obtained. As the term 〈Lûj, ψj,n〉 is known at scale j, it
is now in the independent term. Adding six equations, corresponding to both edges
written in terms of [γj+1] coefficients, yields the linear system to be solved. Finally,
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with coefficients [α̂j+1] corresponding to the approximation at scale j+1 and using
the relation Eq. (3.33), v̂j , is found.

It can be concluded that the MRA provides the structure to obtain ûj+1 in an
efficient manner: solving a linear system -at scale j + 1- of dimension 2j + 6 in the
space V̂ I

j+1 (Eq. (3.34)).
The iterative refinement algorithm proposed can be summarized as follows:

• Step 1 Choose an initial scale j = j0 and find scaling function coefficients solv-
ing the linear system Eqs. (3.21)–(3.23). This yields the approximation ûj =∑2j−1

k=−3 α̂j,kϕ
I
j,k

• Step 2 Find the coefficients [α̂j+1] of v̂j solving the system Eq. (3.35)
• Step 3 Given an adequate threshold ε, the following cutting criterion is applied: if
‖v̂j‖2

2 < ε, STOP a good approximation is obtained, IF NOT, go to the following
step

• Step 4 ûj+1 = ûj + v̂j ,
j = j + 1 go back to Step 2

3.5. Approximation error analysis

This section is devoted to the analysis of approximation error in scale j using the
Modified Wavelet–Galerkin Method developed in Sec. 3.3. It must be considered
that the approximation ûj in V̂ I

j is obtained by solving the system Eq. (3.21) and
six additional equations, once the (2j + 3) coefficients α̂jk are calculated.

As the approximation in scale j is not the solution of a variational problem
in V̂ I

j , we will use a strategy to apply Céa’s lemma presented in Sec. 2. We will
demonstrate that it is possible to design a subspace Û I

j of V̂ I
j in such a way that

the approximation is the solution of a classic variational problem in Û I
j .

Recalling that the difference in the proposed method lies in the design of addi-
tional equations corresponding to both edges, it is natural to suppose that the
subspace Û I

j required will be generated by{
ϕ̃I

j,0, ϕ
I
j,1, ϕ

I
j,2, . . . . . . , ϕ

I
j,N−1, ϕ̃

I
j,N

}
(3.36)

where N = 2j − 4, ϕI
j,k, 1 ≤ k ≤ N − 1 are the interior scaling functions, excluding

both ϕI
j,0 and ϕI

j,N but adding two new functions ϕ̃I
j,0 and ϕ̃I

j,N at left and right
edges, respectively.

Scaling functions are used to define ϕ̃I
j,0 and ϕ̃I

j,N , i.e. ϕI
j,−3, ϕ

I
j,−2, and ϕI

j,−1

corresponding to left end and ϕI
j,N+1, ϕ

I
j,N+2 and ϕI

j,N+3 to the right edge of the
interval.

For simplicity we only recall error analysis at the edge x = 0, proposing that

ϕ̃I
j,0 = c−3ϕ

I
j,−3 + c−2ϕ

I
j,−2 + c−1ϕ

I
j,−1 + c0ϕ

I
j,0
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verifies the following conditions:

ϕ̃I
j,0(0) = 0

Lϕ̃I
j,0(0) = f(0)

Lϕ̃I
j,0(2

−j) = f(2−j)

〈Lû − f, ϕ̃I
j,0〉 = 0.

(3.37)

It can be shown that if the subspace Û I
j is generated by (3.36), the inclusion

Û I
j ⊂ V̂ I

j is satisfied. Moreover, the approximate solution ûj is in Û I
j (see Ref. 6 for

details).
Then, the following theorem holds:

Theorem 3.3. The solution ûj in V̂ I
j of the Modified Wavelet–Galerkin Method is

also the solution of a pure variational problem in the subspace Û I
j .

Consequently, it is now possible to use Céa’s lemma (see Eq. (2.4)), with the
following error estimation:

Corollary 3.1. Let ûj =
∑2j−1

k=−3 α̂j,kϕ
I
j,k be solution of the algebraic system

Eqs. (3.21)–(3.23), then,

‖u− ûj‖2
bV I

j

≤ C

γ
infv∈bUI

j
‖u− v‖2

bV I
j

(3.38)

where C and γ are constants corresponding to continuity and coercivity of the bilin-
ear form a.

From (3.38) it is derived that the solution obtained with the Modified Wavelet–
Galerkin Method minimizes norm error (with a constant factor) and converges to
the exact solution as the scale j increases.

It is demonstrated in Ref. 18 that the interpolatory cubic spline function Sh,
which coincides with a smooth function u ∈ C4 with uniform spacing h, satisfies:

‖u− Sh‖2
H1 ≤ 35

24
h4‖u‖∞. (3.39)

As a consequence of the above results, the following bound is valid for the
approximation error:

‖u− ûj‖2
L2 ≤ C

(
1
2j

)4

. (3.40)

Another error estimation can be done taking into account (3.30) and (3.31). By
normalizing, one has

‖v̂j‖2
2 ≤ Cj

2j+1−1∑
k=−3

|γj+1,k|2 (3.41)

The functions ϕI
j,k constitute a Riesz basis of V̂ I

j+1, and so, (3.41) is verified
for certain constants Cj , with Cj ≤ C, for all j, see Ref. 12. These coefficients
constitute a natural expression for the error in the L2 norm.
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Furthermore, as the functions ϕI
j,k are well localized, a local error estimation can

be obtained and can be used in local improvement strategies, in adapting refinement
schemes.

Remark 3.3. It is important to note that estimations are available not only for
the increment v̂j , but for the residual f − Lûj as well.

4. Numerical Experiments

In this section we present some numerical experiments concerning boundary value
problems.

B-spline scaling functions were employed as described in Secs. 3.2 and 3.3
and wavelets were designed and used in solution refinement to increase the scale
(Sec. 3.4). Approximation errors are also shown and compared with theoretical
estimations which were described in Sec. 3.5.

Taking into account estimation errors presented in Sec. 3.5, the following semi-
norm was used to measure errors:

‖v‖j,∞ = max
k=0,1,...,2j−1

∣∣∣∣v
(
k

2j

)∣∣∣∣ , (4.1)

As the expression

E(j) = ‖u− uj‖j,∞ = C2−jR (4.2)

is valid, one has E(j)
E(j+1) = 2R and convergence order R is obtained:

R = log2(E(j)) − log2(E(j + 1)). (4.3)

Example 4.1. The problem

Lu = −u′′(x) + u(x) = (4π2 + 1) sin(2πx) u(0) = 0 u(1) = 0

has the exact solution

u(x) = sin(2πx).

This is presented in order to make a comparison with the results published in
Ref. 15, where Daubechies scaling functions were used.

Values in the first column of Table 1 were obtained by the proposed method.
They are between the values of the second and third column which correspond to the
errors using Daubechies scaling functions8 of order N = 4 and N = 6 respectively.
These results were presented in Ref. 15 and convergence is O(2−Nj). Theoretical
convergence orders are then verified, and this is related to the N/2 null moments
that scaling functions of Daubechies have (see Ref. 6 for more details).

Example 4.2. The following family of boundary value problems with nonconstant
coefficients is analyzed,

Lu = −u′′(x) +
2

x+ λ
u′(x) + u(x) = f(x) u(0) = 0 u(1) = 0
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Table 1. Relative errors for different scales, Example 1.

j ‖u − buj‖j,∞B − splines ‖u − ũj‖j,∞D4 ‖u − buj‖j,∞D6

3 4.6× 10−3 1.4× 10−3 2.9× 10−5

4 9.4× 10−6 6.4× 10−5 5.3× 10−7

5 7.1× 10−8 1.2× 10−6 1.3× 10−9

6 5.0× 10−10 2.2× 10−8 3.4× 10−12

7 3.5× 10−12 4.0× 10−10 8.3× 10−15

8 2.5× 10−14 7.4× 10−12 1.7× 10−17

9 2.46× 10−15 1.4× 10−13 8.48× 10−18

0 0.5 1
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−1

−0.5

0

0.5

0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0 0.5 1
−0.6

−0.4

−0.2

0

0.2

Fig. 3. Approximations corresponding to scales j = 4, 6, 8, 10, λ = 0.01, Example 4.2.

with f(x) being the function that corresponds to the solution,

u(x) = c1
sin(x+ λ)
(x+ λ)

+ c2
cos(x + λ)

(x+ λ)
+

1
(x+ λ)

where,

c1 =
− cos(1 + λ) + cos(λ)

sin(λ) cos(1 + λ) − cos(λ) sin(1 + λ)

c2 =
− sin(λ) + sin(1 + λ)

sin(λ) cos(1 + λ) − cos(λ) sin(1 + λ)
.

It can be observed that for large values of λ the exact solution is regular. However,
it is almost singular for small values (it has a high gradient at x = 0 and is regular in
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Table 2. Error for different values of λ, at

scale j = 10, Example 4.2.

λ ‖u − buj‖j,∞

5 3.1 × 10−10

1 4.5 × 10−8

0.5 2.0 × 10−7

0.01 6.7 × 10−4

Table 3. Relative errors for different
scales, x0 = 0.75, λ = 50, Example 4.3.

j ‖u − buj‖j,∞

5 3.8 × 10−2

6 2.0 × 10−2

7 4.9 × 10−3

8 1.1 × 10−3

9 2.9 × 10−4

0 0.5 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4. Approximate solutions at scales j = 4 and j = 5, x0 = 0.75, λ = 50, Example 4.3.

the rest of the domain). For the analysis, values of the parameter 0.01 ≤ λ ≤ 5 were
considered. In Fig. 3, convergence is shown when scaling is increased for λ = 0.01
and in Table 2 errors for different values of λ at scale j = 10 are presented.

Example 4.3. The function u defined by

u(x) = (1 − x) · (tan−1(λ(x − x0)) + tan−1(λx0))
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is the solution of the differential problem,2

Lu = −(k(x)u′(x))′ = f(x) u(0) = 0 u(1) = 0

where,

k(x) =
1
λ

+ λ(x − x0)2

and

f(x) = 2(1 + λ(x − x0)(tan−1(λ(x − x0)) + tan−1(λx0)).

In Table 3, errors for different scales are presented. A value of the parameter λ
that corresponds to a solution with a high gradient at x0 was chosen. In Fig. 4, the
approximations for scales j = 4 and j = 5 are shown.

5. Conclusions

In this paper a new technique for numerical solution refinement is developed.
The scheme proposed reduces computational complexity and is open to future
extensions.

The main proposal, described in Sec. 3, combines numerical and computational
advantages of B-spline functions with wavelets capacities, in a Galerkin-variational
context. The method is developed to approximate the solution of boundary value
problems for singular second order ordinary differential equations.

A multiresolution structure on the interval is defined and provides a more effi-
cient and cost-effective way to improve the approximate solution obtained at an
initial scale. Based on the norm of increment coefficients, local error estimators are
presented. In addition, an adaptive algorithm can be implemented which refines the
solution in the partial domain of interest, offering the most promising avenue for
future developments.
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