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We consider the problem of an atomic three-level system in interaction with a radiation
field. The time evolution of the system, in atomic ladder and Λ configurations, is solved
exactly assuming a coherent-state as the initial atomic state. We calculate the atomic
spin-squeezing, the atomic entropy-squeezing, and their variances. We show that the
spin-squeezing and the entropy-squeezing exhibit similar time dependence.
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1. Introduction

The concept of entanglement has received a great deal of attention, particularly, in

connection with recent developments in the field of quantum information.1 In this

context, entanglement is regarded as a fundamental tool in quantum information

processing. Several quantum protocols, such as teleportation,2 are based on entan-

gled states. The problem of measuring entanglement is an active field of research.3

A review on this subject can be found in Refs. 4 and 5 and references therein.

One of the relevant quantities which can be used to characterize entanglement

is entropy.6 For a general two-component quantum system, Araki and Lieb have

established a well-known relation among the total entropy of the system and the

reduced entropies of the components.7,8 From this relation, Lindblad,9 Barnett and

Phoenix,10 and Knight and Phoenix,11 have used the index of correlation to analyze

the presence of entanglement. Kraus12 and Maasen and Uffink13 have discussed the

optimal entropy-uncertainty-relation for a pair of complementary observables in
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a finite Hilbert space. This concept was extended by Sánchez–Ruiz14 for a set of

N -complementary observables.

More recently, an alternative way of reformulating the Heisenberg Uncertainty

Principle, in terms of entropies, was introduced by Obada et al.
15 A related pa-

rameter, the so-called entropy-squeezing parameter, was introduced in Ref. 15 to

study the entropy-squeezing of a two-level atom interacting with two modes via

energy-dependent couplings. The problem of the interaction between two quantum

systems with SU(1,1) and SU(2) symmetries was considered in Ref. 16. The authors

of Ref. 16 have analyzed the occurrence of entanglement in that system by using

the entropy-squeezing parameter as an indicator.

The single-atom entropy-squeezing, and the entropy of a system of two-level

atoms interacting with a bimodal field in an ideal cavity was studied in Ref. 17.

The variance- and entropy-squeezing for two-level atoms in interaction with a non-

degenerate parametric amplifier was considered in Ref. 18. The characterization of

entropy-squeezing, as an indicator of entanglement in a three-level system inter-

acting with a cavity field, was presented in Ref. 19. It was found that the setting

of the initial state and the activation of the atom-field coupling affects the field

entropy-squeezing rather dramatically. Also, the link between entanglement and

entropy has been used to study coherence and entanglement in the ground state of

a bosonic Josephson junction.20

In recent works,21–23 the architecture of potential quantum computers has been

reviewed. The design of a quantum computer may require hybrid systems in which

atoms serve as memory, and super-conducting circuits are the logical gates. This in-

tegration between different quantum systems may imply the use of chip technology.

In this context, the authors of Ref. 22 have advanced the concept of atom chips.

These devices can be realized by extreme cold atoms in an optical lattice. The

authors of Ref. 23 have reviewed the experimental progress towards quantum infor-

mation processing and quantum simulation using neutral atoms in two-dimensional

(2D) arrays of optical micro-traps as 2D registers of q-bits. From a theoretical point

of view, the study of entanglement, atomic squeezing and coherence is essential to

improve the performance of such systems.

In a different context, collisions in ultra-cold gases have been used to induce

quadrature spin-squeezing in two-component Bose condensates.24,25 The authors

of Ref. 26 have proposed a generalization to a higher-dimensional spin-space by

measuring squeezing in a spin-1 Bose condensate. This squeezing is associated to

negligible occupation of squeezed modes, and is analogous to optical two-mode

vacuum-squeezing.

Taking the concepts which have been advanced in Ref. 26 as our main moti-

vation, we study, in this work, the appearance of atomic-squeezing for a system

of N three-level atoms interacting among themselves and with a radiation field.

The atomic excitations are modeled by the algebra associated to the SU(3) group.

We shall consider the time evolution of a coherent state, for the atomic sector of
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the calculations. The paper is organized as follows. The formalism is presented in

Sec. 2. In Sec. 3, we present and discuss the result of the calculations which we have

performed for the proposed models. The conclusions are drawn in Sec. 4.

2. Formalism

We shall consider a system of N identical three-level atoms of 87Rb, in a cavity

and interacting with a radiation field.27–32 The dipole–dipole interaction, of the

atomic sector, is modeled after the study of Refs. 27–29 and 33–35, as well. This is

a suitable representation for the atomic configurations considered (see the following

subsections) and it is a generalization of the two-level case.36 We shall analyze two

schemes, which are related to different three-level configurations: a ladder configu-

ration and a Λ-configuration.

2.1. Atomic ladder-configuration scheme

Following the work of Ref. 26, the Hamiltonian of a system of three-level atoms, in

the ladder-configuration, is written

H =
1

3
ΩN + ωa

(

a†a+
1

2

)

+ ωSz +
1

2
∆Qzz

+ ζ(a†S− + S+a) + λ S+S− , (1)

where a†(a) is the one photon-creation (-annihilation) operator of the photon mode

of energy ωa, and S± and Qα,β are the spin and quadrupole operators of the Carte-

sian dipole-quadrupole decomposition of the SU(3) Lie algebra.26 The energies Ω,

ω and ∆ are related to the level energies ωi (i = 0, 1, 2) by Ω = ω0 + ω1 + ω2,

ω = (ω2 − ω0)/2 and ∆ = (ω2 + ω0)/2 − ω1 (~ = 1 everywhere). In this scheme,

the transitions take place between the atomic levels ordered in the sequence

ω2 > ω1 > ω0. The operators of (1) are defined26

Sα = −i
∑

α,β,γ

ǫαβγc
†
γcβ ,

Qαβ = −c†βcα − c†αcβ +
2

3
δαβ

∑

γ

c†γcγ ,
(2)

where the operators c†α are expressed as

c†x =
1√
2
(−b†2 + b†0) ,

c†y =
i√
2
(b†2 + b†0) ,

c†z = b†1 ,

(3)

in terms of the boson creation (annihilation) operators, b†i (bi), associated to the

excitation of the ith atomic level (i = 0, 1, 2). Defining Sij = b†jbi, we write the
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cartesian components of the operators (2) as

Sx =
1√
2
(S01 + S12 + S21 + S10) ,

Sy = − i√
2
(S01 + S12 − S21 − S10) ,

Sz = (S22 − S00) ,

Qxz =
1√
2
(−S01 + S12 + S21 − S10) ,

Qxy = i(S20 − S02) ,

Qyz = − i√
2
(−S01 + S12 − S21 + S10) ,

Qxx =
2

3
N − (S00 + S22 − S02 − S20) ,

Qyy =
2

3
N − (S00 + S22 + S02 + S20) ,

Qzz = −4

3
N + 2(S00 + S22) = −(Qxx +Qyy) ,

(4)

where S± = Sx± iSy. Notice that the term ∆Qzz produces the effect of a quadratic

Zeeman operator.26

In terms of the operators Sij , the Hamiltonian of Eq. (1) reads

H = ωa

(

a†a+
1

2

)

+
∑

i

ωiS
ii + 2λ(S01 + S12)(S21 + S10)

+
√
2 ζ(a(S01 + S12) + a†(S21 + S10)) . (5)

The collective atomic-states can be identified by the number of atoms in the

ground state and in the second excited state, n0 and n2, respectively

|n0n2〉 = N(n0, n2)
∑

P

|nP
0 (1) · · ·nP

0 (N)nP
2 (1) · · ·nP

2 (N)〉 ,

N(n0, n2) =

((

N

N − n0 − n2

)(

n0 + n2

n2

))−1/2

, (6)

with n0 =
∑N

j=1 n
P
0 (j), n2 =

∑N
j=1 n

P
2 (j) and nP

i (j) = 0, 1. Note that the internal

degeneracy of each of the two available atomic states is included in the definition

of the basis |nP
0 (1) · · ·nP

0 (N)nP
2 (1) · · ·nP

2 (N)〉.
Since the Hamiltonian of Eq. (1) contains a bosonic degree of freedom the state

which represents (na) photons is written as the number state

|na〉 =
1√
na!

a†
na |0〉 . (7)
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The Hamiltonian of Eq. (1) commutes with the operator

P = a†a+ Sz . (8)

Thus, the vectors of the basis can be written in terms of the eigenvalues of P ,

L = na+n2 −n0, where na is the number of photons in the configuration. Because

of the symmetry (8) we can write the basis of product states

|na, n0, n2〉 = |na〉 ⊗ |n0, n2〉 . (9)

and label it, consequently,

|NLn0n2〉 = |L+ n0 − n2〉 ⊗ |n0, n2〉 . (10)

In writing Eq. (10), we have used the constrain in the number of atoms, N =

n0 + n1 + n2, then n1 does not appear explicitly as a label of the states and only

two quantum numbers are needed to specify the atomic sector. In the basis of states

with fixed values of N and L, the exact solution is written31,32

|ΨN,L〉 =
∑

η≡{na,n0,n2}

cN,L(η)|η〉 . (11)

The configurations in (11) are restricted by the conditions: L = na + n2 − n0 and

N = n0 + n1 + n2, as said before.

2.2. Atomic Λ-configuration system

For the Hamiltonian of the atomic Λ-configuration we write37

H = ωa

(

a†a+
1

2

)

+
∑

i

ωiS
ii + λ(S01 + S21)(S10 + S12)

+ ζ(a(S01 + S21) + a†(S10 + S12)) . (12)

In this scheme, the transitions take place between the atomic levels ordered in the

ω1 > ω2 > ω0 (Ref. 37).

In terms of the Cartesian dipole-quadrupole decomposition of the SU(3) Lie

algebra, it reads

H =
1

3
ΩN + ωa

(

a†a+
1

2

)

+ ωSz +
∆

2
Qzz

+
ζ

2
√
2
((a† + a)(S+ + S−) + (a† − a)(Q+ −Q−))

+
λ

8
(S+ + S− −Q+ +Q−)(S+ + S− −Q− +Q+) , (13)

with Q± = Qxz ± iQyz. The Hamiltonian of Eq. (13) commutes with the operator

R = a†a− 1

2
Qzz +N/3 = a†a+ S11 . (14)
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In this case, the basis can be written in terms of the eigenvalues of R, M = na +

N − n0 − n2:

|NM n0n2〉 = |M + n0 + n2 −N〉 ⊗ |n0, n2〉 . (15)

2.3. Initial condition

To study the time evolution of the states and observables described by the previous

models we follow the formalism presented in Refs. 31, 32, 37. We shall assume that

the initial state is the direct product of a coherent photon-state and a coherent

spin-state (CSS):

|I〉 = |zph〉 ⊗ |zat〉 , (16)

with

|zph〉 = Nezpha
† |0〉 , (17)

and

|zat〉 = NezatS+ |0〉 . (18)

The parameter zph is related to the mean-value of photons in the system through

|zph|2 = 〈na〉, while zat = −e−iφ0 tan(θ0/2). The angles (θ0, φ0) define the direction

n0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0), such that S ·n0|zat〉 = −S|zat〉, with S = N .

In the standard SU(3) representation (see Ref. 38), the coherent state of the atomic

sector requires, for its definition, the use of two complex variables. The state (18)

is a vector belonging to the spin subspace of the complete SU(3) representation,

and we have chosen it for simplicity, since the atomic sector of the Hamiltonian has

been written in terms of spin operators.

2.4. Spin-squeezing parameter

Atomic spin-squeezed-states are quantum-correlated systems with reduced fluctu-

ations in one of the collective spin components. Following the work of Ueda and

Kitagawa,39 we shall define a set of orthogonal axes {nx′ ,ny′ ,nz′}, such that nz′ is

along the direction of 〈S〉. We shall fix the direction x′ by looking at the minimum

value of (∆Sx′)2, consequently, we define the squeezing factor as

ζ2x′ =
2(∆Sx′)2

|〈S〉| . (19)

Then, the system is squeezed if ζ2x′ < 1. So defined, the parameter of Eq. (19) is

SU(2) invariant.40 For completeness, we shall define

ζ2y′ =
2(∆Sy′)2

|〈S〉| . (20)

Clearly ζ2x′ζ2y′ ≥ 1.
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Alternatively, we can define the variance-squeezing parameters,

Vx′ = (∆Sx′)2 − |〈S〉|
2

,

Vy′ = (∆Sy′)2 − |〈S〉|
2

,

(21)

and, by this definition, the system is squeezed if Vx′ < 0 or Vy′ < 0.

In the previous definition of squeezing we have used the {Sx, Sy, Sz} SU(2)-

subspace. This choice represents a projection on one of the multiple Bloch spheres

of SU(3). Another possible choice of the SU(2) subspace is the one of Ref. 26 which

requires an initial state with 〈Sz〉 = 0.

2.5. Entropy squeezing

The importance of squeezed states of light for optical devices employed in quantum

measurements has been demonstrated during the last decade, particularly in con-

nection with realizations of quantum communications, teleportation and cryptog-

raphy. Generally speaking, squeezed light is a natural tool in quantum information

theory Refs. 15 and 17, (and references therein). In this section, we shall briefly re-

view the concept of entropy-squeezing, in order to relate it with the spin-squeezing

mechanism of the previous section. In both cases we shall start from Heisenberg’s

uncertainty relations, and include fluctuations. In this section, we shall generalize

the definitions obtained by other authors, for the case of two-level atoms,,15,17 to

the present case of three-level atoms.

The information entropy H(Sσ) (Refs, 15 and 17) of the operators Sσ (σ =

x′, y′, z′) is given by

H(Sσ) = −
2N
∑

j=0

Pj(σ) log(Pj(σ)) , (22)

where

Pj(σ) = 〈σ, j|ρat(t)|σ, j〉 , (23)

is the expectation value of the reduced atomic entropy ρat (ρat = Trphρ(t)) on the

jth eigenstate of the operator Sσ. For the present case, three-level atoms, we shall

generalize the expressions valid for the SU(2) case (two-level atoms),15,17 to the

SU(3) representation. The details of the derivation of these expressions are given in

Appendix A. The quantitiesH(Sx′),H(Sy′),H(Sz′), when nz′ is along the direction

of 〈S〉 , satisfy the condition

H(Sx′) +H(Sy′) +H(Sz′) ≥ 2 log(22N)− 2

22N

∑

k

(

2N

k

)

log

(

2N

k

)

, (24)
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This condition can also be written as

δH(Sx′)δH(Sy′) ≥
24N

∏

k

(

2N

k

)− 1

22N−1

(

2N

k

)

δH(Sz′)
, (25)

with δH(Sσ) = eH(Sσ). The atomic squeezing of the system is determined by using

the entropy uncertainty relation [Eq. (25)]. The fluctuation in component Sσ of the

spin of the atomic system is said to be squeezed if the information entropy H(Sσ)

satisfies

E(Sσ) = δH(Sσ)−
22N

∏

k

(

2N

k

)− 1

22N

(

2N

k

)

√

δH(Sz′)
< 0 . (26)

In deriving the previous equations we have used the same arguments introduced in

the previous one, concerning spin-squeezing. In the following section, we shall show

that, by the way of the numerical results, the time dependency of both observables,

spin-squeezing and entropy-squeezing, is rather similar and that both of them can

be used to characterize the degree of squeezing of the spin of atomic system.

3. Results and Discussion

In this section, we shall present the results of the calculations which we have per-

formed by applying the formalism given by the Hamiltonian of Eqs. (5) and (12).

We have calculated entropy,- E(S′
j), and variance-, Vj′ , squeezing parameters for

a system consisting of N = 10 atoms of 87Rb. The effective level scheme includes,

for the ladder configuration, the state 52S1/2 as the lower state (|0〉), the state

52P3/2 as the intermediate state (|1〉), and the 52D5/2 as the upper state (|2〉).
The Λ-configuration is realized in rubidium by adopting as active levels the states

52S1/2(F = 1)(|0〉), 52P3/2(F = 2)(|1〉) and 52S1/2(F = 2) (|2〉), respectively. The
energy of the photon sector of the Hamiltonian is fixed to the resonant case.37,41

3.1. Results for the ladder configuration

In the analysis, we have fixed the interaction constants of the Hamiltonian of Eq. (5)

to realistic values, extracted from our previous work on 87Rb.36,37 Since we are using

natural units (~ = 1), the couplings and frequencies are given in units of energy

(the scale is arbitrary, for a comparison with the energy scale of the atomic case

see Refs. 36 and 37) and the time variable is measured in units of inverse energy.

We have studied the behavior of the model for different initial states. Figure 1

shows the results for the variance-squeezing Vj′ (insets (a), (c) and (e)), and for the

entropy-squeezing E(Sj′) (insets (b), (d) and (f)), in absence of interaction between

the atoms and the radiation field (λ = 0.08, ζ = 0.0). Different initial atomic states

have been considered. The results shown in insets (a) and (b) correspond to an
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Fig. 1. Time dependence of the entropy-squeezing, E(Sj′), and variance-squeezing, Vj′ . The time
scale is given in arbitrary units. The atoms interact with a coupling constant λ = 0.08, in absence
of interaction with the photon sector, for the Hamiltonian describing the ladder-configuration of
subsection 2.1. Insets (a), (c) and (e) show the behavior of the variance-squeezing parameter. In
each box, the curve which reaches the largest value is that of Vy′ , and the other represents Vx′ .
Insets (b),(d) and (f) show the dependence of the entropy-squeezing parameter E(Sj′ ), following
the same ordering (that is the larger value in each box represents the y′-component and the smaller
one the x′-component, respectively). The same convention has been applied to all of the following
figures. Different initial atomic have been considered, namely: Insets (a) and (b) correspond to an
initial CSS with θ0 = π/2 and φ0 = 0, while for insets (c) and (d) we have adopted a initial CSS
with θ0 = π/4 and φ0 = 0. For insets (e) and (f), θ0 = π/8 and φ0 = 0.

initial CSS with θ0 = π/2 and φ0 = 0, while for insets (c) and (d) we have adopted

an initial CSS with θ0 = π/4 and φ0 = 0; for insets (e) and (f) the parameters of

the initial state are θ0 = π/8 and φ0 = 0 (see Table 1).a As it can be seen from

the curves displayed in Fig. 1, the entropy-squeezing parameter provides the same

information for the persistence of squeezing than the variance-squeezing parameter.

The range of variation of the entropy-squeezing parameter is smaller than the one

of the variance squeezing parameter. Figures 2–4 show the time dependence of the

aThis choice of the phase, for the atomic coherent state results in a definite orientation of the
state but it does not affect the pattern of the spin-squeezing, as shown in Refs. 36. Therefore, we
shall keep it all-trough the calculations.
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Table 1. Orientation angles con-

sidered for the calculations of the
results shown in Fig. 1.

Vj E(Sj) θ0 φ0

(a) (b) π/2 0
(c) (d) π/4 0
(e) (f) π/8 0

Table 2. Average photon
numbers, 〈na〉, considered
for the calculations of the
results shown in Fig. 2.

Vj E(Sj) 〈na〉

(a) (b) 40
(c) (d) 20
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(d)

 

 

 

t
Fig. 2. Entropy squeezing, E(Sj′ ), and variance squeezing, Vj′ , as a function of time. The atoms
interact in the ladder-scheme with couplings λ = 0.08 and ζ = 0.01. Insets (a) and (c) show the
time dependence of the variance-squeezing parameter, and insets (b) and (d) show the evolution of
the entropy-squeezing parameter. The upper values in each box represent the y′-component, and
the lower values are associated to the x′-component, of both the variance- and entropy-squeezing.
For this case the parameters of the CSS are θ0 = π/8 and φ0 = 0. The parameter 〈na〉 of the

photon sector is fixed at the values 〈na〉 = 40 (cases (a) and (b)) and 〈na〉 = 20 (cases (c) and
(d)).
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Fig. 3. Entropy squeezing, E(Sj′), and variance squeezing, Vj′ (ladder-configuration). The initial
atomic state correspond to a CSS with θ0 = π/4 and φ0 = 0. The rest of the parameters are those
given in the captions to Fig. 2.
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Fig. 4. Entropy squeezing, E(Sj′), and variance squeezing, Vj′ (ladder-configuration). The initial
atomic state correspond to a CSS with θ0 = π/2 and φ0 = 0. The rest of the parameters are those
of Fig. 2.
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Fig. 5. Entropy squeezing, E(Sx′) (dashed-line), and variance squeezing, Vx′ (solid-line), for the
ladder-configuration, as a function of time. The parameters used in the calculation are those of
Fig. 3 (insets (c) and (d)), and the photon-atom coupling corresponds to the normal phase (see
the text for explanations).

entropy-squeezing and variance-squeezing when the interaction with the radiation

field is turned on (ζ = 0.01). In these figures, insets (a) and (c) show the variance-

squeezing parameter, while insets (b) and (d) display the behavior of the entropy-

squeezing parameter. Figure 2 shows results for an initial CSS with θ0 = π/8 and

φ0 = 0. The curves of the insets (a) and (b) show the evolution of a initial photon

coherent state with 〈na〉 = 40, while the results of insets (c) and (d) correspond to

〈na〉 = 20 (see Table 2). In the case of Fig. 3 we have chosen an initial coherent spin

state with θ0 = π/4 and φ0 = 0, and for Fig. 4 the initial atomic coherent state is

defined by θ0 = π/2 and φ0 = 0, for this state 〈S〉 is orientated along the x axis. As

said before, the results do indeed depend on the choice of the orientation angle φ0,

but the pattern of the spin-squeezing is the same for different values of it, as shown

in Ref. 36. The results seemingly indicate that both parameters provide the same

information about the persistence of the orientation of the spin of the system. The

analysis of Figs. 2–4 indicates also that, in presence of atom-photon interaction,

and in order to optimize the persistence of atomic squeezing, the orientation of the

initial CSS should be close to the axial z axis. The mean number of photons of the

initial state do not affect significantly the results. In order to better illustrate the

coherence between the time dependence of both observables, in Fig. 5 we show the

values of the entropy-squeezing and the variance, as a function of time. From these

results it becomes evident that both observables are in phase.

3.2. Results for the Λ-configuration

Figures 6-9 show the results for the time evolution of the same system of atoms of

Rubidium, this time in the Λ-configuration. The interactions are described by the

Hamiltonian of Eq. (13). In the numerical analysis, we have fixed the interaction
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Fig. 6. Time dependence of entropy-squeezing, E(Sj′ ) and variance-squeezing, Vj′ . The atomic
active levels correspond to the Λ-configuration 2.2 with couplings λ = 0.002 and ζ = 0.0. The
calculated quantities are displayed in the order explained in the captions Fig. 1, and for the initial
conditions given in the same Figure.

constants to realistic values37 (λ = 0.002, ζ = 0.0). As before, we have calculated

the entropy squeezing and the variance for different initial atomic states. Figure 5

shows the results for the entropy-squeezing and variance-squeezing in absence of

interaction between the atoms and the radiation field. Insets (a) and (b) correspond

to an initial CSS with θ0 = π/2 and φ0 = 0, while for insets (c) and (d) we have

adopted an initial CSS with θ0 = π/4 and φ0 = 0. For the curves shown in insets

(e) and (f) of Fig. 5 the orientation angles were fixed at θ0 = π/8 and φ0 = 0. As it

can be seen from these results, the entropy-squeezing parameter is more restrictive

with respect to the persistence of squeezing than the variance parameter, that

is the range of variation of the entropy squeezing parameter is smaller than the

one of the variance squeezing parameter. Figures 6–8 show the behavior of the

entropy-squeezing, E(Sj′), and variance-squeezing, Vj′ , for the same system, when

the interaction with the radiation field is turned on (ζ = 0.008). Insets (a) and (c)

display the time dependence of the variance-squeezing parameter, and insets (b)

and (d) show that of the entropy-squeezing parameter. Figure 6 shows results for

an initial CSS with θ0 = π/8 and φ0 = 0. The curves of insets (a) and (b) show
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Fig. 7. Entropy squeezing, E(Sj′ ), and variance squeezing, Vj′ , for the atoms in the Λ-
configuration 2.2, with couplings λ = 0.002 and ζ = 0.008. The other parameters (initial CSS
and photon states) are those of Fig. 2.
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Fig. 8. Entropy squeezing, E(Sj′ ), and variance squeezing, Vj′ (atoms in the Λ-configuration).
The initial atomic state correspond to a CSS with θ0 = π/4 and φ0 = 0. The rest of the parameters
are those of Fig. 6.
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Fig. 9. Time dependence of the entropy-squeezing, E(Sj′), and variance-squeezing, Vj′ (Λ-
configuration). The initial atomic state correspond to a CSS with θ0 = π/2 and φ0 = 0. The
rest of the parameters are those of Fig. 6.

the evolution of an initial photon coherent state with 〈na〉 = 40, and for insets (c)

and (d) we have taken 〈na〉 = 20. In the case of Fig. 7, we have chosen an initial

CSS with θ0 = π/4 and φ0 = 0. Finally, for the case of Fig. 8, the initial atomic

coherent state is oriented by the angles θ0 = π/2 and φ0 = 0, and for this state 〈S〉
is orientated along the x axis. The results shown in Figs. 6–8 enforce the idea that,

for the Λ-configuration, the entropy-squeezing parameter predicts smaller periods

of atomic squeezing than the variance-squeezing parameter.

To study the dependence of the previously discussed results with the cou-

plings, we have performed calculations varying them, both for the ladder- and

Λ-configurations. The obtained values of the entropy-squeezing and variance-

squeezing, for couplings in the range31,32,36,37 (0.002 ≤ λ ≤ 0.08; 0.0 ≤ ζ ≤ 0.10),

exhibit the same trend of the previous figures, though the oscillations, for large val-

ues of the time are washed-out and both observables reach nearly constant values.

In the cases considered in the present calculations, the values of ζ are consistent

with the normal phase, that is the energy domain where the gap between the first

excited state and the ground state of the atomic configuration is nonvanishing.

The behavior of the energy of the first excited state, as a function of the cou-

pling between the photons and the atomic spin and for the ladder configuration,

is shown in Fig. 10. It is seen that the larger value of ζ used in the calculations

(ζ = 0.10) is still at the left of the transition (ζ ≈ 0.16). For larger values of
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Fig. 10. Energy of the first excited state, for the ladder configuration, as a function of the coupling
constant ζ. Both quantities are dimensionless.

the coupling (ζ > 0.16), the photon-atom interaction dominates and the squeezing

disappears.

4. Conclusions

In this work, we have studied the appearance of atomic squeezing for three-level
87Rb-atoms in interaction with a radiation field. We have analyzed two possible

configurations associated to the interactions between atoms and a radiation field.

The interaction model for the ladder-configuration25,26 favors the persistence of

spin alignment. A more restricted condition was found for the atoms in the Λ-

configuration scheme. In the two models (ladder and Λ-configurations) the interac-

tion with the radiation field washes-out the atomic-squeezing. From the analysis of

the numerical results, the choice of a CSS aligned close to the axial z axes seems

to favor the appearance of spin squeezing. Both parameters, variance-squeezing

and entropy-squeezing provide similar information when the atoms are interacting

via the ladder-configuration scheme of Hamiltonian (1). For the model interaction

(13) (Λ-configuration) the predictions about the persistence of atomic squeezing

are more stringent that those obtained from the variance squeezing. However, from

the overall analysis of the results it can be concluded that both parameters predict

similar trends for the appearance of atomic squeezing.
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Appendix A

In this appendix we shall illustrate the steps leading to the condition (25). The

density operator of the system is written

ρ(t) = |Ψ(t)〉〈Ψ(t)| . (A.1)

For the noninteracting system

|Ψ(t)〉 = e−iH0t|I〉 , (A.2)

where H0 is the Hamiltonian which includes the non-interacting atomic and photon

sectors of H . We shall consider for |I〉 the initial state of Eq. (16), with the atomic

coherent state, |zat〉, written in the basis |n0, n2〉, that is

|zat〉 = Nat

N
∑

l=0

zlat2
l/2

(

N

l

)1/2

×
N−l
∑

k=0

z2kat

(

N − l

k

)1/2

|N − l − k, l〉 . (A.3)

The normalization of the atomic coherent state is given by

Nat =
1

(1 + |zat|2)N
. (A.4)

For the initial photon state we write

|zph〉 = Nphe
zpha

† |0〉

= Nph

∞
∑

l=0

zlph
1

l!
a†

l|〉

= Nph

∞
∑

l=0

zlph√
l!
|l〉 , (A.5)

with Nph = e−|zph|
2/2. By taking the trace on the photon degrees of freedom,

we obtain the reduced atomic density matrix, Trph(ρ(t)), which is given by the

expression

ρat(t) = N 2
at ×

∑

k k′

zkatz
∗
at

k′

(

2N

k

)1/2(
2N

k′

)1/2

|k〉〈k′| . (A.6)

In the above equation, the state |k〉 is given by applying k-times the operator S+

on the state |N, 0〉

|k〉 =
√

(2N − k)!

k!(2N)!
Sk
+|N, 0〉 . (A.7)
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Next, with this expression for the reduced density matrix, and with the eigenstates

of the operators Sx′ , Sy′ and Sz′ , in the system where z′ is oriented in the direction

of 〈S〉, we have evaluated the associated probabilities as

Pj(σ) = 〈σ, j|ρat|σ, j〉 , σ = x′, y′, z′ , j = 0, . . . , 2N ,

and obtained the results

Pj(z
′) =

{

1 , j = 0

0 , 1 < j < 2N
,

Pj(x
′) = Pj(y

′) =
1

22N

(

2N

j

)

. (A.8)

From these,

H(Sz′) = 0 ,

H(Sx′) = H(Sy′)

= log(22N )− 1

22N

∑

k

(

2N

k

)

log

(

2N

k

)

, (A.9)

with variations given by

δH(Sz′) = 1 ,

δH(Sx′) = δH(Sy′) = 22N
∏

k

(

2N

k

)− 1

22N

(

2N

k

)

. (A.10)

which is the limit appearing in (25) and (26).
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