
1 INTRODUCTION TO TECHNICAL FIBRE
SUSPENSIONS
With rheology progress was made in under-
standing of structure of gels and colloidal sus-
pensions, particularly with regard to polysaccha-
rides and large glyconjugates. Whereas the
rheology of concentrated dispersions is the con-
siderable interest to the colloidal scientist, phar-
macist or food technologist [1], of more interest
to molecular biophysicist is dilute solution vis-
cometry and the structural parameter the intrin-
sic viscosity [2]. The intrinsic viscosity is a viscos-

ity measure extrapolated to infinite dilution  that
depends on the properties of isolated macro-
molecules in solution (effects of interaction have
been eliminated by extrapolation). So, intrinsic
viscosity provides information about molecular
weight, radius of gyration, shape, specific vol-
ume, conformation, hydration, flexibility of the
macromolecules. Several empirical equations
relating viscosity to concentration [2 - 4] have
been proposed in order to determine intrinsic vis-
cosity [h]. The three most commonly used equa-
tions, concerning dilute solutions, are the fol-
lowing:
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Abstract:

“Single-point” equations used for intrinsic viscosity determination are greatly used when working with syn-
thetic polymer solution systems. In this work we have applied them to a biological macromolecule in a bovine
serum albumin (BSA)/water system. Almost all single-point equations are available and errors can be lowered.
However, we have detected a systematic bias in the estimations provided by “single-point” methods. To over-
come it we propose a “double-point” method which gives lower estimation errors for this system. This novel
method is not system specific and could be applied to other polymeric solution.

Zusammenfassung:

Single-Point-Gleichungen (Einzelpunkt-Gleichungen) zur Bestimmung der inneren Viskosität werden in hohem
Maße bei der Arbeit mit Systemen synthetischer Polymerlösungen angewandt. In dieser Arbeit haben wir sie
auf ein biologisches Makromolekül eines Rinder-Serum-Albumin (BSA)/Wasser-Systems angewandt. Fast alle
Single-Point-Gleichungen stehen zur Verfügung und die Fehlerquoten können niedrig gehalten werden. Wir
haben jedoch eine systematische Abweichung in den Schätzungen, welche die Single-Point-Methode liefert, vor-
gefunden. Um diese zu überwinden, schlagen wir eine Double-Point-Methode (Zweipunkte-Methode) vor, die
niedrigere Schätzwerte für dieses System erlaubt. Diese neue Methode ist nicht systemspezifisch und kann auf
andere Polymerlösungen angewandt werden.

Résumé:

Les équations  de simple point pour la détermination de la viscosité intrinsèque sont très employées en systè-
mes de solutions de polymères synthétiques. Dans ce travail-ci nous les avons appliquées au système: eau-BSA
(macromolécule biologique), et,  nous y avons détecté un erreur systématique dans les estimations données par
cette méthode. Dans ce travail, on montre graphiquement l’erreur que on peut obtenir. Pour résoudre cette dif-
ficulté on présente ici une équation pour l’estimation an utilisant une méthode de double point, d’application
générale et qui diminue l’erreur commise. Cette nouvelle méthode n’est pas spécifique à ce système et elle peut
étre appliquée à les autres polymères en solution.
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Huggins’ equation [5] which relates the incre-
ment of relative viscosity (hi) to concentration C:

(1)

IUPAC recommends the term “increment of rel-
ative viscosity (hi)”, instead of “specific viscosity”,
because it is a non-dimensional parameter that
has no attributions of specific quantity, meaning:

(2)

We recall that 

(3)

where r is density, t is the drain time while the
sub indexes s and o indicate “macromolecule
solution” and “used solvent”, respectively.
In an equivalent formulation, Kraemer [6] relates
the logarithm of relative viscosity to concentra-
tion:

(4)

while Schulz-Blaschke [7] relates the first term of
Huggins’ equation to the increment of relative
viscosity

(5)

KH, KK and KSB represent the Huggins, Kraemer and
Schulz-Blaschke non-dimensional constants,
respectively, and [h] is the intrinsic viscosity with
units inverted to concentration (mL/g). The val-
ue for the intrinsic viscosity is obtained by plot-
ting Equations 1, 4, or 5 and extrapolating to con-
centration zero. Upon this situation non-ideal
effects and association phenomena are correct-
ed. The name “intrinsic viscosity” is probably due
to it being a function of only the macromolecule
dispersed or dissolved. However, it frequently
occurs that extrapolations do not have a com-
mon value at their origin ordinates. These devia-
tions may be caused by experimental errors in

the measurements or by inadequate linear
extrapolations as well [8]. 

This extrapolation method is the most com-
mon technique used for [h] determination,
although the procedure is laborious and con-
sumes a considerable amount of time and
reagents. Because of this, several equations were
developed to estimate intrinsic viscosity at one
single concentration which do not require of a
graphical adjustment either. They are known as
“single-point” methods. “Single-point” equa-
tions assume that KH, KK and KSB are constants and
that KH + KK = 0.5, as is indicated by the combi-
nation of Equations 1 and 4 [3]. They all include
the values for relative viscosity, increment of vis-
cosity and concentration. For example, Solomon-
Ciuta [9] propose:

(6)

In 1968, Deb and Chatterjee [10] suggested that:

(7)

More recently, Ram-Mohan-Rao and Yassen [11]
gave a simplified expression:

(8)

Kuwahara [12] proposes the expression:

(9)

while Palit and Kar [13] suggest

(10)

The Schulz-Blaschke equation (Equation 5) is also
used for direct calculation of intrinsic viscosity
[14], where it is assumed that KSB = 0.28 (common
value to several systems) [15].

(11)
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Chee [16] and Rao-Yassen [11] have examined the
applicability of the “single-point” method and
have found that some equations are inadequate
or applicable only to some specific macromole-
cule-solvent systems. The present work is based
on viscosity measurements of aqueous bovine
serum albumin (BSA) solutions at different con-
centrations and pH, (data drawing on BSA con-
formers [17]). Following Harding [2], the results
obtained from “single-point” equations are com-
pared to the outcome from the Huggins proce-
dure, considered one of the most popular meth-
ods for the determination of intrinsic viscosity.

2 MATERIALS AND METHODS

BSA (lyophilized and deionized powder, purity
grade > 98%) was obtained from Fedesa-UNSL.
Measurements were taken from fresh 2 % BSA
solutions. pH was adjusted with HCl or NaOH 1N.
Solutions and dissolutions were prepared with
deionized water. Temperature was kept constant
at 25 +/- 0.1°C using a LAUDA thermostatic bath.
Determinations were done using an Ubbelohde
“suspended level” viscosimeter (Schott-Geräte),
with a water draining time of 123.53 s. Even
though this viscosimeter works in a solution vol-
ume independent fashion and allows dissolu-
tions, it was here used performing at least three
measurements for each concentration and was
later washed until the solvent draining time was
recovered. Six solutions with concentrations
ranging from 0.125 to 2 g/dL BSA were measured
at each pH. These solutions were previously pre-
pared from a mother solution with a concentra-
tion determined by UV-absorbency at 278 nm
with a Shimadzu UV-160A spectrophotometer.
Density of each solution was measured using an
Anton Paar 35N densitometer.

3 RESULTS

Table 1 shows data obtained by applying the most
common procedures to calculate intrinsic viscos-
ity, namely, those based upon Equatios 1, 4 and
5, to the conformers E, F, N and B according to the
Foster [18] classification. Table 2 include experi-
mental data and error resulting from single-
point Equations 6 to 11. The values in last column
have been computed by using a “double-point”
equation which will be described next. The val-
ues obtained by the Huggins method were tak-
en as reference in the percentage error calcula-

tion and the negative sign indicates that the val-
ue resulting from the application of the “single-
point” method is lower than the reference value.
Tables 3, 4, 5, and 6 containing similar informa-
tion for other experimental conditions.

The most commonly used equation is the
Salomón-Ciuta equation, which gives values
with acceptable errors ranging from 1 to 15 %.
Throughout the entire set of equations, deter-
minations at pH = 8.1 present errors higher than
expected and do no adjust properly. From Tables
2 to 6 it appears that none of the ‘single-point’
equations used provides an overall good estima-
tion for [h]. Relative errors always increase when
the concentration values become bigger. Figure 1
provides a graphical explanation for that ob-
served behavior. 
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Conformer  E F ph ysiological  N B 

pH 2.71 4.32 7.4 8.06 9.97 

[ ]           Eq. 1 0.1687 0.0597 0.0484 0.0723 0.0654 

[ ]           Eq. 4 0.1674 0.0596 0.0485 0.0719 0.0652 

[ ]           Eq. 5 0.1688 0.0599 0.0486 0.0748 0.0656 

KH -0.148 -0.959 1.579 -1.741 -0.842 

KK 0.517 1.295 -0.935 2.012 1.2 

KK + KH 0.37 0.336 0.644 0.271 0.358 

KSB  -1.546 -1.055 1.358 -2.373 -0.951 

η
η
η

C  

g/dL  

η
rel
 Ch atterjee  

Eq. 7  

Rao 

Eq. 8  

Ku wahara 

Eq. 9  

Palit  

Eq. 10  

Sch ulz 

Eq. 11  

Solomon -

Ciut a 

Eq. 6  

Double -

Point  

Eq. 12  

2 1.320  -11.50 -11.40 -14.54 -10.63 -12.92 -13.69 -0.83 
1.5  1.243  -8.75 -8.75 -11.28 -8.24 -9.84 -10.55 -0.30 
1 1.164  -5.82 -5.93 -7.74 -5.81 -6.60 -7.17 -0.18 
0.75  1.124  -4.32 -4.49 -5.90 -4.67 -4.97 -5.45 0 
0.5  1.083  -2.76 -2.98 -3.96 -3.66 -3.29 -3.67 -0.59 
0.12 5 1.021  -0.81 -1.19 -1.45 -5.36 -1.26 -1.36 -1.19 

Figure 1:
Solomon-Ciuta estimation
of [h] for the BSA-water sys-
tem at pH = 2.71 (Dotted
line: Multiple Linear Least-
Squares Fits with a Common
Intercept method; Solid
lines: Solomon-Ciuta
method at different concen-
trations).

Table 1:
Intrinsic viscosity at differ-
ent pH values, determined
by Huggins, Kraemer and
Schulz-Blaschke methods.

Table 2:
Percentage errors for [h] val-
ues at pH = 2.71 with refer-
ence value [h]ref = 0.1687.



worst estimations as the concentration level
grows like all the other methods reported above,
as indicated in Tables 2 to 6. It is worth noting
that “single-point” estimators would provide
good estimations for [h] whenever the rheologi-
cal behavior of the solute-solvent system under
study is well represented by a set of Huggins and
Kraemer equations with graphic representations
like those shown in Figure 2.

On the other hand, when a system does not
present such an appropriate behavior, “single-
point” methods will always provide estimations
for [h] with poor relative errors, increasing with
concentrations. Therefore, if a system has not
been studied previously in order to determine
which its behavior is going to be, ‘single-point’
methods expose oneself to get unacceptable
errors in estimating [h]. As an alternative strategy
we propose a ‘double-point’ method of estima-
tion. In this article we propose to estimate [h] by

(12)

where hrel,1, hi,1 and hrel,2, hi,2 are the data gathering
from levels C1 < C2 of concentrations. The estima-
tion given by Eq. 12 coincides with the intercept
at C = 0 of the line determined by the points (C1,
1/2(h i ,1/C1+ lnh rel,1/C1))  and (C2,  1/2(h i ,1/C2+
lnhrel,2/C2)), related to the Ram-Moham-Rao and
Yassen [11] estimations based on the date
obtained at concentrations C1 and C2 respective-
ly. Indeed, the equation of the line joining these
points is

from which we easily derive Equation 12 by eval-
uating [h](0). In Figures 3 and 4 we present, as we
did in Figure 1, how the estimation for [h] by this
method works for two different rheological
behaviors. The estimations reported graphically
in Figures 3 and 4, and analytically in Tables 2 to
6 below have been computed by Equation 12
using values gathered at consecutive values of
concentration. For instance, the estimation of [h]
reported at C = 0.75 used the values hrel,2, hi,2
obtained at C = 0.75 and the values hrel,1, hi,1
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C   

g/dL  

Ch atterjee  

Eq. 7  

Rao 

Eq. 8  

Ku wahara 

Eq. 9  

Palit  

Eq. 10  

Sch ulz 

Eq. 11  

Solomon -

Ciut a 

Eq. 6  

Double -

Point  

Eq. 12  

2 1.105  -13.65 -13.82 -14.91 -14.16 -14.18 -14.57 2.51 
1.5  1.082  -9.52 -9.73 -10.63 -10.38 -10.01 -10.38 0.33 
1 1.057  -6.13 -6.39 -7.04 -7.62 -6.58 -6.87 -0.33 
0.75  1.0 43  -4.60 -4.90 -5.40 -6.67 -5.03 -5.19 -0.17 
0.5  1.029  -2.98 -3.32 -3.67 -6.16 -3.41 -3.52 -0.67 
0.12 5 1.007  -0.86 -1.35 -1.44 -15.19 -1.37 -1.34 -1.34 

η
rel

C   

g/dL  

Ch atterjee  

Eq. 7  

Rao 

Eq. 8  

Ku wahara 

Eq. 9  

Palit  

Eq. 10  

Sch ulz 

Eq. 11  

Solomon -

Ciut a 

Eq. 6  

Double -

Point  

Eq. 12  

2 1.112  12.96 12.75 11.24 12.39 12.24 11.78 -1.65 
1.5  1.081  9.40 9.14 8.07 8.33 8.81 8.47 -1.03 
1 1.052  6.06 5.76 5.09 4.20 5.57 5.37 0.41 
0.75  1.038  4.75 4.41 3.92 2.18 4.28 4.13 1.03 
0.5  1.025  3.67 3.29 2.97 -0.27 3.21 3.10 0.41 
0.12 5 1.006  1.62 1.11 1.03 -17.01 1.09      1.03      1.03 

η
rel

C   

g/dL  

Ch atterjee  

Eq. 7  

Rao 

Eq. 8  

Ku wahara 

Eq. 9  

Palit  

Eq. 10  

Sch ulz 

Eq. 11  

Solomon -

Ciut a 

Eq. 6  

Double -

Point  

Eq. 12  

2 1.110  -25.56 -25.70 -26.68 -25.95 -26.02 -26.21 -11.09 
1.5  1.086  -21.93 -22.11 73.43 -22.62 -22.36 -22.47 -2.08 
1 1.063  -13.90 -14.13 -14.79 -15.10 -14.32 -14.29 -2.91 
0.75  1.049  -11.12 -11.38 -50.45 -12.80 -11.53 -11.51 3.47 
0.5  1.034  -6.23 -6.54 -76.73 -8.83 -6.65 -6.52 0.97 
0.12 5 1.009  -0.60 -1.07 -98.46 -11.99 -1.10 -0.83 -0.83 

η
rel

C  

g/dL  

Ch atterjee  

Eq. 7  

Rao 

Eq. 8  

Ku wahara 

Eq. 9  

Palit  

Eq. 10  

Sch ulz 

Eq. 11  

Solomon -

Ciut a 

Eq. 6  

Double -

Point  

Eq. 12  

2 1.117  -12.86 -13.02 -14.23 -13.25 -13.43 -13.78 -2.30 
1.5  1.090  -10.19 -10.39 -11.36 -10.93 -10.70 -10.87 -1.07 
1 1.061  -7.11 -7.36 -8.05 -8.44 -7.56 -7.66 1.22 
0.75  1.047  -4.95 -5.23 -5.78 -6.82 -5.39 -5.51 0.15 
0.5  1.032  -3.18 -3.51 -3.89 -6.07 -3.61 -3.47 0.61 
0.12 5 1.008  -0.02 -0.50 -0.60 -12.82 -0.52 -0.46 -0.31 

η
rel

Table 3:
Percentage errors for [h] val-
ues at pH = 4.32 with refer-
ence value [h]ref = 0.0597.

Table 4:
Percentage errors for [h] val-
ues at pH = 7.4 with refer-
ence value [h]ref = 0.0484.

Table 5:
Percentage errors for [h] val-
ues at pH = 8.06 with refer-
ence value [h]ref = 0.0723.

Table 6:
Percentage errors for [h] val-
ues at pH = 9.97 with refer-
ence value [h]ref = 0.0654.

The crosses represent the values of hi/C and
lnhrel/C at the different concentrations levels for
the BSA-water system at pH = 2.71, while the dot-
ted lines are the adjusted lines obtained by the
method introduced in [19], whose common inter-
section point at C = 0 provides an extrapolation
estimation for [h]. Each pair of full lines passing
through the points at concentrations 0.125, 0.5,
0.75 and 2 has a common intercept at C = 0 which
is the Solomon-Ciuta “single-point” estimation
for the corresponding concentration value
obtained through Equation 6. This is one of the
most used “one-point” estimation, and for the
systems considered in this paper, it provides rel-
ative errors ranging from 1 to 27 %. The triangu-
lar regions determined by the full lines in Fig-
ure 1, which are all similar (a fact that can be
proven rigorously), exhibit a behavior very dif-
ferent from that of the triangular region deter-
mined by the dotted lines which are used to get
a reasonable estimation for [h]. Moreover, it is
also clear now why the Solomon-Ciuta gives



obtained at C = 0.5 as well. In the particular case
of C = 0.125 where we do not have available data
at a lower concentration, the reported estima-
tion is that of Ram-Mohan-Rao and Yassen [11]. 

From the graphics we can see that the “dou-
ble-point” method has a very consistent behavior
when compared with the “Multiple Linear Least-
Squares Fits with a Common Intercept method”,
although is even better in the case of the system
dealt with in Figure 3. In the last column of Tables
2 to 6 we have included the percentage relative
errors of the estimations obtained by our ‘two
point‘ method given in Equation 12 and where the
observations made in the previous paragraph
have been taken into account.

4 CONCLUSION

Although the suitability of ‘single-point’ equa-
tions has been objected, some automated vis-
cosimeters have already incorporated them into
their software. Also, there is a continued interest
in verifying their applicability to different sys-
tems [15]. However, we have not found any ref-
erence towards biological macromolecule solu-
tions. In this work we have studied the BSA-water
system and pH variation. BSA is a non-linear,
ramified, highly cross-linked molecule with
strong internal and water interactions, in which
it is soluble. BSA is globular, heart shaped at neu-
tral pH [20] and has more extended conforma-
tions as pH changes. The intrinsic viscosity of BSA
solutions changes at different pH because BSA
size and shape are modified. Regarding diluted
BSA solutions, viscosity dependence on concen-
tration is unusual [17, 21].

The highest errors are observed in the run at
pH 8.06, with data presenting a linear regression
(R2) of 0.983, but with a negative and very high KH.
Also, the sum of the KH and KK constants is more
deviated from the 0.5 value. At the remaining runs,
KH + KK deviates approximately 25 % and error
decreases 50 %. All runs have values of hi < 0.1 [10]
but the obtained values were acceptable. All equa-
tions show dependence on concentration and
enhance their outcome at concentrations lower
than 1 %, except for Equation 10 that shows a non-
systematic behavior. KSB = 0.28 was used in Equa-
tion 11 [15] although a very different value is
observed in Table 1. In general, it can be stated that
these equations (except Equation 10) can be used
for approximate determinations of intrinsic vis-
cosity in the system BSA-water when concentra-

tions are inferior to 0.75 %. For higher concentra-
tions, all “single-point” estimators provide poor
estimations, and a graphical explanation for this
behavior is provided. Therefore, we propose a
“double-point” method to estimate [h] which
have given errors smaller then 3 % in all the sys-
tem studied in this paper, except for the case pH
= 8.6 where an error of 11 % is observed, although
it may be due to two experimental points which
seem to be no coherent [17]. Our method not
require a graphical adjustment and is more eco-
nomic than that presented in [19], which simulta-
neously adjust series of Huggins and Kraemer’s
values with two lines with a common intercept at
C = 0, providing good estimates for [h], but requir-
ing of at least four determinations. 

Methods based upon “single point” equa-
tions are strongly dependent on the system
under consideration, its concentration and the
verification of the condition KH + KK = 0.5. On the
other hand, regarding the BSA-water system
(which presents different rheological behaviors),
the “double-point” method of estimation per-
forms better, exhibits less dependence on the
concentration and does not require of previous
knowledge about the values of KH and KK .
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Figure 2:
Graphic representation
(Huggins and Kraemer’s
equations) of the results of
viscosimetric measures of a
solute-solvent system for
which ‘single-point’ estima-
tors provides good estima-
tions for [Ë].
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Figure 3 (left):
‘Double-point’ estimation of
[h] for the BSA-water system
at pH = 2.71 (Dotted line:
Multiple Linear Least-
Squares Fits with a Common
Intercept method; Solid
lines: Lines joining two con-
secutive Ram-Moham-Rao
and Yassen estimations
(represented by the solid
squares in the graphic)). The
double-point estimation is
the point of each solid line
just on the vertical axis.

Figure 4:
‘Two-point’ estimation of
[h] for the BSA-water system
at pH = 7.4 (Dotted line:
Multiple Linear Least-
Squares Fits with a Common
Intercept method; Solid
lines: Lines joining two con-
secutive Ram-Moham-Rao
and Yassen estimations
(represented by the solid
squares in the graphic)). The
double-point estimation is
the point of each solid line
just on the vertical axis.


