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The concept of entropy was initially defined for systems with thermodynamical equi-
librium. We try to extend this notion for quantum non-relativistic decaying states. We
use a technique based on path integration on coherent states in order to obtain an
approximation to the entropy of a decaying state.
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1. Introduction

The quantum mechanical treatment of decaying states started with the pioneer-
ing work of Gamow [1], which immediately attracted scientists on the various
aspects of resonances. Since then, the quantum mechanical principles underlying the
physics and mathematics of resonances have been consistently formulated in var-
ious ways [2–8]. Considerably less effort was devoted to the understanding of the
statistical (or thermodynamical) side of the problem. A decaying system should also
obey thermodynamical laws, in a broad sense not limited by the notion of prob-
abilities, exactly as it happens in the just referred quantum mechanical frame for
resonances [6, 7]. From the physical point of view the problem has strong links with
the measurement of decay properties of resonances and with the role of interactions
between resonances and the environment.

The purpose of this communication is to give an approximate value of the
entropy for quantum decaying states.
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In this context, two approaches are possible. One is the introduction of the
entropy operator, as proposed by Misra, Prigogine and Courbage [9]. This approach
is time-dependent. The second approach begins with the assumption that if the
mean life of a resonance is large (or equivalently if the width is small), this resonance
could be considered, in a first approximation, as a system in thermodynamical
equilibrium. This approach has been proposed by Kobayashi and Shimbori [10, 11].
This is the point of view that we follow in this discussion.

2. The Friedrichs Model

We shall make use of a theoretical laboratory valid to study qualitative properties
of resonances: the Friedrichs model [12]. The basic Friedrichs model is an exactly
solvable model for resonances which contains all features of resonant scattering. In
particular, the existence of a Hamiltonian pair ({H0, H} where H0 is a free Hamil-
tonian and H = H0+V , where the potential V is the interaction responsible for the
existence of resonances), the existence of a scattering matrix, the presence of reso-
nances as poles of an analytic continuation of a reduced resolvent or, equivalently,
of the scattering matrix or S-matrix [13].

In the Friedrichs model, the free Hamiltonian H0 has a stationary state plus an
external field without interaction with the stationary state:

H0 = ω0|1〉〈1| +
∫ ∞

0

ω|ω〉〈ω|dω, (1)

where H0|1〉 = ω0|1〉 and H0|ω〉 = ω|ω〉. Note that ω0 > 0, so that the bound state
of H0 is immersed in its continuous spectrum. The total Hamiltonian H is

H = H0 + λV = H0 + λ

∫ ∞

0

dωf(ω)[|ω〉〈1| + |1〉〈ω|]. (2)

Here λ is a real coupling constant. The function f(ω) that appears under
the integral sign in the expression which defines the potential V in (2) is a
square integrable function that can be taken as real. We should assume that its
square f2(ω) admits analytic continuation in an open set including the positive
semi-axis R+ ≡ [0,∞). The potential V produces an interaction between the sta-
tionary state of H0 and the external field, so that the bound state |1〉 is transformed
into a resonance. In order to calculate the resonance, let us consider the reduced
resolvent:

1
η(z)

:= 〈1| 1
z −H

|1〉. (3)

Under the above conditions, the function η(z) is analytic on the complex plane,
except for a branch cut on the positive semi-axis. Furthermore, it admits analytic
continuations from above to below, with a zero at zR = ER − iΓ/2, and from below
to above, with a zero at z∗R = ER + iΓ/2. These are the resonance poles of the
Hamiltonian pair {H0, H}.
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The Gamow vectors are the eigenvectors of H with eigenvalues zR and z∗R. The
eigenvector for zR, |ψD〉(H |ψD〉 = zR|ψD〉) is called the decaying Gamow vector as
it decays exponentially as t �→ ∞ [6, 7]. The eigenvector of H for z∗R, |ψG〉, is called
the growing Gamow vector and it decays exponentially to the past, i.e. t �→ −∞.

We know that a decaying state, i.e. the quantum state corresponding to a quan-
tum resonance, decays exponentially (with good accuracy) for a wide range of times,
which do not include very short times or very long times [14]. As the decaying
Gamow vector, |ψD〉, decays exponentially for t > 0, it is a good approximation
for the quantum state within the range of exponential decay. Then, it is somehow
reasonable to adopt |ψD〉 as the vector state for a quantum resonance. This idea
was first proposed by Nakanishi [2].

The Friedrichs model can also be formulated in terms of second quantization
language and this formulation is the appropriate for our discussion. In these terms
the total Hamiltonian can be written as [17]:

H = ω0a
†a+

∫ ∞

0

dωωb†ωbω + λ

∫ ∞

0

dωf(ω)(a†bω + ab†ω), (4)

where a and a† are the annihilation and creation operators for the stationary state
and bω and b†ω the annihilation and creation operators for |ω〉, from a vacuum state
|0〉. Note that the potential V is given by the last integral in (4).

Let us define:

A†
IN :=

∫
γ

dω
λf(ω)
ω − zR

b†ω − a†, (5)

AOUT :=
∫

γ

dω
λf(ω)
ω − zR

bω − a, (6)

B†
ω,IN := b†ω +

λf(ω)
η̃+(ω)

{∫ ∞

0

dω′ λf(ω′)
ω′ − ω − i0

b†ω′ − a†
}
, (7)

Bω,OUT := bω +
λf(ω)
η̃+(ω)

{∫ ∞

0

dω′ λf(ω′)
ω′ − ω − i0

bω′ − a

}
. (8)

These operators satisfy the following commutation relations:

[AOUT, A
†
IN] = 1;

η+(ω)
η−(ω)

[Bω,OUT, B
†
ω′,IN] = δ(ω − ω′). (9)

All other commutators vanish. The total Hamiltonian can be diagonalized as

H = zRA
†
INAOUT +

∫ ∞

0

dωω
η+(ω)
η−(ω)

B†
ω,INBω,OUT (10)

and

|ψD〉 = A†
IN|0〉, AOUT|ψD〉 = |0〉. (11)

Our objective is to give a reasonable expression for the entropy of decaying
states using the Friedrichs model.
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3. An Approximation to the Canonical Entropy for the Harmonic
Oscillator with Coherent States

At this point, the following comment is in order: In the formalism proposed by
Prigogine and his team, once we have determined the entropy operator M [9], the
entropy of a quantum state ρ is given by S = tr ρMρ. For decaying states, they
propose the following entropy operator [15]:

M := |ψG〉〈ψG|. (12)

One may show that if ρ(0) = |ψD〉〈ψD| represents the density operator for the
Gamow state |ψD〉, its entropy is given by

S(t) = e−2Γt tr ρ(0), (13)

for a certain definition of the trace [16]. This result is also given in [15].
Let us consider the canonical entropy for the harmonic oscillator. In terms of

the canonical partition function, it can be calculated by means of the following
formula:

S = k

(
1 − β

∂

∂β

)
logZ, (14)

where

Z = tr{e−βH} =
∞∑

n=0

〈n|e−βH |n〉, (15)

where |n〉 represent the bound states of the oscillator. The final expression is

S = −k log[2 sinh(β�ω/2)] + k
β�ω

2
coth

(
β�ω

2

)
. (16)

The objective is to compute an approximation to this formula using path inte-
gration [18] over the coherent states of the oscillator [19]. As is well known, coherent
states are defined from a vacuum state |0〉 as

|α〉 := eαa†−α∗a|0〉, (17)

where a† and a are the creation and annihilation operators for the harmonic oscilla-
tor respectively. The vacuum state |0〉 is the ground state of the harmonic oscillator
in the present case.

Take now the canonical state ρ = e−βH and use the strategy of path integrals
to estimate its matrix elements with respect to the coherent states. This is for any
pair of complex numbers αi and αf :

〈αi|ρ|αf 〉 = lim
N �→∞

ρN (αi, αf ), (18)
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where,

ρN(αi, αf ) =
∫ N∏

k=1

(
d2αk

π

)
exp

{
−τ
[

N∑
n=1

H+(αn−1, αn)

+
N+1∑
n=1

{(
α∗

n − α∗
n−1

2τ

)
αn − α∗

n−1

(
αn − αn−1

2τ

)}]}
, (19)

with α0 = αi, αN+1 = αf and τ = β/N . We write αi = xi + iyi and dαi = dxidyi,
so that we have 2N integrals in the variables x1, . . . , xN , y1, . . . , yN . The integration
limits are −∞ and ∞ in all cases, since there must be one coherent state for any
complex number. The term

H+(α, α′) =
〈α|H |α′〉
〈α|α′〉 , 〈α|α′〉 = exp

{
−|α|2

2
− |α′|2

2
+ α∗α′

}
(20)

is called the normal expansion of the Hamiltonian H . The final expression is

ρ(αi, αf ) :=
1

〈αi |αf 〉ρN (αi, αf ) = exp
{
−1

2
β�ω

}
× exp{−β�ωα∗

iαf}, (21)

which does not depend on N .
In the way to obtain (21), we have arrived to integrals of the form [20],

1
π

∫ ∞

−∞
dx1

∫ ∞

−∞
dy1 exp{−x2

1 − y2
1 + σ(α∗

i (x1 + iy1) + σ(x1 − iy1)α2}

=
1
π

∫ ∞

−∞
dx1

∫ ∞

−∞
dy1 exp

{
−
[
x1 − σ

2
(αi + α2)

]2
+
σ2

4
(α∗

i + α2)2

−
[
y1 − i

σ

2
(α∗

i − α2)
]2

− σ2

4
(α∗

i − α2)2
}
. (22)

These integrals give rise to undesirable infinities which should be removed in
order to obtain a reasonable value for the entropy. To this end, we discard the terms
σ
2 (αi+α2) and iσ

2 (α∗
i −α2) in the above exponents. This approximation is standard

in path integrations and it amounts to neglecting infinite vacuum contributions [18].
Once we have followed this procedure, the partition function gives Z in (14)

gives:

Z = e−(β�ω)/2 1
β�ω

, (23)

which finally with (14) gives:

S ≈ k[1 − log(β�ω)]. (24)

This is an approximation to (16) taken into account that cothx = 1/x + · · ·
and sinhx = x+ · · · .

The moral of this section was that the use of coherent states to approximate
the entropy of a system is a technique amenable for future extensions to systems
in which the method of calculation of the entropy is not clear. This is the case of
the entropy of decaying states, which will be discussed in Sec. 4.
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4. An Approximation for the Value of the Entropy
for Decaying States

In the sequel, we shall assume that the mean life of a decaying state is sufficiently
large so as to consider the state in thermodynamical equilibrium with tempera-
ture T . In this case, we shall use the technique employed for the determination of
an approximation of the entropy in the harmonic oscillator in order to obtain an
approximate entropy for a decaying state.

As in the case of the harmonic oscillator, we define the coherent state |α〉 and
its bra 〈α|, for all complex number α, as:

|α〉 := exp{αA†
IN − α∗AOUT}|0〉,

〈α| := 〈0| exp{α∗AOUT − αA†
IN},

(25)

where |0〉 is the vacuum state. Making use of the commutation relations (9), we
realize that these coherent states satisfy the same properties than the coherent
states for the harmonic oscillator. In particular,

AOUT|α〉 = α|α〉; 〈α|A†
IN = α∗〈α|;∫

C

d2α

π
|α〉〈α| = 1; d2α = (d Realα)(d Imα),

(26)

where C denotes the field of complex numbers. The normal expansion (20) is now

H+(α, α′) = zRα
∗α′. (27)

Then, one reproduces the calculation performed for the case of the harmonic
oscillator. As a result, instead of (21), we have the following equation

ρ(αi, αf ) = exp{−βzRα
∗
iαf}, (28)

which gives

Z =
1
βzR

. (29)

Finally, using (14), we arrive to the desired result:

S = k(1 − log(βzR)) = k

[
1 − ln

(
β

√
E2

R +
Γ2

4

)
− i arctan

(
Γ

2ER

)]
, (30)

where zR = ER + iΓ/2 and ln means natural logarithm. We take the principal
branch of log z.

Now, take the limit as Γ �→ 0 and compare with the formula obtained for the
harmonic oscillator. Note that the result is the same provided that we replace ER

by �ω. This shows that the result that we have obtained by this means for the
unstable state is reliable.
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5. Concluding Remarks

After the result obtained for the harmonic oscillator, we admit that (30) is an
approximation to the value of the entropy for decaying states. We see that this
result gives a complex entropy. This requires of some interpretation on the meaning
of the imaginary part. The situation is quite similar to the existence of complex
energy for decaying states, where the imaginary part is interpreted as the half-width.

Note that the resonance in the Friedrichs model is caused by the interaction
of the system with the background, which plays the role of a thermal bath. Then,
we suggest that the real part of the entropy is the entropy of the system and the
imaginary part the entropy transferred from the system to the background. Should
the total entropy be identified with the modulus of (30), one concludes that the total
entropy is bigger than the entropy of the system itself. Thus, a decaying system has
bigger entropy than a stable one.

Acknowledgments

This work has been partially supported by the CONICET of Argentina (PIP 0740),
and the ANPCYT (Argentina), and the Spanish Government Grant Nos. PR2011-
0343, FPA2008-04772-E and MTM2009-10751.

References

[1] G. Gamow, On the quantum theory of atomic nucleus, Z. Phys. 51 (1928) 204–212.
[2] N. Nakanishi, A note on the physical state of unstable particles, Progr. Theor. Phys.

21 (1959) 762–763.
[3] A. Bohm, Resonance poles and Gamow vectors in the rigged Hilbert space formula-

tion of quantum mechanics, J. Math. Phys. 22 (1981) 2813–2823.
[4] H. M. Nussenzveig, Causality and Dispersions Relations (Academic Press, New York,

1972).
[5] V. I. Kukulin, V. M. Krasnopolski and J. Horacek, Theory of Resonances. Principles

and Applications (Academia, Praha, 1989).
[6] A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gelfand Triplets, Lecture

Notes in Physics, Vol. 340 (Springer, Berlin, 1989).
[7] O. Civitarese and M. Gadella, Physical and mathematical aspects of Gamow vectors,

Phys. Rep. 396 (2004) 41–113.
[8] R. de la Madrid, A. Bohm and M. Gadella, Rigged Hilbert space treatment of con-

tinuous spectrum, Fortschr. Phys. 50 (2002) 185–216.
[9] B. Misra, I. Prigogine and M. Courbage, Liapunov Variable-entropy and measurement

in quantum mechanics, Proc. Natl. Acad. Sci. USA 76 (1979) 4768–4772.
[10] T. Kobayashi and T. Shimbori, Statistical mechanics for unstable states in Gelfand

triplets and investigations of parabolic potential barriers, Phys. Rev. E 63 (2001)
056101.

[11] T. Kobayashi, New aspects in physics on Gelfand triplets, Int. J. Theor. Phys. 42
(2003) 2265–2283.

[12] K. O. Friedrichs, On the perturbation of continuous spectra, Commun. Appl. Math.
1 (1948) 361–406.

[13] P. Exner, Open Quantum Systems and Feynmann Integrals (Reidel, Dordrecht, 1985).

1360009-7



2nd Reading

April 24, 2013 14:58 WSPC/S0219-8878 IJGMMP-J043 1360009

O. Civitarese & M. Gadella

[14] L. Fonda, G. C. Ghirardi and A. Rimini, Decay theory of unstable quantum systems,
Rep. Progr. Phys. 41 (1978) 587–631.
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