
TYPE Original Research

PUBLISHED 21 March 2023

DOI 10.3389/frwa.2023.1005792

OPEN ACCESS

EDITED BY

Sarah Collins,

University of Wyoming, United States

REVIEWED BY

Meilian Chen,

Western Carolina University, United States

Malak M. Tfaily,

University of Arizona, United States

*CORRESPONDENCE

Patricia E. Garcia

garciape@comahue-conicet.gob.ar

SPECIALTY SECTION

This article was submitted to

Environmental Water Quality,

a section of the journal

Frontiers in Water

RECEIVED 28 July 2022

ACCEPTED 06 March 2023

PUBLISHED 21 March 2023

CITATION

Buser-Young JZ, Garcia PE, Schrenk MO,

Regier PJ, Ward ND, Biçe K, Brooks SC,

Freeman EC and Lønborg C (2023) Determining

the biogeochemical transformations of organic

matter composition in rivers using molecular

signatures. Front. Water 5:1005792.

doi: 10.3389/frwa.2023.1005792

COPYRIGHT

© 2023 Buser-Young, Garcia, Schrenk, Regier,

Ward, Biçe, Brooks, Freeman and Lønborg. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Determining the biogeochemical
transformations of organic matter
composition in rivers using
molecular signatures

Jessica Z. Buser-Young1, Patricia E. Garcia2*,

Matthew O. Schrenk3,4, Peter J. Regier5, Nicholas D. Ward5,6,

Kadir Biçe7, Scott C. Brooks8, Erika C. Freeman9 and

Christian Lønborg10

1Department of Microbiology, Oregon State University, Corvallis, OR, United States, 2Grupo de Ecología

de Sistemas Acuáticos a Escala de Paisaje (GESAP), INIBIOMA-CONICET Universidad Nacional del

Comahue, Bariloche, Argentina, 3Department of Earth and Environmental Sciences, Michigan State

University, East Lansing, MI, United States, 4Department of Microbiology and Molecular Genetics,

Michigan State University, East Lansing, MI, United States, 5Marine and Coastal Research Laboratory,

Pacific Northwest National Laboratory, Sequim, WA, United States, 6School of Oceanography, University

of Washington, Seattle, WA, United States, 7Department of Marine Sciences, University of Georgia,

Athens, GA, United States, 8Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge,

TN, United States, 9Ecosystems and Global Change Group, Department of Plant Sciences, University of

Cambridge, Cambridge, United Kingdom, 10Section for Applied Marine Ecology and Modelling,

Department of Ecoscience, Aarhus University, Roskilde, Denmark

Inland waters are hotspots for biogeochemical activity, but the environmental

and biological factors that govern the transformation of organic matter (OM)

flowing through them are still poorly constrained. Here we evaluate data from a

crowdsourced sampling campaign led by the Worldwide Hydrobiogeochemistry

Observation Network for Dynamic River Systems (WHONDRS) consortium to

investigate broad continental-scale trends in OM composition compared to

localized events that influence biogeochemical transformations. Samples from

two di�erent OM compartments, sediments and surface water, were collected

from 97 streams throughout the Northern Hemisphere and analyzed to identify

di�erences in biogeochemical processes involved inOM transformations. By using

dimensional reduction techniques, we identified that putative biogeochemical

transformations and microbial respiration rates vary across sediment and surface

water along river continua independent of latitude (18◦N−68◦N). In contrast,

we reveal small- and large-scale patterns in OM composition related to local

(sediment vs. water column) and reach (stream order, latitude) characteristics.

These patterns lay the foundation to modeling the linkage between ecological

processes and biogeochemical signals. We further showed how spatial, physical,

and biogeochemical factors influence the reactivity of the two OM pools in local

reaches yet find emergent broad-scale patterns between OM concentrations and

stream order. OM processing will likely change as hydrologic flow regimes shift

and vertical mixing occurs on di�erent spatial and temporal scales. As our planet

continues to warm and the timing and magnitude of surface and subsurface flows

shift, understanding changes in OM cycling across hydrologic systems is critical,

given the unknown broad-scale responses and consequences for riverine OM.
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Introduction

Global rivers and streams export about 0.95 ± 0.15 Pg C
yr−1 of inorganic and organic carbon from land to the ocean,
linking terrestrial and aquatic systems as an important component
of the global carbon budget (Catalán et al., 2016; Regnier et al.,
2022). A substantial fraction of this carbon (up to 25%, depending
on several factors; Cole et al., 2007; Aufdenkampe et al., 2011)
is in the form of dissolved organic matter (DOM), and during
the movement from land to the ocean, DOM is modified by
a complex array of physical, chemical, and biological processes
that can alter their concentrations, composition, and reactivity
(Regier et al., 2020). These DOM transformation processes also
support high carbon dioxide emissions from inland waters to
the atmosphere (Raymond et al., 2013; Ward et al., 2017;
Drake et al., 2018) and are therefore critical for understanding
how river biogeochemical cycles are altered by anthropogenic
climate change.

Biogeochemical transformations of DOM are shaped by
its reactivity and transport, which are controlled by biotic and
abiotic processes in localized habitats and along a watershed
(Stegen et al., 2022). During riverine transport, aromatic
DOM compounds are especially susceptible to photochemical
modification and degradation, producing carbon dioxide and
new inorganic and organic compounds (Stubbins et al., 2010).
Biotic degradation of DOM (e.g., bacterial metabolism) can
transform part of the pool into new biomass and carbon dioxide,
simultaneously producing diverse DOM molecules (Guillemette
and del Giorgio, 2012; Cory et al., 2013). Both autochthonous
(produced within a system) and allochthonous (produced outside
a system) sources of DOM are biologically and photochemically
reactive in rivers (Seidel et al., 2016), and interactive effects
(e.g., priming) stimulate DOM bioavailability and degradation
(Ward et al., 2016).

River DOM chemical composition shapes aquatic ecosystem
function (Benner, 2002; Aiken, 2014). Previous studies have
characterized the composition of DOM pools at a range of detail
spanning from bulk elemental carbon, nitrogen, and phosphorus
ratios, using advanced mass spectrometry (i.e., Fourier transform
ion cyclotron resonance mass spectrometry, or FT-ICR-MS)
techniques (Repeta, 2015; McCallister et al., 2018). In particular,
FT-ICR-MS, which can resolve hundreds to thousands of individual
molecular formulae from a single sample (McCallister et al., 2018),
has been increasingly applied over the past decade to uncover the
diversity of molecules present in the DOM pool (Kellerman et al.,
2018; Cooper et al., 2020; Holt et al., 2021). This technique has clear
limitations as it cannot capture the whole DOM pool as commonly
used extraction methods such as solid phase are chemically
selective (Chen et al., 2016; Baltar et al., 2021). However, despite
these limitations, the FT-ICR-MS technique is a high-throughput,
and non-destructive method that has provided valuable results,
including sources and processes affecting different DOMmolecules
(Koch and Dittmar, 2006; Geer Wallace and McCord, 2020),
revealing high-resolution pool compositions (Zark and Dittmar,
2018) and providing novel ecological analysis tools (Breitling
et al., 2006; Danczak et al., 2020). Among biotic processes, river
sediments can be biogeochemical “hot spots” which hold diverse

microbial communities potentially capable of processing complex
DOMmolecules.

Using FT-ICR-MS data to identify putative microbial metabolic
activity is possible by calculating the mass difference between
metabolite m/z peaks, and comparing to known mass differences
for metabolic transformation, known as ab initio prediction
of metabolic networks (Breitling et al., 2006). These methods
generate new insights by establishing putative biogeochemical
transformations (PBT) from which we may draw novel hypotheses
on the links betweenmicrobial biogeochemistry andmetabolomics.

In rivers, spatial variation in DOM composition is related to
heterogeneity in the catchments. Spatial patterns can, in some
cases, be used to track the transformation or persistence of specific
organic molecules (Kellerman et al., 2018); for example, greater
DOM chemo-diversity has been observed in low-order streams
compared to higher order systems (Mosher et al., 2015). With
increasing stream order, the DOM pool appears to progress toward
a state of chemostasis, diminishing the variation in concentration
and composition of DOM (Creed et al., 2015), which is consistent
with principles of the original river continuum concept (Vannote
et al., 1980) and emerging theories such as the pulse-shunt concept
(Raymond et al., 2016). The original river continuum concept
suggests that communities downstream are adapted to use organic
matter (OM) not consumed upstream and that DOM is less diverse
as stream order increases (Vannote et al., 1980). The pulse shut
concept suggests that lower order rivers act as “passive pipes”
during high discharge and OM is shunted downstream to higher
order rivers where it can be processed (Raymond et al., 2016).

In this study we use the unique large-scale dataset obtained
from the framework of the Worldwide Hydrobiogeochemistry
Observation Network for Dynamic River Systems (WHONDRS)
consortium, to investigate how DOM pools and putative
biogeochemical transformations vary across river sediment
and surface water environments and how this may influence
the reactivity of this pool. Data collected by the WHONDRS
consortium was used to test the hypothesis that river characteristics
such as stream order, sediment type, and carbon concentrations are
primary drivers of DOM composition and reactivity across river
gradients. We identified catchment-wide patterns including stream
order, latitude, and sample type (sediment versus surface water)
that influence the composition of the DOM pool. Specifically,
heterogeneous and deterministic selection of protein-class DOM
is observed across stream order and sample type, yet emergent
patterns of increased stochasticity in surface water compared to
the sediment. Furthermore, the addition of lipid-class DOM shifts
assemblage toward stochastic as stream order increases, suggesting
different DOM processing regimes exist, related to vertical mixing,
compound availability, microbial activity, and terrestrial input.

Materials and methods

Dataset description

The dataset was obtained from a North Hemisphere survey
of surface river water and sediment samples generated as part of
the WHONDRS consortia (Stegen and Goldman, 2018). Briefly,
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in 2019 a total of 97 sites were surveyed across eight countries
within a 6-week period from 29 July to 19 September (Toyoda
et al., 2020). All water samples were filtered through 0.22µm
sterivex cartridge filters (EMD Millipore), while 125ml of surface
(1–3 cm) sediment samples were collected using a sterilized
stainless-steel scoopula (Garayburu-Caruso et al., 2020; Goldman
et al., 2020). Samples were collected following the protocol of
the National Ecological Observatory Network (NEON) program
(NEON.DOC.001193; Jensen, 2022) and shipped within 24 hours
on blue ice packs to the Pacific Northwest National Laboratory’s
Environmental Molecular Sciences Laboratory, USA. Surface water
samples were frozen at −20◦C upon arrival and sediments were
sieved (<2mm) and subsampled and stored at −20◦C. Before
analyses, all samples were thawed in the dark at 4◦C for 72
hours. A FT-ICR-MS (12 Tesla Bruker SolariX, resolution was
220K at 481.185 m/z) was used to collect ultrahigh-resolution
mass spectra of both the surface water and sediment samples
(Garayburu-Caruso et al., 2020). Biological respiration rates using
incubated sediment samples was calculated as the slope of the linear
regression between dissolved oxygen (DO) concentration and
incubation time (∼50–150mins; Goldman et al., 2020). In addition,
surface water samples were measured for dissolved organic carbon
(DOC), stable water isotopes [oxygen (O) and hydrogen (H)],
specific conductivity, total nitrogen (TN), chloride (Cl−), sulfate
(SO2−

4 ), nitrate (NO−
3 ), nitrite (NO

−
2 ), and fluorine (F

−); details for
these measurements can be found in Toyoda et al. (2020). Sediment
samples were measured for non-purgeable organic carbon as
sediment water extractable organic carbon (WEOC), respiration
rates, and X-ray fluorescence; details for these measurements can
be found in Goldman et al. (2020). More specific information on
WHONDRS and methods used can be found in https://whondrs.
pnnl.gov.

Statistical analyses

To understand what types of OM are present and how
compositions change throughout the WHONDRS watersheds, we
constructed van Krevelen plots in R (v. 4.1.2). Pairwise monotonic
relationships between DOM and physiochemical features were
evaluated by calculating Spearman rank correlation coefficients
using the rcorr function in the “Hmisc” package (v. 4.6-0; Harrell
Jr, 2021). As respiration rates are generally indicative of microbial
activity, we sought to investigate how respiration rates relate
to landscape patterns including stream order, estimated percent
macrophyte and algal mat coverage, and sediment type (general
grain size). Using R (v. 1.1.456) package “ggpubr” (v. 0.4.0;
Kassambara, 2020) we conducted non-parametric statistical tests
to assess pairwise comparisons (kruskal.test and wilcox.test). The
p-values were adjusted using Holm-Bonferroni corrections. To
identify significance between the metabolome assemblage and
abiotic parameters, we used permutational multivariate analysis of
variance (PERMANOVA, reps= 999).

We constructed measurement models, i.e., the link between
riverine abiotic variables and their respective latent variables,
in R using the package “lavaan” (v. 0.6-12; Rosseel, 2012) to
calculate multivariate regressions of predictor and latent variables,

as defined by:

x = τx + 3xξ + δ

Where x = vector of x-side indicators, τx = vector of q

intercepts for x-side indicators, 3x = matrix loadings (q x n)
corresponding to the latent exogenous variable, ξ = vector of n
latent exogenous variables, and δ = vector of residuals for x-side
indicators. The latent exogenous variable ξ represented abiotic
factors and was defined by the x-side indicators DO, surface water
pH, surface water temperature, and stream order.

Endogenous measurement models were constructed to fit
riverine biogeochemistry, where the latent endogenous variable
remains the same as the above measurement model, except the
parameters are now y-side variables;

y = τy + 3yη + ǫ

Where y = vector of y-side indicators, τy = vector of p

intercepts for y-side indicators, 3y = matrix loadings (m x q)
corresponding to the latent endogenous variables, η = vector
of m latent endogenous variables, ǫ = vector of residuals for
y-side indicators. The latent endogenous variable η represented
biogeochemically active molecules in the sediment or the surface
water and was defined by the y-side indicators DOC, WEOC, TN,
SO2−

4 and NO−
3 .

Measurement models were further analyzed using structural
regression modeling with two endogenous variables (surface
water and sediment biogeochemistry) and one exogenous variable
(abiotic factors), where the endogenous variables may predict each
other. Similar to the equations above, we modeled the relationships
of the exogenous variable to the endogenous variables, yet the
addition of the matrix enables the specification of the relationship
between the two endogenous variables.

(

η1

η2

)

=

(

α1

α2

)

+

(

γ11

γ21

)

ξ1 +

(

0 0
β21 0

)

(

η1

η2

)

+

(

ς1

ς2

)

Where η = vector ofm latent endogenous variables, α = vector
of p intercepts, γ = vector (1 × q) of regression coefficients where
q is the total number of exogenous variables, ξ = vector of n
latent exogenous variables, β = matrix of regression coefficients
(p × p) of endogenous to endogenous variables whose i-th row
indicates the source variable and the j-th column indicates the
target variable, and ς = vector of residuals. The latent exogenous
variable ξ represented abiotic factors, as defined by the x-side
indicators of surface water temperature, DO, and stream order.
The first latent endogenous variable η represented surface water
biogeochemistry defined by the y-side indicators SO2−

4 , TN, and
DOC, while the second latent endogenous variable represented
sediment biogeochemistry as defined by WEOC and microbial
respiration rates.

For all models, fit was assessed using confirmatory factor
indices (CFI), Tucker Lewis indices (TLI), and root mean square
error approximation (RMSEA). To achieve acceptable values of CFI
(>0.95), TLI (>0.90), and RMSEA (<0.05), model fit was altered
using modification indices values as predicted by the “lavaan”
package (modindices). Once the fit was acceptable by these three
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metrics, exogenous and endogenous relationships were assessed by
averages between the marker method (“lavaan” output Estimate)
and the variance standard method (“lavaan” output std.lv), where
acceptable variance/covariance ranges between−1 and 1.

To analyze inferred biogeochemical associations and identify
core metabolic processes, we inferred putative biogeochemical
transformations (PBT) of the WHONDRS FT-ICR-MS dataset, as
described by Garayburu-Caruso et al. (2020). The PBT metric
is a way to estimate the gain or loss of specific molecules
(e.g., amino acids such as valine, and sugars such as glucose)
between sample locations/types based on the mass difference
between m/z peaks within each sample compared to a reference
database of common metabolic transformations (Bailey et al.,
2017). While FT-ICR-MS analyses provide mass and elemental
stoichiometric information, PBT analyses also include inferred
compound structural information. We may from this draw
conclusions on links between the structure of organic compounds
and their chemically transformed species as defined by their
mass differences. The PBT dataset generation was calculated as
pairwise mass differences between every peak per sample and
compared to known biogeochemical transformations (reference
list containing 1,255 associated masses). Emergent patterns in
PBT across Northern Hemisphere river corridors were analyzed
using Bray-Curtis dissimilaritymatrices, constructed and visualized
using nonmetric multidimensional scaling (NMDS) plots in R (v.
1.1.456) and the package “vegan” (v. 2.5-6; metaMDS; Oksanen
et al., 2020). When ecologically relevant, associated metadata
were fitted to the NMDS ordination as environmental vectors
(envfit), and p-values of the multiple testing were adjusted using
Bonferroni correction (p.adjust). Significance between-location
PBT compared to abiotic parameters was determined using
permutational multivariate analysis of similarities (PERMANOVA;
adonis, permutations = 999) and similarity percentage analysis
(SIMPER; simper, permutations= 999).

Further analysis of potential ecological drivers was evaluated
using meta-metabolome ecology methods as described by Danczak
et al. (2020) and Stegen et al. (2022). Briefly, to quantify
deterministic versus stochastic processes responsible for driving
putative biochemistry across stream orders and sample type,
we applied mean nearest taxon distance (MNTD; ses.mntd; R
“picante” package v. 1.8.2; Kembel et al., 2010) and nearest
taxon index for sample beta diversity (βNTI; comdistn) to a
subset of the FT-ICR-MS dataset (Stegen et al., 2012, 2013;
Danczak et al., 2020), specifically analyzing the elemental groups
categorized as “protein” and “protein and lipid” with the identified
molecular formula and elemental atoms present per metabolite,
as identified through molecular formula assignment described in
Danczak et al. (2020). Selected protein- and lipid-class compounds
were verified to contain both nitrogen and sulfur atoms, to
distinguish between potential misclassified lipids. These protein-
class compounds were chosen to provide a high-level analysis
of biogeochemically active molecules across stream orders and
sample type. Given protein-class compound assemblage’s ability
to be linked to microbial processes and biochemically active
metabolites, we may draw preliminary conclusions on amino acid-
like transformations (Fudyma et al., 2021). Furthermore, lipids
may represent microbial biomass, indicative to the metabolic

and structural diversity between samples (Bailey et al., 2017).
To calculate βMNTD and βNTI, a dendrogram representative of
molecular characteristics of FT-ICR-MS masses of protein class
compounds was created. The molecular class dendrogram (MCD)
is generated by comparing derived statistics such as double-
bond equivalents, modified aromaticity index, and elemental
composition, to the identified molecular formulae from the FT-
ICR-MS dataset. The UPGMA hierarchical clustering analysis
on the molecular characteristic differences matrix then generates
the MCD.

Using the MCD, we calculated β diversity through null
modeling and calculating βNTI. Briefly, βNTI is the observed
distribution of pairwise phylogenetic distances compared to a
null model, calculated by βMNTD. The βMNTD quantified
the phylogenetic distance between two mass differences in
different communities,

βMNTD = 0.5





nk
∑

ik=1

fik min
(

1ikjm

)

+

nm
∑

im=1

fim min
(

1imjk

)





Where fik = the relative abundance of the mass difference i

in sample k, nk = is the number of mass differences in sample
k, min

(

1ikjm

)

is the calculated minimum distance between mass
difference i in sample k and all mass distances j in sample m. A
mass difference null distribution of βMNTDobs is calculated by
randomizing mass differences across the sample and recalculated
999 times to find βMNTDnull. While βNTI is the number of
standard deviations between βMNTDobs and βMNTDnull,

βNTI =

(

βMNTDobs − βMNTDnull

βMNTDsd

)

where βMNTDsd = the standard deviation of βMNTDnull values.
To assess metabolome assemblage processes (deterministic

or stochastic) across watersheds, pairwise comparisons between
βMNTD values are used to calculate the βNTI of metabolome
diversity. The βNTI is the observed deviation of a null βMNTD
model where −2 > βNTI values > +2 values represent a
metabolome experiencing deterministic selection (> +2 signifies
variable selective pressures while < −2 is homogenizing selective
pressures) and |βNTI| values < +2 represents a stochastically
assembled metabolome. All βNTI values were then compared
to abiotic factors using multiple linear regression (“lavaan”).
By identifying the underlying environmental processes driving
putative biochemistry, we can further link ecological systems to
their molecular processes. As described by Danczak et al. (2020),
a deterministic assemblage is constructed by any factors that alter
the production and degradation rates of molecules, persistent
low oxidation states in anaerobic environments, or ongoing
degradation. Conversely, dispersal patterns andmass effects govern
metabolomes through stochastic assemblage, akin to a lack of
temporal or spatial variation where unstructured compositional
deviations occur in metabolite assemblages. Furthermore, pairwise
metabolome assemblage that were not governed by deterministic
processes (|βNTI| < +2) can be further classified as the stochastic
processes drift, dispersal limitation and drift, or homogenizing
dispersal by calculating Bray-Curtis based Raup-Crick indices
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(RCBray) as developed by Stegen et al. (2013). The RCBray extends
the Raup-Crick dissimilarity metric to include relative abundance
of each metabolite as opposed to presence/absence by adding
Bray-Curtis dissimilarities to quantify compositional turnover
during each iteration (permutations = 999) when constructing
null models. Probabilistically assembled metabolomes can then
be interpreted based on an individual metabolite’s presence and
its relative abundance across each sample, where the standard
deviation between Bray-Curtis values and the null distribution may
range between−1 and+1. Here RCBray values>+0.95 or<−0.95
are considered significant departures from the expected degree
of metabolite turnover related to ecological drift, where |RCBray|
values > +0.95 indicates drift acting alone. Conversely, RCBray

values < −0.95 indicate homogenizing dispersal (high dispersal
rates have a larger impact than selective pressures) and RCBray

values>+0.95 indicates combined pressures of dispersal limitation
and drift (Doherty et al., 2020).

Results

Delineation of watershed-wide
characteristics

Previous research on the WHONDRS dataset by Garayburu-
Caruso et al. (2020) calculated descriptive metrics pertaining to
the metabolome (Supplementary Table 1), finding the surface water
metabolome has increased unsaturation, aromaticity, oxidation,
and variation when compared to the sediment, and that
sediment metabolomes are more spatially variable. To analyze
the DOM compositional data, we visualized and characterized
the assigned molecular formulas using van Krevelen plots
(Supplementary Figure 1). When coupled by stream order ranks,
the H:C and O:C atomic ratios revealed overlap between surface
water and sediment samples (Supplementary Figure 1). The van
Krevelen plots reveal no unique molecular formula pattern with
stream order, although in low order streams we observed a
wider distribution of formulae in sediment samples while having
more peaks observed (3,953) when compared to the surface
water (3,653). In surface water samples, Kendrick mass defect
(KMD), Kendrick Mass, double bond equivalent (DBE), NO−

3 , and
NO−

2 were strongly positively correlated (rho > 0.9, p-value <

0.05). In contrast, strong negative correlations (rho < −0.9, p-
value < 0.05) appeared among variables such as nominal oxidation
state carbon (NOSC) and Gibbs Free Energy (GFE), as GFE is
calculated from NOSC (Supplementary Figure 2A). In the case of
sediment samples, strong positive correlations (rho > 0.9) between
aromaticity (AI) and NOSC were found, meanwhile negative
correlations (rho > −0.9) similar to the surface water samples
were found between aromaticity index (AI mod), NOSC, and GFE
(Supplementary Figure 2B).

Patterns of peak diversity between surface water and sediment
sample types were significant when compared to all available
metadata [Bray-Curtis PERMANOVA p-values = 0.001 (SO2−

4 ,
stream order, NO−

3 , TN, NPOC, pH, water temperature, DO),
0.002 (F−), and 0.03 (Cl−); Supplementary Figure 3], reflecting
the biogeochemical complexity between abiotic factors and
metabolome structure. Additionally, the PBT metabolome

structure was also significant to all abiotic variables (Bray-Curtis
PERMANOVA p-values = 0.001 (stream order, NPOC, NO−

3 , TN,
pH, water temperature), 0.002 (SO2−

4 ), and 0.04 (general grain size,
rate of respiration, DO); Supplementary Figure 3), save Cl− (p-
value= 0.128). Comparatively, the PBT dataset was less significant
overall with lower F-statistics (1.4–9.7) when compared to the
original FT-ICR-MS data (2.0–13.6; Supplementary Figure 3).

Biogeochemical parameters link to stream
characteristics

To assess abiotic factors contributing to varying sediment
respiration rates, we explored the influence of stream
characteristics, stream order, algal mat coverage, and sediment
type. Across low to mid-order streams, respiration rates increased
(stream order 1 average: 6.75mg L−1 h−1 to stream order 5 average:
21.6mg L−1 h−1), but were lowest in large order streams (stream
orders 6 through 8 average: 4.53mg L−1 h−1), suggesting that
stream order plays an important, but non-linear role in watershed
respiration dynamics. Mid-stream orders (3–5) and stream order
7 were significantly different when compared to all other stream
orders, likely due to higher respiration rates in mid-stream orders,
and low rates in high stream orders (Kruskal-Wallis, p-value
< 0.001; Figure 1A). We observed that higher algal mat and
macrophyte coverage are linked to significantly higher respiration
rates (Kruskal-Wallis p-value = 0.018; Kruskal-Wallis p-value =

0.01; Figure 1B). Likewise, we found that stream bed sediment
particle size was also a significant factor influencing respiration
rates (Kruskal-Wallis p-value < 0.001; Figure 1C), which increased
as particle sizes decreased (i.e., lowest for gravel and highest
for silt).

We calculated measurement models of exogenous and
endogenous latent variables to show the relationships between
abiotic and biotic factors across all watersheds sampled. These
models were separated into exogeneous abiotic latent variables
(“Abiotic”) and endogenous biogeochemical latent variables
(“Water Biogeochemistry” and “Sediment Biogeochemistry”).
The exogenous model, “Abiotic,” represents measured abiotic
parameters across all sampled watersheds (df = 6, CFI = 1, TLI =
1, RMSEA = 0). This model showed significant variance between
the latent variable and stream order, surface water temperature,
and pH (standardized variance = 0.51, 0.61, and 0.3, respectively;
Supplementary Figure 4A), where significant covariance occurred
between pH and DO (standardized variance = 0.32). The
first endogenous model, “Water Biogeochemistry” represents
potentially biogeochemically active molecules across all sampled
watersheds (df = 6, CFI = 1, TLI = 1, RMSEA = 0). We found
significant variance between the latent variable and all endogenous
indicators (standardized variance = 0.22–0.94), and covariance
between endogenous indicators NPOC and SO2−

4 yielded a
significant variance of 0.25 (Supplementary Figure 4B). Finally, the
second exogenous model “Sediment Biogeochemistry” represents
sediment biogeochemistry modeled with abiotic variables and
respiration rates (df = 9, CFI = 0.99, TLI = 0.97, RMSEA = 0.05).
Significant variance was found only with WEOC concentrations
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FIGURE 1

Respiration rates of sediment samples ordered by (A) stream order, (B) algal mat and macrophyte coverage, and (C) sediment type. Wilcoxon pairwise

comparison significance denoted by red asterisks.

FIGURE 2

Structural regression model of latent variables “Abiotic” (abiotic lotic

variables), “Sed” (sediment biogeochemistry) and “Water” (surface

water biogeochemistry) respectively. Values represent significant

(p-value < 0.05) variance (single sided arrow) or covariance (double

sided arrow). Rectangles represent indicator variables while circles

represent latent variables. Dashed lines represent fixed loadings.

Resp., microbial respiration rate; Temp., surface water temperature;

DO, dissolved oxygen; St.Or., stream order; sulf., SO2−
4 ; TN, total N;

DOC, dissolved organic carbon; WEOC, water-extractable organic

carbon. The asterisks *** indicates the significance levels of given

[co]variance within the model.

(0.19) while all other covariances were significant (values ranging
from 0.34 to 0.53; Supplementary Figure 4C).

Using the measurement models, we resolved the three latent
variables into a single structural regression which revealed
relationships between ecosystem parameters and biogeochemical
activity (df = 11, RMSEA = 0.027, CFI = 0.993, and TLI = 0.982;
Figure 2). Several significant variances were found, specifically
between the latent variable “Water” and TN (standardized variance
= 0.072, p-value = 0.05) and DOC (standardized variance =

0.260, p-value = 0.003). The latent variable “Sed” significantly
varied between respiration rates (standardized variance = 0.637,

p-value = 0.008), yet the latent variable “Abiotic” showed
no significant variance between its defined x-side indicators.
Significant covariance occurred between surface water temperature
and sediment WEOC (standardized variance = −0.169, p-value
< 0.001), SO2−

4 and DOC (standardized variance = 0.269, p-
value = 0.03), DO and respiration rate (standardized variance
= 0.223, p-value < 0.001), and DO and DOC (standardized
variance = −0.577, p-value < 0.001). Negative standardized
variance represents an inverse relationship between the exogenous
and endogenous variables (e.g., an increase in surface water
temperature will likely result in a decrease of sediment WEOC).

PBT shaped by stream order and DOC

Patterns of PBT diversity were visualized using NMDS plots of
Bray-Curtis dissimilarity (Figure 3). Sediment PBT are significantly
different from surface water PBT (PERMANOVA p-value <

0.001), yet there are a few surface water samples grouped with
the sediment (with differences in DOC concentrations likely
driving the observed difference between sediment and surface
water samples; Figure 3A; PERMANOVA p-value < 0.001), as
sediment samples contain higherWEOC concentrations on average
(sediment = 14.7 ± 8.7mg L−1, surface water = 2.8 ± 3.7mg
L−1). Likewise, stream order plays a significant role in the sample
dissimilarity (PERMANOVA p-value< 0.001). Conversely, latitude
and longitude are not significant in driving PBT dissimilarities
(PERMANOVA p-value= 0.74, 0.35, respectively), and no variables
measured in this study account for the observed spread of surface
water samples (Figure 3A).

In an independent NMDS analysis of surface water samples
and relevant metadata, we found that stream order significantly
influenced the compound dissimilarities observed between
all surface water samples (PERMANOVA p-value < 0.001;
Figure 3B). Temperature, DO, pH, DOC, SO2−

4 , NO−
2 , NO

−
3 , F

−,
and Cl− were all insignificant environmental vectors (NMDS
vector p-value range from 0.14 to 0.77) yet retain explanatory
and suggestive significance for emergent dissimilarity patterns
(Figure 3B), and are significant in PERMANOVA geometric
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FIGURE 3

Non-metric multidimensional scaling plots (NMDS) based on Bray-Curtis dissimilarities between putative biogeochemical transformations across (A)

all sediment (circle) and surface water (diamond) sample (stress = 0.04), (B) surface water samples only (stress = 0.03), and (C) sediment sample only

(stress = 0.05). All plots are colored on the basis of stream order (1–9).

partitioning of variation (Supplementary Figure 3). Additionally,
when assessing the sediment samples and relevant metadata only,
we found that WEOC concentrations (NMDS vector p-value <

0.001) and sediment respiration rates (NMDS vector p-value =

0.05) significantly contribute to the dissimilarity across samples
(Figure 3C). Sediment PBT composition differs across stream
order and reported sediment type (PERMANOVA p-value <

0.001), while neither latitude (PERMANOVA p-value = 0.5)
nor longitude (PERMANOVA p-value = 0.1) were significant in
explaining the distribution of dissimilarities. Outliers are likely
influenced by differences in DOC concentrations (NMDS vector
p-value < 0.001). The PBT molecule explaining the highest degrees
of dissimilarity between sediment and surface water was C35H56

(tetraprenyl-beta-curcumene), a triterpene (SIMPER p-value =

0.019, cumulative contribution to overall dissimilarity= 0.2%).
In order to assess the relationships between PBT and

stream order ranks, samples were grouped by stream order
in additional NMDS analyses (Supplementary Figures 5A–C).
Patterns in dissimilarity were similar across all groups, being
that DOC concentrations were a significant environmental vector
in every case (p-value < 0.001) and sample types remained a
determining factor in sample dispersion (PERMANOVA p-value
< 0.001). As expected, stream order was not significant in any
grouping (0.6 < p-value < 0.12).

Spatial drivers of riverine metabolome
assemblage

Using Mantel tests based on Spearman’s Correlation, we sought
to understand to what extent the environment is “selecting” for
specific PBT assemblage across all watersheds. Across both surface
water and sediment samples, DOC concentrations (Mantel Statistic
R = 0.15, p-value < 0.001, Mantel Statistic R = 0.08, p-value =

0.02, respectively) and geographic separation as Haversine distance
(Mantel Statistic R = 0.16, p-value < 0.001, Mantel Statistic R

= 0.14, p-value < 0.001, respectively) both had a significant
relationship with the PBT assemblage. However, in sediment PBT
assemblages, respiration rates and DO concentrations were not
significantly correlated (R=−0.01, p-value= 0.6; R= 0.04, p-value
= 0.19, respectively). Likewise, cumulative environmental factors
(TN, Cl−, SO2−

4 , NO−
3 , NO

−
2 , and F−) had no relationship with

surface water PBT (Mantel Statistic R = −0.03, p-value = 0.7).
These correlations support a connection between environmental
variables and PBT assembly, which are further dissected using null
modeling to understand the relative influences of deterministic
versus stochastic influences.

Molecular characteristics dendrogram (MCD) of the FT-
ICR-MS peaks associated with protein-class compounds revealed
surface water and sediment assemblies across stream orders
1 and 2 all exhibited mean βNTI average values of 2.7 in
surface water and 3.8 in sediment samples (Figure 4A). This
indicates that deterministic processes govern these protein-
class compound assemblages. Heterogeneous selection dominated
across surface water (50.4% of comparisons) and sediment
(60.2% of comparisons) samples in low-order streams. Surface
water protein-class compound assemblages show a secondary
influence of stochastic forces (∼22.7% of all comparisons), while
the sediment assemblage had a lower influence (∼38.7% of
comparisons). Homogenizing selection was in 26.9% in the
surface water assemblages and was consistently low in sediment
assemblages (1.1%; Figure 4A). Multiple linear regression with
low stream order βNTI values correlated significantly with both
WEOC (standardized variance = 0.023, p-value < 0.001) and
respiration rates (standardized variance = −0.006, p-value = 0.01;
Supplementary Figure 6C).

Protein-class compounds in mid-order streams (3, 4, and 5) are
likely assembled by stochastic patterns (surface water and sediment
mean βNTI values were 0.2 and −0.3, respectively). In 89.4–92.7%
of all comparisons in the surface water and sediment these were
stochastic, with minimal secondary influences by homogeneous
selection (surface water = 4.7%, sediment = 7.5%) and tertiary
influences by heterogeneous selection (surface water = 3.9%,
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FIGURE 4

β-Nearest Taxon Index (βNTI) and percent contribution of ecological processes of protein-class compounds sans lipids in sediment and surface

water samples of stream orders 1 and 2 (A), 3–5 (B) and 6–9 (C); note the di�erence in y-axis scales. Dashed red lines indicate βNTI values > +2

(deterministic, heterogeneous assemblage) and < −2 (deterministic, homogeneous assemblage). |βNTI| values < +2 represent stochastic

assemblage. Barcharts below represent the percent contribution of a given assemblage process to each sample.

sediment = 3.7%; Figure 4B). Surface water and sediment protein-
class compound assemblages in high order streams (6, 7, 8, and 9)
exhibited very strongly stochastic patterns (βNTI values averaging
0.4 in surface water and 0.1 in sediment samples; Figure 4C), where
heterogeneous selection of protein class compounds constitute
10.9% in surface water and 10.5% in sediment in high order
streams. To a lesser extent, homogeneous selection is responsible
for <5% of comparisons in surface water protein-class compound
assemblages. Stochastic forces contributed to 84.6–86.7% of
compound selection (Figure 4C). High stream order βNTI values
compared to respiration showed a significant inverse relationship
(standardized variance=−0.094, p-value= 0.003), while βNTI and
WEOC concentrations were not significantly related (standardized
variance = 0.006, p-value = 0.7; Supplementary Figure 6D). The
WEOC concentrations and respiration rates shared a significant
covariance within these models (standardized variance = 0.96,
p-value < 0.001). When compared to DOC and DO, βNTI
significantly and inversely correlated with DO concentrations
(standardized variance = −0.96, p-value < 0.001), while it was
not significantly related with DOC (standardized variance= 0.006,
p-value = 0.7; Supplementary Figure 6D). The RCBray analyses
of the stochastic assemblages revealed that drift (|RCBray | <

+0.95) governed mid order (average surface water=−0.2, average
sediment = −0.3) and high order (average surface water = −0.1,
average sediment=−0.2) streams.

Conversely, protein- and lipid-class compounds revealed
deterministic assemblages across low (surface water = 5.2,
sediment = 5.9) and high (surface water = 8.7, sediment =

11.0) stream orders (Supplementary Figures 6A, B). Heterogeneous
selection comprised 57–63% of comparisons in low stream
order surface water, and 72–76% in sediments. Similarly,
high stream orders had very strongly heterogeneous selection

(>80%) in the surface water and sediment. Stochastic and
homogeneous selection were both limited in all comparisons
(≤27%; Supplementary Figure 6).

Discussion

DOM heterogeneity is shaped by local
ecological patterns

Inland water ecosystems significantly contribute to the global
carbon cycle by exporting, transforming, and sequestering carbon
(Butman et al., 2016), with respiration contributing notably to
carbon emissions (Hotchkiss et al., 2015). In particular, low
order streams with relatively short water residence time shunt
labile OM to higher order streams along the hydrologic network
(Vannote et al., 1980; Raymond et al., 2016). When compared
to higher (6–9) stream orders, we found that low order streams
(1–5) generally have higher and more variable respiration rates
(average range from 4.85 to 21.6mg L−1 h−1). The source of this
variability likely relates to several factors including climate, land
use, anthropogenic influence, residence time, longitudinal slope,
watershed area, and river discharge. Latitude and longitude did
not significantly control PBT compositions, yet when assessing the
original molecular compounds (without putative transformations),
mid-latitude rivers (30◦N−50◦N) showed a broader variation of
hydrogenation, perhaps due to pyrogenic carbon that has been
oxidized and became more soluble (Kim et al., 2004).

The obtained results did not show a clear pattern in OM
molecular formulae, despite variation in the catchments across all
stream orders (Supplementary Figure 1). A possible explanation
is that the samples were collected once with high heterogeneity,
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potentially explained by factors such as the pulse-shunt concept, in
which terrestrial DOM is exported downstream. Furthermore, the
DOM heterogeneity observed in low-order streams may be linked
to differences in residence times of DOM or sediment particle size.
However, higher respiration rates are generally found in systems
with greater primary production which likely provide labile sources
of autochthonous OM to the sediments (Ellis et al., 2012; Ward
et al., 2016, 2018), an observation consistent with higher algal mat
coverage in this study. Interestingly, the main identified difference
in surface water versus sediment PBT is differential triterpene
abundances, which serve as steroid precursors and are produced by
macrophytes and eukaryotic microorganisms actively performing
primary metabolism. This relationship likely reflects higher activity
by algae and macrophytes in the surface water compared to
the sediment (Ghosh, 2017; Santana-Molina et al., 2020). This
finding is further supported by the observed relationship between
respiration rates, WEOC concentrations, and surface water pH,
with an increase in available DOM being significantly linked to
circumneutral pH (6.7) and increased sediment respiration rates.
We therefore hypothesize that this observed correlation is linked
to a higher abundance of autotrophs due to the availability of solar
radiation (Tanabe et al., 2019; Savoy and Harvey, 2021), which may
also contribute to photodegradation of DOM and link abiotic and
biotic processing.

Water biogeochemistry of river corridors in this study was
driven primarily by DOC given the general role of DOC in redox
reactions as a nutrient and micronutrient vector, and as a source
of energy for microbial communities (Figure 2). Though nutrients
such as TN were important in vegetation-rich climates in shaping
water biogeochemistry, the main driver was DOC and its links to
SO2−

4 and DO. This finding supports the relationships between
DOC (electron source) and electron acceptors (SO2−

4 and DO). We
observed that DOC had an inverse relationship with DO, implying
rates of DOC consumption were increased with DO, while rates
decreased with SO2−

4 as the electron acceptor. In contrast to the
river water, sediment biogeochemistry showed that DO negatively
impacts respiration rates, suggesting the sediments are primarily
anaerobic. Therefore, DOC is likely processed within the sediments
at varying rates depending on DO availability, shaping the DOM
pool through heterogeneous deterministic selection. Additionally,
the sediment WEOC concentrations were inversely related to
surface water temperature, suggesting a link between climate and
OM concentrations, likely originating from allochthonous inputs
(e.g., macrophytes). Thus, the contribution of OM as a driver of
biogeochemical patterns varies depending on the environment.

Putative biogeochemical transformations
across watersheds

Stream order was a key driver of PBT composition in both
the surface water and sediment. Terrestrial linkage to watershed
functionality is apparent in low stream orders as lateral inputs
of DOM from terrigenous sources affect the structure and
function of aquatic ecosystems (Buffam et al., 2021; Estévez et al.,
2021). Additionally, DO correlated with stream order (Diamond
et al., 2021), creating a dynamic system of environmental drivers

of respiration rates and PBT (Figure 4). However, despite the
explanatory power of stream order, there are no overarching
characteristics across all watersheds to fully explain the drivers of
the PBT composition.

Surface water biogeochemistry
The separation of surface water and sediment DOC

compositions has been observed previously (Garayburu-Caruso
et al., 2020), while we in this study also found significant differences
in the PBT of surface water samples (when visualized using NMDS
dimensional reduction) and a clear coupling of the biological
processes on surface water PBT and DOC, SO2−

4 , NO−
3 , and NO−

2 .
As expected, all these biologically active data are inversely related
to DO and pH, evidenced by opposite-facing vectors (Figure 3A).
This relationship is likely described by microbial thermodynamics
as SO2−

4 and NO−
3 , are alternative electron acceptors in the absence

of DO. Surface water PBT profiles are related to DO and pH
variations (Figure 3), implying biological processing occurring in
toxic conditions, yielding more available energy and occurring at
an increased rate compared to anoxic conditions (Bethke et al.,
2011). The majority of surface water samples had DO levels
(average 7.3mg L−1) above hypoxic levels (<2–3mg L−1) and
likely the coupling of DOC and alternative electron acceptors do
not have a direct effect on the observed PBT, which supports our
hypothesis that oxygen is the primary electron acceptor in the
water column. Conversely, in samples with lower DO (<5mg
L−1) DOC was partially processed using alternative metabolisms
(e.g., NO−

3 reduction; Roden and Jin, 2011), leaving a diversity
of metabolites available to move downstream to higher order
ecosystems (Vannote et al., 1980).

The identified relationships between surface water PBT and
DO, DOC, and alternative electron acceptors hints at a disconnect
between DOC and microbial access likely due to spatial isolation
(Bailey et al., 2017). For example, particle-associated microbes
may have greater access to DOC suspended in the water column
compared to free-living microbes, which rely on hydrologic flow
and chemotaxis to access substrate (Liu et al., 2020). Rivers with
greater suspended sediment loads may therefore reveal closer
correlations between microbial processing (high turnover of PBT)
and increased DOC concentrations (Crump et al., 1998; Kieft et al.,
2020). Similarly, studies in the lower Amazon river revealed that
surface water respiration rates increased with river flow velocity,
likely due to interactions among particle-bound communities and
dissolved substrates (Ward et al., 2018, 2019). A lack of access
to DOC would be reflected in the PBT assemblage as shaped by
stochastic forces (Danczak et al., 2020), and are explored in detail
in the following sections.

Anions associated with mineral weathering likely influenced
surface water PBT composition. In particular, F− concentrations
were related to high levels of PBT in several surface water samples.
These samples originated from locations in Western (Colorado)
and Eastern (Massachusetts to Alabama, excluding Florida) North
America and approximately overlay with igneous bedrock, which
is a known source of F− (Berger et al., 2016; The North America
Tapestry of Time and Terrain, 2022). There are no clear patterns of
F− concentrations in these samples (0.03–0.19mg L−1), yet all these
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samples were characterized by gravel/cobble (>2mm) sediments
which may speak to the balance tradeoffs between residence time
in the hyporheic zone, available DO, and increased activity with
particle associated microbial assemblages. It is likely that stream
beds with coarser particles have increased hyporheic flux and lower
mean residence time (Boano et al., 2014), both resulting from
the higher hydraulic conductivity of the coarser particles relative
to finer, silty material. Compound assemblages might then be
more deterministic as water interacts with the diverse particle-
bound assemblage and the shorter residence time, preventing the
water from becoming hypoxic or anoxic. However, when the βNTI
values of molecular characteristics of protein-class compounds
were compared by grain size, there was no significant difference
in the mean pairwise distances (Supplementary Figure 7). These
results illustrate the complexity of lotic systems and that there is
no single driver, rather the result of the balance of fluxes, residence
times, and reaction rates among all interacting components.

Increasing Cl− concentrations may be indicative of
groundwater flow and solute flushing into the water column
as concentration-discharge relationships are altered (Leibundgut
and Seibert, 2011; Winnick et al., 2017), yet as these samples are
discrete, Cl− more generally reflects ultramafic rock weathering,
proximity to brackish or saline environments or the anthropogenic
influences, due to residual road salt (Kuroda and Sandell, 1953;
Graedel and Keene, 1996; Corsi et al., 2015; Kupka et al., 2021).
Interestingly, high Cl− concentrations (295mg L−1 to 3964mg
L−1) in brackish samples near Chesapeake Bay and the Everglades,
USA did not exhibit PBT compositions correlated to Cl−, rather
samples low in Cl− (0.2mg L−1 to 3.3mg L−1) were correlated.
However, in this study the PBT of only a handful of samples low in
Cl− correlated directly with measured concentrations, suggesting
there are additional environmental factors which have a larger
impact on shaping riverine PBT, such as climate, evaporation, and
residence times.

Sediment biogeochemistry
Regardless of seasonal hyporheic flow and groundwater

discharge, permanently saturated sediments are continuously
influenced by solute flushing and hyporheic mixing. During
upwelling events—as seen during low flow events—hyporheic
zones oxygen availability is limited, driving the chemical and
microbial community toward a more reduced environment which
likely has a major influence on the carbon processing rate and
products (Danczak et al., 2016; Saup et al., 2019; Buser-Young et al.,
2021). Sediment PBT were not strongly correlated to surface water
DO concentrations or the sediment respiration rates, suggesting
groundwater is dominating leading to a reduced environment
(Nelson et al., 2019). In addition, it is important to note that
sediment respiration rates do not necessarily only represent biotic
processes, but abiotic mineral-associated redox processes also
consume oxygen, potentially confounding relationships between
microorganisms and DOC. To that end, the high levels of aerobic
respiration measured in vitro suggest the sediment microbiome are
stimulated by mixing events, such as hyporheic upwelling (low-
flow, anoxic) and downwelling (high-flow, oxic) as also found
previously (De Falco et al., 2018). Our results suggest that microbial
respiration rates, and resultant PBT composition, are linked to

downwelling events and increasing DO concentrations (Reeder
et al., 2018). The observed disconnect in sediment PBT and
respiration rates suggests a strong biogeochemical connection with
riverine oxygen patterns across all stream orders and serves to
highlight the importance of future sampling efforts to understand
biogeochemical transformations. Similarly, sediment grain size was
significantly correlated to sediment PBT composition. Grain size
and hyporheic exchange are intimately connected as porosity is
a key control on the microbial access to DOC and other solutes
and reflects subsurface flow regimes (Li et al., 2020). Changes
in DOC and anions through surface-subsurface exchange drive
and link the sediment biogeochemical transformations to surface
water activities. Given these results, we hypothesize that these
patterns of DO, DOC, and PBT exist across large scales, likely
demonstrating the importance of hyporheic exchange and its
link to carbon cycling. These findings highlight the importance
of local reach characteristics (macrophyte coverage, sediment
type, algal mat presence, etc.) in determining biogeochemical
transformations. Future studies should consider anthropogenic
climatic impacts on transport and processing of DOM in light
of major hydrologic events (Lu and Liu, 2019), peak glacial melt
(Buser-Young et al., 2022), and other extreme weather events
(Zhang et al., 2016; Olmedo et al., 2022).

Ecological control of riverine protein
assemblages

Our study revealed that the environmental protein-
class compound assemblage was reliant upon stream order
classifications and associated ecological relationships (DO, DOC,
etc.). By measuring trait-like relational information shared
between protein-class compounds using molecular characteristics
(Danczak et al., 2020). Essentially, protein-class compounds were
organized into a molecular characteristics dendrogram (MCD)
which integrated elemental composition and derived statistics,
including AI, DBE, and NOSC, to resolve potential relationships
which are independent of the PBT previously discussed. Protein
class compounds were chosen for preliminary analysis due to
their link to biotic processes and to allow exploration of broad
patterns of amino acid-like transformation across surface water
and sediment (Fudyma et al., 2021). Briefly, as determined by the
MCD analyses, the degree of protein-class compound assemblage
can be linked to microbial processes and local environmental
factors to determine underlying biogeochemistry to curate
understanding and generate hypotheses. Heterogeneous selection
of protein-class compounds likely represents biochemically active
metabolites and will therefore exhibit deterministic assemblage
evidenced by high positive values in null modeling techniques.
However, the nuances of heterogeneous selection, homogeneous
selection, and stochastic processes revealed by protein-class
compound analyses strengthens our understanding of the
biogeochemical activity. Here we conducted βNTI analyses to
determine surface water and sediment protein-class assemblage
characteristics across low (1, 2), mid (3–5), and high stream
orders (6–9).

Using metacommunity ecology approaches (βNTI, mantel
tests) we found that low stream orders primarily exhibit
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FIGURE 5

Conceptual overview of the proposed organic matter transformations in WHONDRS lotic environments (18◦N−68◦N). The PBT is an abbreviation of

putative biogeochemical transformations.

deterministic protein-class compound assemblages in both surface
water and sediment samples. Deterministic assemblage is most
likely indicative of biochemical transformations and potentially
active metabolites (Danczak et al., 2020). However, low stream
order is likely governed by high rates of advective hydrologic
transport or vector movements further driving stochasticity
(Figure 5) due to significant mixing and subsequent randomization
of compound assemblage. Low stream orders such as headwater
streams have highly heterogeneous DOM compositions, mirroring
the variability in land cover, increased terrigenous input, and
fewer biogeochemical transformations (Garcia et al., 2015; Estévez
et al., 2021). Riverine DOM is a mixture of autochthonous and
allochthonous OM (Fudyma et al., 2021) and previous research
has found that DOM composition is remarkably similar across
catchments, reflecting most closely the terrestrial environment
(Jaffé et al., 2012; Hawkes et al., 2018). In this study, low
stream order protein-class compounds were primarily governed
by deterministic selection where other processes have lower
influence on assemblage, while surface water samples retain
apparent advective impacts but to a lesser extent than when
compared to high stream orders. High stream order compound
assemblage likely becomes more homogeneous in their structural
diversity across the surface water and sediment, which is linked
to constant microbial degradation and longer residence time.
Across high stream orders, stochasticity is higher in surface water
and sediment environments as increased hydrologic transport
homogenizes the compound assemblage. Similarly, free-living and
particle-associated microorganisms in the water column have
variable access to DOM (Chen et al., 2021) due to selective
pressures (i.e., photodegradation) which further contribute to
higher homogeneous and stochastic selection of the protein-class
compounds in the water column. Additionally, persistence of
anaerobic environments within sediments drives preferential
consumption of labile compounds, likely leading to protein-class

assemblages that are undominated by, or reflecting of, no singular
assemblage process. Under these circumstances, selection and
dispersal of compounds is likely weak, hinting at a relatively
heterogeneous protein-class pool in surface water and sediment.
Summarily, a lack of temporally or spatially consistent factors
drives metabolite drift and low exchange rates. Single time point
and discrete sampling campaigns provide critical information on
a snapshot of the metabolome, yet more in depth or continuous
sampling would further identify consistent factors of variation
that drive metabolite assemblages on short and long terms. High
stream orders were more generally multi-channeled or cover
a large floodplain which has a great effect on DOM export
and biogeochemical activity shaped by peak flows (Lynch et al.,
2019).

We found that stream order significantly influences the PBT
dissimilarities observed between surface water and sediment
samples when protein-class compounds are expanded to include
lipids, a likely proxy for microbial biomass (Bailey et al., 2017).
When scrutinizing the molecular character of the protein-class
compounds, there was a general similarity across stream orders and
ecological assemblage processes. As found by Garayburu-Caruso
et al. (2020), the distinct shift from stochastic to deterministic
processes when proteins and lipids are analyzed (as opposed
to just proteins) could represent increased microbial biomass
and their relative influence on metabolome assemblage. These
contrasting relationships suggest that stream orders have different
PBT compositions yet retain similar patterns of biogeochemical
activity. For example, low stream orders may be dominated by
terrestrial inputs and macrophyte coverage, while high stream
orders contain more autochthonous primary production and
residual DOM from upstream, shaping a PBT composition
reflecting unique, regional compounds. Despite the differences in
PBT compositions, both stream order locations are undergoing
rapid biogeochemical activity, evidenced by deterministic assembly
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processes. This pattern has also been observed previously (Danczak
et al., 2021), an occurrence termed “thermodynamic redundancy,”
and we expand it here to encompass the WHONDRS watersheds.

Overall our results offer a glimpse into biochemical assemblage
of environmental metabolomes and clearly demonstrate a
need to further assess the entire WHONDRS environmental
metabolomes (e.g., using transformation dendrograms) for a
complete biogeochemical picture. Despite these limitations, the
MCD assemblage and PBT composition results presented here
are consistent with previous research regarding surface water
and sediment biotic and abiotic transformations (Stegen et al.,
2022). Regardless of stream order, seasonal variation likely has a
predominant effect on the environmental metabolome assemblage
(Guarch-Ribot and Butturini, 2016; Coble et al., 2019), evidenced
by similar assemblage patterns across low and high stream orders.
Given our results above regarding the correlations between PBT
assemblage, DO, and sediment grain size, we hypothesize that a
strong, variable, and seasonal selection such as hyporheic flushing
events lead to a divergence in protein-class compound assemblage
in the sediment (and to a lesser extent in the surface water). Future
research should therefore encompass samples representing spring
melt or other such downwelling events, as we predict that surface
water and sediment compositions would be less deterministically
structured as advective forces increase and solutes are mixed.
Additional analyses may address the contributing environmental
factors to stochastic assemblage in riverine water columns to
determine the degree to which drift, dispersal limitation, and
homogenizing dispersal drive assemblage.

Conclusion

In order to understand putative biogeochemical
transformations (PBT) across 97 watersheds sampled by the
WHONDRS consortium, we explored the relationships between
DOC concentrations, OM pools (determined using FT-ICR-MS),
sediment respiration rates, and molecular diversity patterns linked
to biochemical transformations. We found a strong variation
of PBT across studied rivers, yet stream order was a main
driver of respiration rates and PBT compositional dissimilarity,
regardless of latitude. Despite high heterogeneity across watershed
characteristics, emergent patterns in PBT were largely linked
to stream order and, to a greater extent, sample type (surface
water versus sediment) where mid-stream orders and sediment
samples showcase the highest biochemical activity. Protein-
class molecular assemblage across stream orders was strongly
deterministic within sediments versus surface waters, where the
surface water assemblages secondarily reflect flow regimes, vertical
mixing, and terrestrial input through stochastic drivers. However,
addition of lipid-class compounds revealed that along stream order
assemblages became strongly stochastic, showing that no single
process is able to dominate the DOM assemblage of bioactive
molecules. We modeled relationships between DOM and electron
acceptors across stream orders and sample types, finding evidence
that sediments are generally limited in DO, driving anaerobic
processes and a heterogeneous DOM assemblage. Broad-scale
biogeochemical processes capable of shaping DOM assemblages—
and therefore carbon cycling—change in response to seasonal

processes and local landscape patterns. As lotic systems experience
shifting temperature regimes and altered DOM transport and
processing, improved understanding of DOM dynamics and
drivers in these systems is critical. In this regard this work provides
a foundation for further characterization of global watersheds and
how they participate in biogeochemical transformations.
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