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Abstract  

The conversion of natural gas into liquefied natural gas (LNG) requires substantial energy consumption. 

This study proposes a deterministic mathematical model to find the optimal operation conditions for an 

LNG plant to minimize the energy consumption for turbomachinery and the total thermal conductance of 

the heat exchangers. General Algebraic Modeling System (GAMS) linked to a Dynamic Link Library was 

used to calculate the thermodynamic properties of the working fluids. A derivative-based optimization 

algorithm is used. Results indicate that the novel optimization approach allows the satisfactory 

management of the model nonlinearities associated, for example, with the bilinear terms involved in the 

energy balances and the mathematical functions used to calculate the thermodynamic properties. A 

preprocessing phase for initializing process variables is developed to facilitate model convergence. In 

comparison to an optimal design reported in the literature, which was obtained by integrating a well-

established evolutionary optimization approach with the Aspen HYSYS simulator, the results indicated 

that the net electrical power could be reduced by up to 10% when the derivative-based optimization 

algorithm is used. The proposed deterministic approach, consisting of a mathematical model, an 

initialization phase, and an optimization algorithm, can help process engineers overcome the challenges 

associated with LNG process optimization. 

 

Keywords: refrigeration, LNG, optimization, General Algebraic Modeling System optimization, 

deterministic mathematical model 
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1. Introduction 

Natural gas (NG) serves as a crucial primary energy source on a global scale. The worldwide demand 

for liquefied natural gas (LNG) is rising because it is an efficient and market-flexible long-distance 

transportation (IEA, World Energy Outlook, 2022). Global gas demand is projected to increase by 140 

billion cubic meters from 2021 to 2025 (IEA, Gas Market Report, Q3-2022). During the last decades, 

many countries have made substantial progress in developing medium and small-scale LNG facilities 

(IGU, World LNG report 2023). 

LNG plants are characterized by high energy consumption, approximately 8% of the feed gas energy 

required for the liquefaction process. Dual nitrogen turbo-expanders and pre-cooled nitrogen expansion 

cycles are widely used among the various nitrogen expansion cycles. Numerous studies indicate that single 

mixed refrigerant (SMR) and nitrogen dual expander processes exhibit higher energy intensity (He et al., 

2018; Khan et al., 2017). Consequently, substantial research efforts are currently on optimizing the size 

and operational parameters of LNG plants, intending to enhance their overall energetic efficiency (Qyyum 

et al., 2018a; He et al., 2018; Khan et al., 2017). 

Complex computations to estimate highly nonlinear functions govern the thermodynamic properties 

of all working fluids involved in the LNG technology are addressed by many researchers (for example, 

Yoon et al., 2012). Furthermore, internal heat (cold) integration is a complex problem due to the internal 

loops of the working fluids within LNG refrigeration cycles. Similar problems are observed for improving 

the efficiency of other low-temperature or cryogenic processes is complicated without simultaneous 

optimization, e.g., the liquefaction of hydrogen (Incer-Valverde et al., 2023a), its regasification (Incer-

Valverde et al., 2023b), and liquid air energy storage (Incer-Valverde et al., 2021), etc. 

Numerous articles have reported optimizing LNG plants, focusing on combining evolutionary 

optimization algorithms with process simulators. For instance, the combination of genetic algorithms 

(GA) with ASPEN HYSYS has been discussed in many publications (Moein et al., 2015; Ding et al., 

2016; Kahn et al. 2016; Jin and Lim, 2019; Cao et al. 2016; Yin and Ju, 2020; Almeida-Trasvina and 

Smith, 2019; Hu et al. 2021); GA with ASPEN Plus in (Primabudi et al., 2019; Xu et al. 2013), and GA 

with UniSim by Kim et al. 2023; Shin et al. 2015; and Khan and Lee, 2013. A detailed review of these 

publications is the following. 

Moein et al. (2015) determined the optimal operational conditions for an SMR process to minimize 

energy consumption. The authors employed a genetic algorithm to minimize the total required work. 

Eleven variables were selected for the optimization procedure. In Yin and Lu (2020), the optimization of 
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two nitrogen expansion cycles within boil-off gas re-liquefaction systems, the parallel and serial nitrogen 

expansion processes, is reported. Applying a GA for optimization, the authors achieved a significant 

reduction in specific energy consumption, coefficient of performance (COP), and figure of merit for both 

processes compared to conventional approaches. Almeida-Trasvina and Smith (2019) report the 

investigation results of four small-scale SMR processes concerning energy efficiency improvement, 

incorporating structural changes to conventional PRICO and CryoMan processes. Aspen HYSYS was 

used for modeling and GA by MATLAB for optimization, achieving an 8.5% reduction in total energy 

demand compared to the commercial PRICO cycle. Also, by combining Aspen-HYSYS and MATLAB 

through Microsoft COM functionality, Khan et al. (2011), Khan et al. (2016) investigated a dual mixed 

refrigerant process of natural gas liquefaction consisting of two mixed refrigerant cycles: considering 

ethane and propane for the warm cycle, and nitrogen, methane, ethane, and propane for the cold cycle. A 

multi-objective optimization problem was investigated by simultaneously considering the specific 

compression energy and overall thermal conductance. The two objectives were encoded in Matlab to 

achieve the goal, and the state variables were taken from the Aspen HYSYS model through Microsoft 

Component Object Model (COM) functionality. By using the toolbox of "gamultiobj" in Matlab, the 

Pareto front for the two objective functions was generated. Other works that use the COM interface to 

communicate with Aspen-HYSYS with algebraic modeling languages for optimizing other processes are 

found in (Ruiz-Femenia et al. 2020, Forster et al. 2023). Primabudi et al. (2019) optimized the propane 

pre-cooled mixed refrigerant (C3MR) LNG process, adopting a multi-objective approach to exergy-based 

analysis to maximize exergy efficiency and minimize the total product cos. ASPEN Plus facilitated 

process simulation, while non-dominated sorting GA handled optimization. The total investment could be 

reduced by 18% at the expense of exergetic efficiency i.e., increasing the total exergy destruction by 38%. 

Khan and Lee (2013) applied the particle swarm optimization (PSO) method and UniSim to optimize the 

SMR process, successfully reducing compression energy. Their study demonstrated that the stochastic 

nature of PSO offers advantages in circumventing local optima and identifying feasible solutions. Also, 

the combination of PSO algorithms with Aspen HYSYS is reported by Qyyum et al. 2018b; Vikse et al. 

2020; Ghorbani et al. 2014 as well as PSO with HYSYS by Brodal et al. 2019. The combination of Aspen 

HYSYS with Tabu Search and Nelder-Mead downhill simplex methods has been applied by Aspelund et 

al. (2010). Ghorbani et al. (2014) used the PSO approach in conjunction with nonlinear programming 

(NLP) techniques to optimize the parameters of mixed refrigerant cycles. They concluded that PSO has 

more advantages compared to NLP optimization techniques. In addition, some alternative combinations, 
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such as coupling Aspen HYSYS with GA followed by Sequential Quadratic Programming, are suggested 

by Hwang et al. (2013). 

Evolutionary algorithms (EA) represent probabilistic procedures that depend on multiple control 

parameters for execution. While some control parameters are shared among various algorithms, each 

algorithm typically possesses its distinct set of control parameters (Lobo et al., 2007). For instance, GA 

incorporates the selection of operators and mutation probability, while particle swarm optimization relies 

on cognitive parameters and inertia weight. Should these parameters be inadequately configured, the 

algorithm may falter in finding a solution, resulting in a lack of model convergence. When an EA attains 

convergence, it often identifies favorable solutions; nevertheless, it cannot guarantee global optimality 

due to the inherent stochastic nature of its search method. 

Furthermore, EAs can be computationally demanding when applied to extensive problems. This is 

attributable to the necessity to evaluate numerous candidate solutions and implement genetic operators, as 

shown in (Chen et al., 2017; Mehrpooya et al. 2017; Allahyarzadeh-Bidgoli et al. 2018). EAs find 

preference when addressing problems with discontinuities in model constraints and/or objective functions 

or when derivatives pose challenges or are unreliable to compute due to noise (Audet and Hare 2017). 

Conversely, despite process simulators featuring modules for diverse process units and bypassing the need 

for mathematical model development, their combination with evolutionary optimization algorithms 

retains EA-associated. These challenges involve the need for substantial effort and expertise in 

establishing and troubleshooting effective communication protocols between different software systems. 

Simulations can become time-consuming depending on the scale of optimization problems (including the 

quantity of continuous and discrete variables and equations involved), and achieving convergence can be 

challenging. 

The process simulators have been applied as standalone (i.e., without coupling with external 

optimization algorithms) to study LNG optimization: Aspen PLUS (Zhang et al. 2020), Aspen HYSYS 

(Qyyum et al. 2018a; Castillo et al., 2013). In Zhang et al. (2020), the authors used the "Complex 

Algorithm" included within Aspen Plus to evaluate four LNG processes encompassing conventional 

nitrogen expansion and methane expansion processes, with or without ammonia absorption refrigeration 

machine for pre-cooling. The Complex Algorithm is a "black box" pattern search technique and operates 

independently of numerical derivatives, and it does not guarantee solution optimality. It may be helpful 

for simple problems without recycle loops or equality constraints (Javaloyes-Anton et al. 2022; Aspen 

Plus Technology, 2013). Castillo et al. (2013) analyzed different NG liquefaction process pre-cooling 
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cycles using Aspen HYSYS process simulation, highlighting the superior efficiency of the three-stage 

propane pre-cooling cycle among the evaluated cycles. By default, all the process simulators implement 

the sequential modular approach, which adopts the iteration-and-convergence solving strategy, where the 

process-units are solved sequentially by eliminating recycle streams (Kang et al. 2022). An advanced 

option supported by Aspen Plus is the Equation Oriented, permitting the inclusion of certain unsupported 

models where all the model equations are solved simultaneously via the perturbation layer method. The 

Perturbation layer method requires a correct definition of import and export variables for calculating 

derivatives involving the FORTRAN statements. However, implementing rigorous unsupported models 

within equation-oriented environments increases simulation complexity, introducing challenges in 

optimization related to variable initialization, potential convergence issues, and extended execution times 

(Aspen Plus Technology, 2013). In addition, all the process simulators suffer from limitations in the 

modeling and optimization of multistream heat exchangers (MHEXs), in particular, the lack of any 

rigorous checks to prevent temperature crossovers and, thus, the possibility that the process simulator 

could converge to an infeasible design (Vikse et al. 2020; Kamath et al. 2010; Watson et al. 2015). Thus, 

for large optimization problems, the use of equation-oriented modeling within process simulators is 

generally discouraged (Aspen Plus Technology, 2013). 

Furthermore, mathematical programming (MP) and deterministic optimization methods have been 

applied to analyze LNG processes (Matovu et al. 2022; Wang et al. 2012; Lee et al. 2022). In contrast to 

Evolutionary Algorithms, MP and deterministic optimization methods are considered more dependable 

for optimization tasks. These methods can ensure the optimality of the obtained solutions, whether local 

or global, by leveraging information regarding the gradients of the functions encompassed within mass, 

energy, and momentum balances to assess the optimal Karush-Kuhn-Tucker conditions (Edgar et al., 

2001). Also, mathematical programming has been applied to address the optimization of Organic Rankine 

Cycles (Yu et al., 2017; Santos-Rodriguez et al. 2017). Yu et al. (2017) investigated the optimal integration 

of an ORC into a background process. To this end, a superstructure-based representation of an ORC 

system embedding several candidate configurations – including turbine bleeding, regeneration, 

superheating – was implemented in GAMS. Furthermore, a two-stage strategy involving NLP and MILP 

models was proposed. In the first stage, the optimal configuration and operating conditions of the ORC 

with heat integration NLP was found by solving a NLP model. In the second stage, the heat exchanger 

network was found by solving an expanded MILP transshipment model. A case study from the literature 

was solved to illustrate the effectiveness of the proposed method. As a result, a better integration between 
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ORC with the process was obtained.  Santos-Rodriguez et al. (2017) combined advanced stochastic 

optimization techniques with first-principles modeling for simultaneous design of working fluids and 

ORC process under uncertainty. GAMS was used to implement the resulting mathematical models which 

incorporated detailed physical representations of the system. The proposed optimization approach was 

able to find novel and non-intuitive working-fluid mixtures while retaining close-to-optimal performance. 

Several stochastic optimization problems of different complexities and model sizes (up to 80000 variables) 

were successfully solved by using the local optimization solver CONOPT. The authors emphasized the 

efficiency of their approach in tackling intricate stochastic optimization problems using detailed models. 

Nevertheless, these methods are not very popular in designing and optimizing LNG refrigeration 

systems because refrigeration processes involve numerous thermodynamic equations that are challenging 

to resolve within optimization models. Several authors have developed surrogate models to overcome this 

as simplified representations of process-units and/or to replace the complex calculation of some 

thermodynamic properties. Surrogate models can be defined from different approaches: statistical 

regression (Kang et al. 2016), input-output analysis (Keshavarzian et al. 2016), data interpolation, and 

artificial neural networks (Kesgin et al. 2005). Surrogate models play an important role in creating a link 

between input data and outputs in cases where the precise relationship between them is unclear. Also, 

these models hold significant value in reducing the computational complexity involved in solving 

challenging optimization problems. Applications of surrogate models for the design of natural gas 

liquefaction processes are found in (Wang et al. 2012, Ali et al., 2018, Santos et al., 2021; Santos et al., 

2023). A Mixed-Integer Nonlinear Programming (MINLP) model solved with LINDO, a deterministic 

optimization algorithm, was applied to minimize the energy consumption of the C3MR cycle (Wang et al. 

2012). To simplify the original complexity of MINLP model, the authors used data regression from Aspen 

Plus to propose simplified thermodynamic functions (including linear, piecewise, or quadratic functions). 

The solution was obtained from the General Algebraic Modeling System (GAMS), a high-level 

mathematical programming and optimization modeling tool. A rigorous simulation in Aspen was 

conducted to validate the results. If the validation process did not align with the expected outcomes, 

troubleshooting was undertaken in the preceding stages until a validated solution was achieved. In Ali et 

al. (2018) and Santos et al. (2021), the authors explored the utilization of surrogate-assisted modeling and 

optimization techniques for Single Mixed Refrigerant (SMR) NG liquefaction processes. In Ali et al. 

(2018) a surrogate-assisted modeling approach was adopted in combination with EAs (GA or PSO) to 

identify optimal solutions. Santos et al. (2021) relied on surrogate models, replacing the computationally 
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intensive rigorous models of Aspen HYSYS, to minimize the shaft power requirement of the PRICO cycle. 

The authors highlighted the efficacy of surrogate models, specifically kriging, in capturing the essential 

behavior of first-principles simulations, making them viable alternatives when computational efficiency 

precedes precise results. Other developments of surrogate models have been applied for Pressure Swing 

Adsorption (PSA) processes (Li et al. 2020), for a sour water stripping plant (Quirante and Caballero, 

2016), for heat exchanger networks (Li et al. 2021), for a hybrid polycrystalline silicon production route 

(Ramírez-Márquez et al. 2020), for catalytic reforming and isomerization processes (Mencarelli et al. 

2020), amine-based CO2 capture unit (Henao and Maravelias, 2011), for batch distillation separations 

(Esche et al. 2022), for methanol plant and ammonia reactor series (Forster et al. 2023). Also, surrogate 

models have been effectively employed in optimizing gas turbine cycles (Kazemian and Gandjalikhan 

Nassab, 2020), natural gas combined cycles (Rúa et al., 2020; Riboldi et al. 2018), Organic Rankine Cycles 

(Anteportalatina-García and Martín 2022, Vilasboas et al., 2021, Pagali et al., 2019, Liu et al. 2021). 

Anteportalatina-García and Martin (2020) successfully introduced a hybrid heuristic-mathematical 

optimization methodology that simultaneously selects the optimal thermodynamic cycle (a dual pressure 

Organic Rankine Cycle or an Organic Flash Rankine Cycle), working fluids (benzene or toluene or 

R227ea), and optimal operating conditions (pressures, temperatures, compositions and flow-rates) for 

utilizing or reusing low-to-medium temperature waste industrial streams and geothermal brines. To this 

end, the authors proposed a methodology involving three main stages. In the first stage, a pre-screening 

task was considered to the aim of reducing the number of candidate fluids and cycles. In the second stage, 

machine learning was applied in order to obtain surrogate models for the calculation of enthalpy and 

entropy of the process streams, aiming to bypass the utilization of equations of state. In the third stage, an 

equation-based optimization approach based on a superstructure-based representation is applied for 

obtaining the optimal cycle configuration and operating conditions including the selection of the working 

fluid. Finally, an economic evaluation was carried out by incorporating the trade-off existing between 

investment and production costs. A case study focused on Spain was employed to present the advantages 

of the proposed methodology. Vilasboas et al. (2021) investigated Organic Rankine Cycles by proposing 

surrogate models to substitute the entire optimization model to expedite specific costs and efficiency 

predictions. This proposal differs from the common practice found in literature, which often involves 

replacing only a process unit or calculation of some thermodynamic properties. The usage of the proposed 

surrogate models significantly reduced the processing time, highlighting that the errors associated with 
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using surrogate models must be analyzed appropriately because they may be prohibitive in some 

applications.   

In contrast to the studies mentioned above, this research addresses the research gap identified in the 

literature for optimizing LNG processes. It accomplishes this by rigorously computing the thermodynamic 

properties of process streams within a fully equation-oriented optimization environment using the GAMS 

platform. To achieve the goal, mathematical models for expanders, compressors, and heat exchangers 

have been seamlessly integrated with a dynamic-link library (DLL) designed for thermodynamic property 

estimation based on the Peng-Robinson equation of state. This integration allows for a comprehensive 

representation of the entire liquefaction process. Another notable contribution is creating a detailed model 

describing the primary heat exchangers involved in the LNG process. To the best of the authors' 

knowledge, prior literature has not presented works with the same characteristics and approach as this 

study, efficiently optimizing the LNG liquefaction processes. This approach incorporates implementing a 

deterministic mathematical model and utilizing a derivative-based optimization algorithm complemented 

by extrinsic functions incorporated within DLLs for property estimation. 

This study comprises two case studies of significant complexity. In the first case study, pure nitrogen 

is considered as the refrigerant. In contrast, in the second case study, a mixture of nitrogen and methane 

and its composition are optimization variables to demonstrate the capability of the model to calculate 

thermodynamic properties. The primary distinction between pure and mixed refrigerants lies in the 

temperature profile shape during the gas-liquid phase transition, necessitating an effective solution 

strategy. 

The optimization results derived from the proposed model have been successfully validated through 

rigorous simulations conducted in a process simulator, Aspen HYSYS, ensuring the accuracy and 

reliability of the findings. The proposed optimization model and solution strategy offer comprehensive 

insights into optimizing the liquefaction process from both technical and numerical perspectives. 

Furthermore, this approach can be applied to any mixed refrigerant-based liquefaction process within the 

natural gas industry. 

 

2. Process description 

A nitrogen dual turbo-expander refrigeration process considered in this study is shown in Figure 1. 

The process begins with introducing purified natural gas (NG) feed into a series of multistream heat 
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exchangers (LNG-1, LNG-2, and LNG-3), gradually reducing its temperature. This cooling process occurs 

in three stages, reaching approximately -160°C following the third heat exchanger (LNG-3). 

The high-pressure liquefied natural gas emerging from LNG-3 undergoes a letdown process across 

VLV-1, resulting in vapor and liquid phases. The vapor-liquid separator (V-1) separates the low-pressure 

LNG product stream, intended for storage, from the boil-off gas (BOG) stream. 

A dual nitrogen turbo-expander cycle is: the high-pressure nitrogen stream (stream #7) is acquired 

through a three-stage compressor (K-1, K-2, and K-3) equipped with air intercoolers (E-1 and E-2) and 

an aftercooler (E-3). After passing through LNG-1, the high-pressure nitrogen stream is divided between 

the warm and cold turbo-expander cycles (EXP-1 and EXP-2). The cooled nitrogen feed for the warm 

turbo-expander cycle (stream #11) undergoes work expansion in EXP-1, generating the required 

refrigeration capacity to lower the NG temperature. The remaining portion of the nitrogen stream, serving 

as the refrigeration fluid for the cold turbo-expander cycle, is further cooled to an intermediate temperature 

within LNG-2 (stream #14). Subsequently, this cooled nitrogen stream (stream #14) enters the cold turbo-

expander cycle, where it experiences work expansion in EXP-2 to achieve pressure levels lower than those 

of the warm turbo-expander cycle. This controlled pressure reduction is crucial for attaining the minimum 

temperature required for NG liquefaction. The resulting nitrogen cold stream exiting LNG-3 (stream #16) 

operates at a pressure level similar to that of the warm expander discharge (stream #12). As a result, 

streams #12 and #16 are combined to form stream #17. This mixed stream is then subject to reheating 

within the liquefaction heat exchanger (LNG-2). The reheating process serves to cool the warm and cold 

nitrogen cycle feed gas streams and to cool and condense the natural gas stream. Finally, the reheated 

nitrogen gas stream is directed to the first stage of the nitrogen compression system to elevate the pressure 

of the nitrogen stream. 
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Figure 1. Flow diagram of the evaluated LNG system 

 

Within any LNG process, many trade-offs exist, primarily centered around energy integration within 

LNG-1, LNG-2, and LNG-3. These trade-offs incorporate the associated heat transfer areas needed and 

the mass flows and temperature levels of both hot and cold streams. The change in these parameters 

significantly affects the overall power consumption and the total heat transfer area (and corresponding 

cost) of all heat exchangers. These trade-offs become notably more conspicuous when the number of 

cycles in the cascade system increases. 

 

3. Problem statement 

The optimization problem consists of minimizing/maximizing an objective function f(x), which is 

expressed as: 

 

Min/Max 𝐟(𝐱)
subject to:                                     

           – 𝐡𝐬(𝐱) = 0                                             
          – 𝐠𝐭(𝐱) ≤ 0                                            

   –  Process design specificacion
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where x denotes the vector of model variables, the equality constraints, hs(x), comprise mass and energy 

balances, correlations for physicochemical properties estimation, and design equations. The variable gt(x) 

represents inequality constraints for preventing temperature crossings in heat exchangers and imposing 

lower and/or upper bounds on critical operating variables. Several objective functions f(x) can be 

considered for optimization, including the minimization of net electrical power (�̇�𝑁𝐸𝑇), total thermal 

conductance (U×A value), total heat transfer area, or total annual cost. In this work, two objective 

functions, �̇�𝑁𝐸𝑇 and U×A value, are applied. The design specification involves achieving a flow rate of 

132 kmol/h of high-pressure LNG at 62.6 bar and 118.15 K, which is then let down across VLV-1, forming 

two phases (vapor and liquid). The proposed optimization problem aims to obtain the optimal values of 

temperature, pressure, composition, and flow rate of all process streams for the following output 

simultaneously: 

• Minimum �̇�𝑁𝐸𝑇 value and its optimal distribution between the compressors and expanders. 

• Minimum U×A value and its optimal distribution between the heat exchangers. 

• Optimal sizes (sizes of compressors and expanders as well as U×A values of heat exchangers E-1 

to E-3, and LNG-1, LNG-2, and LNG-3).  

4. Mathematical model  

The mathematical model comprises mass and energy balances for each component within the system, 

alongside the calculation of heat transfer areas and driving forces. The authors have skillfully incorporated 

previously established mathematical models developed by their research group for expanders, 

compressors, and heat exchangers. These models also feature dynamic-link libraries for the estimation of 

stream properties. This comprehensive integration allows the accurate representation of the LNG process. 

Furthermore, the authors have developed specific models tailored to the primary LNG heat 

exchangers. The readers can find a detailed mathematical model, along with modeling assumptions and 

numerical values of model parameters, in the “Supplementary Material I” accompanying this article. 

4.1. Thermodynamic properties and calculation  

The thermodynamic properties of the mixtures involved are estimated using cubic equations of state 

(CEOS), particularly the Peng-Robinson equation (Yadav et al. 2022). Alternative CEOS with a similar 

level of accuracy to the Peng-Robinson equation, such as the Soave-Redlich-Kwong equation (Soave, 

1993), could also be used. 
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The Peng-Robinson state equation is 

( )
2 22


= −

− +   −

a TR T
P

v b v v b b
 (1) 

where T and P are the working temperature and pressure, respectively, and R is the universal gas constant. 

The dependence of the parameter a(T) on the temperature is taken into account by Eq. (2), while the 

parameter b is calculated from the critical pressure and temperature (Pc and Tc) according to Eq. (3). 

( ) ( )
2 2 20.45724

1 1
   = +  −

 
c

c

c

R T
a T T T

P
  (2) 

0.07780  
= c

c

R T
b

P
 

(3) 

where κ is a characteristic constant of each component, which is calculated in terms of the acentric factor 

ω as expressed in Eq. (4).  

20.37464 1.54226 0.2699= +  −     (4) 

Eq. (1) is generally transformed into a cubic equation for the compressibility factor Z, as in Eq. (5), in 

order to facilitate the mathematical implementation: 

( ) ( ) ( )3 2 2 3 21 3 2 0+ −  + −  −  + + −  =Z B Z A B B Z B B A B  (5) 

where 

( )

( )
2


=



a T P
A

R T
 (6) 


=



b P
B

R T
 (7) 

For a mixture of components, the variables A and B are calculated using the mixing rules: 
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1 1= =

=  
c c

i j ij

i j

A x x A  
(8) 

( )1= = −  ij ji ij i jA A k A A  (9) 

1=

= 
n

i i

i

B x B  
(10) 

where kij is a binary interaction parameter between components i and j.  

The enthalpy and entropy of the vapor and liquid phases of a refrigerant mixture (or natural gas) are 

calculated from the departure function forms (h – h*) and (s – s*), as expressed in Eq. (11) and Eq. (12), 

respectively:  

( ) ( )
( )

( )
* 1 2( )

ln 1
2 2 1 2

 +  ++ −  =  + −
    +  −
 

Z BA T dA dTh h
Z

R T B Z B
 (11) 

( ) ( )
( )

( )
* 1 22( )

ln ln
2 2 1 2

 +  + + −  =  + −
   +  −
 

Z BA T dA dTs s
Z B

R B Z B
 (12) 

In multicomponent vapor-liquid equilibrium, the fugacity of each component in the liquid and vapor 

phases must be equal. To calculate the fugacity, the fugacity coefficient for each component i is used 

( ) ( )
( )
( )

1

2
1 2

ln 1 ln ln
2 2 1 2

=

 
    +  +  = −  − − + −   

   +  −   
 


c

j ij

ji i
i

x A
Z BB BA

Z Z B
B B AB Z B

  (13) 

Implementing and solving CEOS in deterministic and equation-oriented optimization models is a 

significant challenge. Two well-defined approaches are typically used. The first methodology (Approach 

#1) involves considering the complete set of equations related to calculating thermodynamic properties 

and mass, momentum, and energy balances (Kamath et al., 2010; Dowling and Biegler, 2015). The second 

option (Approach #2), which is used in this study, proposes the usage of external libraries with user-

defined functions to calculate thermodynamic properties (Manassaldi et al., 2019; Bugard et al. 2018). 
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Approach #1 benefits from being both traditional and relatively straightforward to implement. 

However, its principal drawback lies in its potential to extend the complexity of the model involving an 

increased number of variables and equations. Additionally, it poses challenges in finding solutions under 

certain conditions, such as instances represented by a solitary root of the CEOS, denoting either the liquid 

or gaseous state. In contrast, Approach #2 offers a distinct advantage by performing effectively across all 

regions without including equations or supplementary variables. Nonetheless, its primary limitation relies 

on the implementation software requirement to support embedding user-defined function calls (Bugard et 

al. 2018). 

The software used to implement the proposed model in this research is the General Algebraic Modeling 

System (GAMS) (GAMS Development Corporation, 2021). The software supports the creation of 

functions by the user, which are known as extrinsic functions (Manassaldi et al. 2019), and no additional 

programming effort is required to use them in the current model. Thus, the library of thermodynamic 

functions developed previously is used to estimate the properties of natural gas and refrigerant (pure N2 

and a mixture of N2 and CH4). The functions provided are the enthalpy, entropy, and density of the mixture 

and the fugacity of each constituent. They all depend on the temperature, pressure, and mole composition 

of the mixture. For each thermodynamic property, a liquid-phase and a vapor-phase function were created. 

Applying the method proposed by Deiters and Macias-Salinas (2014), all functions solve the Peng-

Robinson cubic polynomial (Eq. (5)). The vapor phase functions use the largest root found, and the liquid 

phase functions use the smallest root found. Both functions use the unique available root value if only one 

real root exists. The sequence followed to calculate thermodynamic properties can be found in 

Supplementary Material II. 

The communication between GAMS and the thermodynamic library to calculate the enthalpy of a 

vapor stream of Approach #2 is illustrated in Figure 2. The GAMS solver sends the input variables 

(temperature, pressure, and mole fractions), and the library returns the requested property (in this Case, 

enthalpy) and its corresponding gradient and Hessian matrix (both analytic). In this approach, the model 

developed to calculate any thermodynamic property (enthalpy in this example) involves nine variables 

(enthalpy, temperature, pressure, and the six-mole fractions) and one equality equation, while Approach 

#1 requires 76 variables, 68 equations, and 2 inequalities. Logically, the number of degrees of freedom in 

both approaches is the same and equal to 8 (76−68=8 for Approach #1 and 9–1=8 for Approach #2), 

indicating in both cases the direct relationship between a property (e.g., enthalpy) and the 8 main variables 

of the mixture (temperature, pressure, and the six-mole fractions). 
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extrinsic.dll

T (K); P (bar);

x1,  x6 (mole fraction)

h (J/mol) and analytical 

computation of gradient 

vector and hessian matrix 

• Calculate mixture parameter.

• Solve Peng Robinson CEOS [53].

• Select greatest available real root.

• Compute enthalpy function and   

its derivatives.
 

Figure 2. Schematic representation of the interaction between GAMS and dynamic-link library (DLL) 

for enthalpy calculation of vapor streams in the liquefaction process. 

 

The computation of the thermodynamic properties of each stream (Figure 1) is divided into three 

groups according to their phase: liquid (L), vapor (V), and L-V. The corresponding functions are applied 

for the first two cases (L and V). For the third group (L-V), the L-V equilibrium is forced from the equality 

of the fugacities of each component in each phase. To keep the values within the defined phase, the dew 

point is calculated for streams #12 and #15. 

 

4.2. Modelling of LNG heat exchangers 

As mentioned, the primary challenge when modeling multistream heat exchangers like LNG-1, LNG-

2, and LNG-3 is accurately representing the physicochemical and thermodynamic properties of the 

mixtures involved. This complexity is amplified when considering refrigerants that could be either a single 

refrigerant (N2) or a mixed refrigerant (N2 and CH4), and natural gas is the fluid to be liquefied considering 

a mixture of 6 compounds (N2, CH4, C2H6, C3H8, n-C4H10, i-C4H10). The nonlinear behavior exhibited by 

these thermodynamic properties calls for modeling the internal temperature profile within the LNG-1, 

LNG-2, and LNG-3 exchangers. This is essential to ensure the feasibility of heat transfer and prevent 

potential temperature overlaps. The mathematical modeling approach for the heat exchanger LNG-2 is 

shown in Fig. 3. 
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h1

h2

2314
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20 13

18

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

c1

ki=1 ki=2 ki=3 ki=4 ki=5 ki=6 ki=7 ki=8 ki=9

 

Figure 3. Schematic of the sections and points proposed for the mathematical modeling of LNG-2. 

 

The methodology presented by Pattison and Baldea (2015) guides the implementation of equation-

oriented optimization models of multistream heat exchangers. As shown in Fig. 3, there are two hot 

streams, h1 (#20) and h2 (#13), and one cold stream c1 (#17). The output of the cold stream corresponds 

to stream #18, while the hot streams h1 and h2 outputs correspond to streams #23 and #14, respectively. 

For simplicity and as a first approximation to verify the model with published results, the hot streams enter 

and leave the equipment at the same temperature, i.e., T13 =T20 and T14 =T23. 

The hot streams h1 and h2 form a hot composite stream, while the cold stream c1 represents the cold 

composite stream. To correctly describe the behavior of the temperature profile, heat transfer, driving 

forces, and heat transfer area in LNG-2, it is proposed to divide the heat exchanger into 10 points indicated 

as i and 9 sections as ki (Fig. 3). 

At the ends of the heat exchangers, the involved hot and cold streams must be coupled with the hot 

and cold composite currents, respectively. The cold streams enter through point i=1 while the hot streams 

enter through point i=10. Therefore, the temperature of the cold composite stream at point i=1 must be 

equal to the temperature of stream #17 (Eq. (14)). The same applied to the hot composite stream in the 

first point (Eq. (15) and Eq. (16)). While Eqs. (17)–(19) apply to both streams in the last point (i=10). 

17=i

cT T  i=1 (14) 

14=i

hT T  i=1 (15) 

23=i

hT T  i=1 (16) 

18=i

cT T  i=10 (17) 

13=i

hT T  i=10 (18) 
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20=i

hT T  i=10 (19) 

The following equations (20–25) are used for the pressure calculation of each stream inside the heat 

exchangers: 

1 17=i

cP P  1=i  (20) 

1 23=i

hP P  10=i  (21) 

2 14=i

hP P  10=i  (22) 

1

1 1 9
LNGPi i

c cP P
+ = −  1,2, ,9=i  (23) 

1

1 1 9
LNGPi i

h hP P
+= −  1,2, ,9=i  (24) 

1

2 2 9
LNGPi i

h hP P
+= −  1,2, ,9=i  (25) 

 

Eq. (26) and Eq. (27) are proposed to calculate the total heat load (mH) of stream h1 and h2, 

respectively, in each of the defined points. In each point, the enthalpy value is calculated using the Peng-

Robinson equation. The enthalpy values calculated in point i=1 (i.e., h23 and h14) are taken as reference 

values, so the energy content of these streams in this point is zero. Consequently, the total energy 

calculated in point i=10 is the total energy supply. The convenience of using point i=1 as a reference is 

that it allows handling positive energy content values and, thus, effortlessly creates the hot and cold 

composite curves on the temperature-enthalpy diagram. 

( )1 23 1 23

i i

h hmH m H h=  −  1,2, ,10=i  (26) 

( )2 14 2 14

i i

h hmH m H h=  −  1,2, ,10=i  (27) 

Similarly, Eq. (28) is used to calculate the energy content of the cold stream, again using point i=1 (cold 

stream inlet) as the reference. 

( )1 17 1 17

i i

c cmH m H h=  −  1,2, ,10=i  (28) 

Thus, the energy balance for each section and the heat load (
2−

i

LNG

z
q ) are expressed by Eq. (29) and Eq. 

(30), respectively: 

( ) ( )1 1

2 1 1 2 2

+ +

− = − + −i i i i i

LNG h h h h

k
q mH mH mH mH  1,2, ,9=i                                       (29) 

1

2 1 1

+

− = −i i i

LNG c

k

cq mH mH  1,2, ,9=i                                       (30) 
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For mathematical modeling, it is assumed that the heat exchanged in all sections of the heat exchanger is 

the same; therefore, the entire heat exchanged is discretized into sections with equally-spaced enthalpy (

2−LNGq ) from its inlet to outlet enthalpy values, as shown in Fig. 4 and expressed in Eq. (31). Then, the 

composite curves are obtained summing up the relevant enthalpy changes of hot and cold streams at a 

given temperature.  

1

2 2
+

− −=i i

LNG LNG

k k
q q  1,2, ,8i =                                       (31) 

Eq. (32) guarantees the feasibility of heat exchange by imposing that the temperature of the hot composite 

stream i

hT in each of the points must be greater than or equal to the temperature of the cold composite 

stream i

cT plus a minimum temperature difference minT . 

min + i i

h cT T T  1,2, ,10=i  (32) 

T

mH

Equally-spaced enthalpy intervals

Cold Tout

Cold Tin

Hot Tout

Hot Tin

1

2

k

LNGq −
2

2

k

LNGq −
3

2

k

LNGq −
4

2

k

LNGq −
5

2

k

LNGq −
6

2

k

LNGq −
7

2

k

LNGq −
8

2

k

LNGq −
9

2

k

LNGq −

 

Figure 4. Temperature-enthalpy rate diagram of the equally-spaced enthalpy sections considered for the 

mathematical modeling of LNG-2. 

 

Finally, Eqs. (33)–(35) establish the relationship between the enthalpy of every stream in each point with 

the temperature (T), pressure (P), and composition (x) of the composite stream. For this purpose, the 

authors have used previously developed extrinsic functions (Manassaldi et al. 2019). 

( )1 1 23, ,=i i i

h vap h hH f T P x  1,2, ,10=i  (33) 
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( )2 2 14, ,=i i i

h vap h hH f T P x  1,2, ,10=i  (34) 

( )1 1 17, ,=i i i

c vap c cH f T P x  1,2, ,10=i  (35) 

Finally, Eq. (36) calculates the total value U×A required by the LNG-2 heat exchanger: 

( )
9

2

2
1 2

−

−
= −

= 
i

i

k

LNG

LNG
i LNG

k

q

LMTD
UA  (36) 

where qLNG-2 is the heat exchanged in each of the exchanger sections and 
2−

i

LNGLMTD represents the driving 

force in the associated section ki calculated by the logarithmic mean approximation proposed by Chen 

(2019) and expressed as: 

( ) ( ) ( ) ( )( )1 1 1 13
2 0.5 1, 2, ,9+ + + +

− =  −  −  − + − =i i i i i i i i i

LNG h c

k

h c h c h cT T T T T T T T T i  (37) 

 

The model size increases significantly with the addition of the internal modeling of the multistream heat 

exchangers. The greater the number of heat exchanger sections, the better the capture of the behavior of 

the thermodynamic properties of the streams. Similarly, Eqs. (1)–(37) are extended to model the LNG-1 

and LNG-3 heat exchangers.  

The complete NLP mathematical model contains 507 variables and 612 equality and inequality 

constraints. The GAMS (v.24.8.5) is used to implement the model. The model is solved using the 

CONOPT 3 solver (Drud, 1996), a local optimizer based on the generalized reduced gradient (GRG) 

algorithm. 

 

5. Solution strategy 

To ensure the convergence of the model, given its highly nonlinear nature characterized by the presence 

of bilinear terms and logarithmic functions, a preprocessing phase has been created to initialize the model 

effectively. The objective is to find an initial solution that is either entirely feasible or, at the very least, 

exhibits minimal infeasibilities. As illustrated in Fig. 5, the preprocessing phase entails solving a series of 

three models sequentially, denoted as Model-1, Model-2, and Model-3, as the process unfolds. 

The core principle underpinning this preprocessing phase is that the optimal solution derived for Model 

"j" is automatically used as the initialization for the subsequent solution of Model "j+1," until the final 

rigorous and comprehensive model is resolved. This phase capitalizes on the fact that an optimal solution, 
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or at the very least a quasi-feasible solution (meaning it contains only a few infeasibilities), serves as a 

robust starting point for addressing a larger model. 

 

 

 

Figure 5. Steps involved in the proposed solution strategy.  
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As a first step, it is proposed to solve Model-1, which corresponds to the simplest and most reduced model 

since it includes only the material and energy balances and the calculation of the thermodynamic 

properties of all process streams. However, in this model, the energy balances in the heat exchangers 

LNG-1, LNG-2, and LNG-3 are calculated using only the energy values at the hot and cold ends, thus 

avoiding temperature crossings at these ends (T10>T18+∆Tmin and T7>T1+∆Tmin in LNG-1, T13>T18+∆Tmin 

and T14>T17+∆Tmin in LNG-2, and T23>T16+∆Tmin and T24>T15+∆Tmin in LNG-3). Model-1 offers the 

advantage that, despite its inherently nonlinear character, its convergence is not overly reliant on the initial 

variable values. It exhibits convergence irrespective of variations in parameter values. Nonetheless, should 

issues with convergence arise, an ideal thermodynamic model stands as a potential solution for 

initialization. Given that the thermodynamic model is incorporated via an external function, replacing the 

Peng-Robinson model with an ideal one during this preprocessing step is straightforward. Subsequently, 

in the following step, the Peng-Robinson model can be re-executed and resolved using the solution from 

the ideal model as the starting point. 

It is important to note that this approach does not include the (internal) segments of the heat exchangers 

and, consequently, the internal temperature profiles. As a result, it is not feasible to impose inequality 

constraints aimed at preventing internal temperature overlaps within the heat exchangers. However, it is 

worth emphasizing that the last model in this phase (Model-3) ensures the feasibility of internal heat 

exchanges within LNG-1, LNG-2, and LNG-3. 

The solution obtained from Model-1 successfully fulfills the mass and energy balances. However, there 

may still be internal temperature crossovers within any (or all) of the multistream heat exchangers, namely 

LNG-1, LNG-2, and LNG-3. This is because the model does not yet account for internal temperature 

profiles. To take advantage of the outcomes of Model-1, the authors introduce a subsequent Model-2. In 

this model, only the three multistream heat exchangers (LNG-1, LNG-2, and LNG-3) are solved in 

simulation mode, with fixed inlets and outlets LNGs streams (P, T, x and m) at the optimal values obtained 

from Model-1. The primary purpose of Model-2 is to simulate the internal temperature profile 

corresponding to the solution of Model-1, so Eq. (32) is omitted since ensuring the minimum temperature 

difference cannot be guaranteed at this stage. Consequently, Model-2 encompasses the energy balance for 

each heat exchanger section and calculates the enthalpy at each point.  

As an initialization strategy for Model-2, the temperatures using a linear temperature profile of the 

composite streams should be computed first. This profile is developed using the optimal temperatures 

obtained at the ends of the heat exchangers from Model-1. These initial temperature values are then 
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automatically used to initialize the corresponding enthalpies and, subsequently, the remaining variables 

(e.g., mH and qLNG). The reasoning behind this initialization approach is that thermodynamic properties 

are inherently explicit in the enthalpy. As a result, establishing a linear temperature profile and calculating 

the enthalpies constitute a straightforward sequential process with no intermediate iterations. Although 

this initialization point (temperature linear profile) does not exactly correspond to an initially feasible 

solution for Model-2, it serves as an easy-to-generate initialization point with very few infeasibilities in 

the energy balances. It should be mentioned that these infeasibilities do not hinder the convergence of this 

model, as discussed below in the presentation of the case studies. 

The combination of solutions from Model-1 and Model-2 results in a "potential” feasible solution for the 

final model. This combined solution satisfies all model constraints except for Eq. (32), which ensures heat 

exchange feasibility and has not been incorporated in any prior model. For this reason, Eq. (32) may or 

may not be satisfied at all points within the heat exchanger in Model-3. Consequently, the third phase of 

the preprocessing includes the resolution of the comprehensive Model-3, introducing Eq. (32) to secure 

heat exchange feasibility. It is important to note that Model-3 can solve the entire process simultaneously 

with the internal temperature profiles of the multistream heat exchangers. If Model-2 satisfies Eq. (32) at 

all points, the new solution (Model-3) will mirror the current one (Model-1+Model-2). But if Model-2 

does not satisfy Eq. (32) at all points, then Model-3 can modify the process variables to satisfy it, and the 

new solution (Model-3) will be slightly different from the current one. In this last situation, since it is a 

minimization problem, the new value of the objective function will be slightly higher than Model-1, 

WNET(Model-3) > WNET(Model-3). 

Lastly, the authors propose addressing Model-4 as the final detailed model. Compared to Model-3, Model-

4 incorporates all equations relevant to the computation of the driving force – logarithmic mean 

temperature difference (LMTD) and U×A values in each section of the heat exchangers LNG-1, LNG-2, 

and LNG-3. The primary advantage of introducing Model-4 in the latter preprocessing stage is that all the 

newly introduced optimization variables (LMTD and U×A values) can be initialized based on the optimal 

values of flows, temperatures, and enthalpies obtained from Model-3. Regardless of the objective function 

considered in Model-4, the optimal solution of Model-3 serves as an initial feasible point for solving 

Model-4. For instance, if Model-4 retains the same objective function as Model-3 (minimization of �̇�𝑁𝐸𝑇), 

the optimal solution will be identical for both optimization problems. The distinction lies in the 

computation of the corresponding optimal U×A values in Model-4. On the contrary, if Model-4 adopts a 

different objective function than Model-3 (e.g., minimization of U×A value or cost reduction), the solution 
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from Model-3, coupled with its associated initial values of U×A and LMTD, will serve as a genuinely 

feasible starting point for Model-4. This ensures that all model constraints (inequalities and equalities) are 

satisfied, thus guaranteeing the convergence of the entire model. 

 

6. Results and Discussions 

Three case studies are presented to verify the proposed model and the obtained optimization results. An 

optimal solution obtained using the Aspen HYSYS/GA algorithm reported in (Moein et al. 2015) is used 

as a base case to verify the accuracy of the model (case study I), and to compare the obtained optimal 

solutions (case studies II and III). The data set listed in Table 1 was assumed for all cases, which are solved 

on a 3.3 GHz AMD six-core processor with 4 GB of RAM. 

 

Table 1. Numerical values of the parameters used in the case studies (Moein et al. 2015). 

Parameter and unit Value 

Isentropic compressor efficiency (%) 75 

Minimum temperature approach, ∆Tmin (K) 2 

Pressure drop in LNG heat exchangers (bar) 0.1 

Pressure drop in air coolers (bar) 0.2 

Flow rate of natural gas, �̇�𝑁𝐺 (kmol/h) 132 

Pressure of natural gas entering cold box, PNG (bar) 62.9 

Temperature of hot stream at cold box inlet, TNG (K) 313.15 

Temperature of natural gas at cold box outlet, T24 (K) 118.15 

Natural gas valve discharge pressure, P25 (bar) 1.01325 

Composition of natural gas (mole%)  

N2 0.9 

CH4 94 

C2H6 3.1 

C3H8 1.3 

n-C4H10 0.4 

i-C4H10 0.3 

 

6.1. Case study I: Verification of the model 

The model accuracy was validated by comparing the values with the ones reported in (Moein et al. 2015). 

For the verification, the case study was simulated by fixing several optimization variables in the proposed 

model with the same values as in (Moein et al. 2015) to maintain the degrees of freedom. Table 2 lists the 

variables fixed for the verification process and their corresponding numerical values. Table 3 provides a 

comparison of the output values of the main model variables with the values explicitly reported in (Moein 

et al. 2015). 
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Table 2. Optimization variables with their numerical values fixed for model verification.  

Parameter and unit Value 

T1 (K) 311.15 

T20 (K) 268.11 

T23 (K) 178.34 

P2 (bar) 9.97 

P4 (bar) 20.06 

P6 (bar) 40.03 

P15 (bar) 4.54 

 

As shown in Table 3, the output values of the main process variables agree with the values reported in 

(Moein et al. 2015). The differences in the obtained numerical values are less than 0.35%. 

The values of pressure, temperature, and flow rate of all streams are given in Table 4. The U×A values 

corresponding to all heat exchangers are presented in Table 5. 

The proposed mathematical model was used as a "simulator" for verification purposes, i.e., no degrees of 

freedom were considered in this Case. This contrasts with the following case studies, where the model is 

used as an "optimizer". 

Table 3. Comparison of the main process variables used for model verification.  

 

 

 

 

Table 4. Simulated values obtained for temperature, pressure, and flowrates corresponding to the base 

case. 

Stream T (K) P (bar) �̇� (kmol/s) 

#1 311.1 4.238 0.2147 

#2 424.3 9.969 0.2147 

#3 311.1 9.769 0.2147 

#4 404.7 20.050 0.2147 

#5 311.1 19.850 0.2147 

#6 402.1 40.030 0.2147 

#7 313.1 39.830 0.2147 

#10 268.1 39.730 0.2147 

#11 268.1 39.730 0.1500 

 Base case (Moein et al. 2015)  This work Diff (%) 

Net required work (�̇�𝑁𝐸𝑇,  kW) 1402.9  1398.4  (-)  0.32 

Flow rate of nitrogen (�̇�𝑟𝑒𝑓,  kmol/h) 0.2142   0.2147  (+) 0.22 
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#12 168.6 4.438 0.1500 

#13 268.1 39.730 0.0646 

#14 178.3 39.63 0.0646 

#15 105.1 4.538 0.0646 

#16 176.3 4.438 0.0646 

#17 170.9 4.438 0.2147 

#18 250.7 4.338 0.2147 

NG 313.1 62.900 0.0367 

#20 268.1 62.800 0.0367 

#23 178.3 62.700 0.0367 

#24 118.1 62.600 0.0367 

#25 111.0 1.013 0.0367 

 

Table 5. Results of the heat exchangers for the base case. 

 Heat exchanger U×A (kW/K) 

E-1 15.75 

E-2 14.78 

E-3 13.84 

LNG-1 54.54 

LNG-2 80.33 

LNG-3 18.45 

Total 197.72 

6.2. Optimization results 

6.2.1 Case study II: Minimization of total net electrical power consumption 

The proposed mathematical model for the minimization of the net electrical power (�̇�𝑵𝑬𝑻) is solved by 

"relaxing" all the variable values that were mentionned in Table 2 for model verification (case study I). 

These variables are now considered as optimization variables. In this case study, the refrigerant is pure 

N2. The optimal solution obtained is referred to as OptimDes I. 

The optimization results (OptimDes I) are compared in Tables 6 through 10 with those obtained for the 

base case, as presented in (Moein et al. 2015). The base case solution was obtained using a genetic 

algorithm combined with Aspen HYSYS and presented as the best solution found, considering pure N2 as 

the refrigerant. 

In Table 6, the net electrical power in OptimDes I is presented. It decreased from 1398 kW to 1277 kW, 

which means 8.7% compared to the base case. This reduction was mainly due to the decrease in power 
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consumption of all compressors, while the electrical power generated by the expanders remained almost 

constant (Table 7). The most significant reduction in electrical power is observed for Compressor K-1, 

followed by K-3 and K-2. However, the decrease in total power resulted in a 40% increase in the total 

U×A value (Table 8). As observed when comparing the values in Table 8, there is a greater energy 

integration between the hot and cold streams in the LNG-1, LNG-2, and LNG-3 heat exchangers due to 

the change in operating conditions (Table 9), which necessarily requires higher total U×A values in these 

units (Table 8). 

 

Table 6. Comparison of the net electrical power, thermal conductance, refrigerant flow rate, and minimum 

temperature difference between the optimal solution and base case (N2 as refrigerant only). 

 Base Case  

Optimal solution 

(ASPEN HYSYS + Genetic Algorithm) 

This work 

OptimDes I                                

(Derivate-based Optimization Algorithm) 

Diff. 

(%) 

�̇�𝑁𝐸𝑇  (kW) 1398 1277 (-) 8.7 

U×A (kW/K) 197 277 (+) 40.3 

�̇�𝑟𝑒𝑓 (kmol/s) 0.22 0.25 (+) 17.6 

∆Tmin (K) 2.0 2.0#  

# Optimal value  reached the lower bound 

Table 7. Comparison of the electrical power required for the compressor and generated by expanders 

between the optimal solution and base case (pure N2 as refrigerant). 

  Base Case  

Optimal solution 

(ASPEN HYSYS+Genetic Algorithm) 

This work, OptimDes I                               

(Derivate-based Optimization 

Algorithm) 

Diff. 

(%) 

Compressor K-1 716.9 641.6 (-) 10.5 

 K-2 591.0 578.1 (-)   2.2 

 K-3 574.8 539.4 (-)   6.2 

  1882.7 1759.1 (-)   6.6 

Expander EXP-1 389.1 384.8 (-)   1.1 

 EXP-2   95.3   97.1 (+)  1.8 

  484.4 481.9 (-)   0.5 

 

Table 8. Comparison of the total heat loads, thermal conductance, and LMTD between the optimal 

solution and base case (pure N2 as refrigerant).  

  Base Case  

Optimal solution 

(ASPEN HYSYS + Genetic 

Algorithm) 

This work 

OptimDes I 

(Derivate-based Optimization 

Algorithm) 

Diff. 

(%) 

 

 

 

 

LNG-1 380.1 494.0 (+) 30 

LNG-2 500.9 498.5 (-) 0.5 

LNG-3 137.3 141.7 (+) 3.2 

Total 1018.3 1134.2 (+) 11.4 

E-1 725.0 651.9 (-) 10.1 
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�̇� (kW) E-2 605.5 595.1 (-) 1.7 

E-3 588.5 550.9 (-) 6.4 

Total 1919.0 1797.9 (-) 6.3 

Total 2937.3 2932.1 (-) 0.2 

 

 

 

 

U×A (kW/K) 

LNG-1 54.5 71.4 (+) 31.1 

LNG-2 80.3 119.3 (+) 48.6 

LNG-3 18.4 38.7 (+) 110.1 

Total 153.1 229.4 (+) 49.8 

E-1 15.7 16.7 (+) 6.1 

E-2 14.7 16.2 (+) 9.7 

E-3 13.8 14.8 (+) 6.9 

Total 44.2 47.7 (+) 7.6 

Total 197.3 277.1 (+) 40.3 

 

 

LMTD (K) 

LNG-1 6.9 6.9 (-) 0.9 

LNG-2 6.2 4.1 (-) 33 

LNG-3 7.4 3.6 (-) 50.9 

E-1 46.0 39.0 (-) 15.2 

E-2 40.9 36.6 (-) 10.4 

E-3 42.5 37.2 (-) 12.5 

 

Table 9. Optimal values of pressure, temperature, and flowrates obtained for the base case and OptimDes 

I (N2 as refrigerant only)  

 

  

Base Case  

ASPEN HYSYS + Genetic Algorithm 

Optimal solution 

  This work 

Derivate-based optimization algorithm 
OptimDes I 

  T (K) P (bar) �̇� (kmol/s)   T (K) P (bar) �̇� (kmol/s) 

1 311.2 4.238 0.2147   311.2 6.462 0.2526 

2 424.4 9.969 0.2147   397.5 12.616 0.2526 

3 311.2 9.769 0.2147   311.2 12.416 0.2526 

4 404.7 20.059 0.2147   389.1 22.809 0.2526 

5 311.2 19.859 0.2147   311.2 22.609 0.2526 

6 402.1 40.033 0.2147   383.9 40.000 0.2526 

7 313.2 39.833 0.2147   313.2 39.800 0.2526 

10 268.1 39.733 0.2147   262.0 39.700 0.2526 

11 268.1 39.733 0.1501   262.0 39.700 0.1773 

12 168.6 4.438 0.1501   177.9 6.662 0.1773 

13 268.1 39.733 0.0646   262.0 39.700 0.0753 

14 178.3 39.633 0.0646   179.9 39.600 0.0753 

15 105.2 4.5383 0.0646   116.2 6.762 0.0753 

16 176.3 4.4383 0.0646   177.9 6.662 0.0753 

17 171.0 4.4383 0.2147   177.9 6.662 0.2526 

18 250.8 4.3383 0.2147   244.8 6.562 0.2526 

NG 313.2 62.900 0.0367   313.2 62.900 0.0367 

20 268.1 62.800 0.0367   262.0 62.800 0.0367 

23 178.3 62.700 0.0367   179.9 62.700 0.0367 
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Figure 6. Comparison of the thermodynamic cycle on a pressure-enthalpy diagram. 

 

The optimal pressure values at the inlet of the compressors obtained in OptimDes I are higher compared 

to the base case, as presented in Table 9 and Figure 6. The difference between the inlet and outlet pressures 

in K-1 and the refrigerant flow rate obtained in this work is slightly higher than in the base case (6.15 bar 

vs. 5.73 bar and 0.2526 kmol/s vs. 0.2147 kmol/s), the temperature difference is much lower (86.3 K vs. 

113.2 K), but with a more significant influence on the enthalpy difference (2540.35 J/mol vs. 3339.49 

J/mol), resulting in a lower electrical power requirement compared to the base case (641.6 kW vs. 716.9 

kW). 

According to Table 8, the LNG-1 heat exchanger increases the heat load by 113 kW compared to the base 

case (from 380.1 kW to 494.0 kW). Since the optimal value of the “average” LMTD is the same in both 

24 118.2 62.600 0.0367   118.2 62.600 0.0367 

25 111.1 1.0133 0.0367   111.1 1.013 0.0367 
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cases (6.9 K), a corresponding U×A value must increase by 17 kW/K (from 54.5 kW/K to 71.4 kW/K). 

However, the increase of the U×A values in LNG-2 and LNG-3 is due to the decrease of the LMTD in 

both cases since the heat loads are almost the same. For example, the difference in heat load in LNG-3 is 

only 4.4 kW (141.7 kW obtained in this work and 137.3 kW for the base case), but with a significant 

difference in driving forces, with 3.6 K in this work compared to 7.4 K for the base case). This implies an 

increase in the U×A total value of 20.3 kW/K (from 18.4 kW/K to 38.7 kW/K). The same behavior 

between heat loads, driving forces, and U×A values is observed for LNG-1. 

Finally, it is interesting to show the optimal distribution of the transferred heat, LMTD, U×A values, and 

temperature differences within the heat exchangers LNG-1, LNG-2, and LNG-3 (Table 10 and Fig. 7). 

 

Table 10. Optimal distributions of qLNG, LMTD, U×A value, and ∆T obtained in OptimDes I 

  qLNG at section ki LMTD at section ki (U×A) value at section ki ∆T at point i 

  OptimDes 

I 
Base case 

OptimDes 

I 
Base case 

OptimDes 

I 
Base case 

 OptimDes 

I 
Base case 

LNG-1 

ki=1  123.5 95.0 3.5 3.5 35.3 27.0 i=1 2.0# 2.0# 

ki=2  123.5 95.0 7.3 7.4 16.9 12.9 i=2 5.6 5.7 

ki=3 123.5 95.0 11.1 11.3 11.1 8.4 i=3 9.3 9.4 

ki=4 123.5 95.0 15.1 15.2 8.2 6.2 i=4 13.2 13.3 

   
 

 
 

 i=5 17.2 17.3 

LNG-2 

ki=1  55.4 55.7 14.4 14.5 3.8 3.8 i=1 17.2 17.3 

ki=2  55.4 55.7 9.4 9.6 5.9 5.8 i=2 11.9 12.1 

ki=3 55.4 55.7 5.3 5.7 10.4 9.8 i=3 7.3 7.5 

ki=4 55.4 55.7 2.8 3.4 19.9 16.2 i=4 3.7 4.2 

ki=5  55.4 55.7 2.4 3.6 22.9 15.6 i=5 2.0# 2.8 

ki=6  55.4 55.7 3.8 5.9 14.6 9.4 i=6 2.9 4.5 

ki=7   55.4 55.7 5.1 8.4 11.0 6.6 i=7 4.9 7.7 

ki=8 55.4 55.7 4.6 9.0 11.9 6.2 i=8 5.3 9.2 

ki=9  55.4 55.7 2.9 8.1 19.0 6.9 i=9 4.1 8.8 

    
 

 
 

 i=10 2.0# 7.4 

LNG-3 

ki=1  35.4 34.3 3.1 4.0 11.6 8.7 i=1 2.0# 2.0# 

ki=2  35.4 34.3 4.7 8.5 7.5 4.0 i=2 4.4 7.0 

ki=3 35.4 34.3 4.6 11.3 7.7 3.1 i=3 5.1 10.3 

ki=4 35.4 34.3 3.0 12.6 12.0 2.7 i=4 4.2 12.3 

       i=5 2.0# 13.0 

Total  1134.3 1018.4   229.7 153.3    

# Optimal value reached the lower bound 
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(a)                                                                (b) 

Figure 7. temperature-enthalpy rate diagrams: (a) base case (simulation), (b) case study I (optimization). 

 

As shown in Fig. 7, the hot stream profiles of exchangers LNG-1 and LNG-3 appear to be linear in both 

simulated and optimized solutions, while LNG-2 appears to behave differently. Therefore, it can be 

predicted that LNG-2 is the heat exchanger with the most difficulty in converging. Convergence is 

improved by increasing the number of points used to model the exchangers. In the cases solved in this 

work it was enough to consider 10 points (9 sections) for LNG-2, and 5 points (4 sections) for both LNG-

1 and LNG-3. It is worth noting that if the model encounters convergence issues due to other design 

specifications, the number of points should be increased, which is a simple task since the model considers 

this number as a parameter, and all equations are implemented as a function of this parameter.   

6.2.2 Case study III: Comparison of optimal solutions for single and mixed refrigerants by 

minimizing the total U×A value 

The updated optimization problem investigates whether using a refrigerant blend would be advantageous 

from an optimization perspective. Thus, the new case study introduces the refrigerant composition as an 

optimization variable, which increases both the degrees of freedom and the complexity of solving the 

thermodynamic model. The new optimization problem minimizes the total U×A value while maintaining 

a fixed electrical power of 1278 kW. The optimal solutions for pure N2 and mixed refrigerant (N2/CH4) 

are named OptimDes II and OptimDes III, respectively. The comparison of both solutions in Tables 11 

through 15 reveals that the minimum total U×A value obtained for N2/CH4 is 216.7 kW/K. This value 

denotes a 20.3% reduction compared to the optimized process that uses pure N2 as a refrigerant (from 
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271.9 kW/K in OptimDes II to 216.7 kW/K in OptimDes III). The optimized concentration of CH4 is 20.5 

mol%, corresponding to the saturation state, as shown in Fig. 8 for stream #15. 

 

Table 11. Optimal values of (U×A), flowrate and composition of refrigerant, and minimum temperature 

difference obtained for the optimal solution and base case (�̇�𝑁𝐸𝑇 =1278 kW) 

 

This work 

OptimDes II                               

(Derivate-based Optimization 

Algorithm) 

This work 

OptimDes III 

(Derivate-based Optimization 

Algorithm) 

Diff 

(%) 

(U×A) total value (kW/K) 271.9 216.7 (-) 20.3 

      LNG-1, LNG-2, LNG-3 224.0 166.9 (-) 25.5 

      E-1, E-2, E-3 47.9 49.7 (+) 3.9 

Refrigerant flowrate (kmol/s) 0.254 0.255 (+) 0.4 

Composition    

N2 1.0# 0.795 - 

CH4 0.0 0.205 - 

∆Tmin (K) 2.0## 2.0## 0.0 

# fixed value ; ## lower bounds (optimization variable) 

 

 
 

Figure 8. Thermodynamic cycle on a pressure-enthalpy diagram for Case study II. 
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Table 12 shows that reducing the total U×A value increases the driving forces (LMTD) required for heat 

transfer in all heat exchangers, especially in LNG-1, LNG-2, and LNG-3. However, not all these heat 

exchangers contribute equally to the reduction of the total U×A value. The LNG-1 contribution to the 

reduction of the total U×A value is not significant, as it only reduces by 1.4 kW/K. However, the largest 

U×A decrease is attributed to LNG-2 with 45.1 kW/K decrease (from 112.9 to 67.8 kW/K), and LNG-3 

with 10.4 kW/K decrease (from 38.7 to 28.3 kW/K). In OptimDes II and OptimDes III, the heat loads 

obtained for the LNG-2 and LNG-3 heat exchangers differ by only 1.9%. It should be noted that the LMTD 

values in OptimDes III are higher (7.2 K vs. 4.4 K in LNG-2 and 5.1 K vs. 3.6 K in LNG-3), which means 

that the U×A values are significantly lower compared to OptimDes II. 

 

Table 12. Optimal values obtained for the designs of heat exchangers corresponding to single and mixed 

refrigerants (�̇�𝑵𝑬𝑻 =1278 kW). 

  
This work 

OptimDes II                               

(Derivate-based Optimization Algorithm) 

This work 

OptimDes III 

(Derivate-based Optimization 

Algorithm) 

 

Diff (%) 

Total heat 

load 

(kW)  

LNG-1 502.5 561.7 (+)  11.8 

LNG-2 496.7 491.3 (-)     1.1 

LNG-3 141.1 143.9 (+)    1.9 

E-1 652.4 658.2 (+)    0.9  

E-2 595.4 594.3 (-)    0.2 

E-3 550.9 546.2 (-)    0.9 

(U×A) 

(kW/K) 

LNG-1 72.3 70.9 (-)    2.0 

LNG-2 112.9 67.8 (-)  40.0 

LNG-3 38.7 28.3 (-)  27.0 

E-1 16.8 17.5 (+)    4.3 

E-2 16.3 16.9 (+)    3.9 

E-3 14.8 15.4 (+)    3.5 

LMTD 

(K) 

LNG-1 6.9 7.9 (+)  14.1 

LNG-2 4.4 7.2 (+)  64.8 

LNG-3 3.6 5.1 (+)  39.7 

E-1 38.9 37.6 (-)    3.3 

E-2 36.6 35.2 (-)    3.9 

E-3 37.1 35.6 (-)    4.2 

 

Table 13 shows the best power distribution between compressors and expanders to achieve a net power 

target of 1278 kW. A comparison of the two designs shows that in OptimDes III, both the power 
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consumption of the compressors and the power generated by the expanders are lower than in OptimDes 

II (8.2 kW each), indicating a preference for mixed N2/CH4 refrigerant instead of single N2 refrigerant. 

 

Table 13. Optimal values of electrical power required by compressors and generated by expanders 

obtained by considering single and mixed refrigerants (�̇�𝑵𝑬𝑻 =1278 kW) 

  
This work 

OptimDes II                               

(Derivate-based Optimization Algorithm) 

This work 

OptimDes III 

(Derivate-based Optimization Algorithm) 

 

    Diff (%) 

Compressor 

(kW) 

K-1  642.1 649.4 (+)  1.1 

K-2 578.3 573.1 (-)  0.9  

K-3 539.5 529.2 (-)  1.9  

  1759.9 1751.7 (-)  0.5  

Expander  

(kW) 

EXP-1 384.9 377.9 (-)  2.0  

EXP-2 97.1 95.8 (-)  0.6  

  481.9 473.7 (-)  1.7  

�̇�𝑁𝐸𝑇  (kW)  1278 1278  

 

Table 14. Optimal values of pressure, temperature, and flowrates obtained by considering single and 

mixed refrigerants (�̇�𝑵𝑬𝑻 =1278 kW). 

 

  

This work 

OptimDes II                               

(Derivate-based Optimization Algorithm) 

  

This work 

OptimDes III 

(Derivate-based Optimization Algorithm) 

  T [K] P [bar] �̇� [kmol/s]   T [K] P [bar] �̇� [kmol/s] 

1 311.2 6.5111 0.25382   310.6 6.508 0.25479 

2 397.2 12.678 0.25382   392.5 12.798 0.25479 

3 311.2 12.478 0.25382   311.2 12.598 0.25479 

4 388.7 22.866 0.25382   383.7 23.021 0.25479 

5 311.2 22.666 0.25382   311.2 22.821 0.25479 

6 383.5 40.000 0.25382   378.5 40.000 0.25479 

7 313.2 39.800 0.25382   313.2 39.800 0.25479 

10 261.3 39.700 0.25382   258.0 39.700 0.25479 

11 261.3 39.700 0.17860   258.0 39.700 0.17874 

12 177.7 6.711 0.17860   176.3 6.708 0.17874 

13 261.3 39.700 0.07521   258.0 39.700 0.07605 

14 179.7 39.600 0.07521   180.6 39.600 0.07605 

15 116.2 6.811 0.07521   116.2 6.808 0.07605 

16 177.7 6.711 0.07521   175.5 6.708 0.07605 

17 177.7 6.711 0.25382   176.1 6.708 0.25479 
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Figure 9. Optimal temperature-enthalpy rate diagrams obtained for single and mixed refrigerants. 

 

Table 15. Comparison of the optimal values for the design of heat exchangers obtained for OptimDes II 

and OptimDes III (�̇�𝑵𝑬𝑻 =1278 kW) 

    qLNG at section ki (kW) LMTD at section ki (K) 
(U×A) at section ki 

(kW/K) 

∆T at point i (K) 

  OptimDes      

II 

OptimDes 

III 

OptimDes 

II 

OptimDes 

III 

OptimDes 

II 

OptimDes    

III 

 OptimDes 

II 

OptimDes 

III 

LNG-1 

ki=1  125.6 140.4 3.5 4.1 35.8 33.8 i=1 2.0# 2.5 

ki=2  125.6 140.4 7.4 8.2 17.1 17.2 i=2 5.6 6.3 

ki=3   125.6 140.4 11.2 12.3 11.2 11.4 i=3 9.4 10.3 

ki=4 125.6 140.4 15.2 16.6 8.2 8.4 i=4 13.3 14.5 

 
 

 
 

 
 

 i=5 17.4 18.9 

LNG-2 

ki=1  55.2 54.6 14.6 16.3 3.8 3.3 i=1 17.4 18.9 

ki=2  55.2 54.6 9.6 11.7 5.8 4.7 i=2 12.1 14.0 

ki=3   55.2 54.6 5.5 7.9 10.0 6.9 i=3 7.5 9.6 

ki=4 55.2 54.6 3.0 5.6 18.3 9.7 i=4 3.9 6.4 

ki=5  55.2 54.6 2.7 5.4 20.5 10.1 i=5 2.2 4.9 

18 244.0 6.611 0.25382   239.0 6.608 0.25479 

NG 313.2 62.900 0.03667   313.2 62.900 0.03667 

20 261.3 62.800 0.03667   258.0 62.800 0.03667 

23 179.7 62.700 0.03667   180.6 62.700 0.03667 

24 118.2 62.600 0.03667   118.2 62.600 0.03667 

25 111.1 1.013 0.03667   111.1 1.013 0.03667 
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ki=6  55.2 54.6 4.1 6.7 13.6 8.2 i=6 3.2 5.9 

ki=7   55.2 54.6 5.2 7.6 10.5 7.2 i=7 5.1 7.5 

ki=8 55.2 54.6 4.7 7.1 11.7 7.7 i=8 5.4 7.7 

ki=9  55.2 54.6 2.9 5.4 18.8 10.0 i=9 4.1 6.5 

  
 

 
 

 
 

 i=10 2.0# 4.5 

LNG-3 

ki=1  35.3 36.0 3.0 5.9 11.6 6.1 i=1 2.0# 5.1 

ki=2  35.3 36.0 4.7 6.8 7.5 5.3 i=2 4.4 6.9 

ki=3   35.3 36.0 4.6 5.9 7.7 6.1 i=3 5.0 6.8 

ki=4 35.3 36.0 3.0 3.3 12.0 10.9 i=4 4.2 5.1 

 
 

 
 

    i=5 2.0# 2.0# 

Total  1140.4 
1196.9 

(+4.9%) 
  224 

166.9 

(-25.5%) 

   

# optimal values reaching the lower bound imposed for ∆TMIN. 

The composite curves of both the base and optimized cases are presented in Fig. 9. Adding CH4 to the N2 

refrigerant impacts the heat transfer across the three LNG heat exchangers. In addition, Table 15 provides 

details on the optimal values of heat load, temperature difference, and U×A value in each section of the 

three LNG heat exchangers presented in Figure 9. 

As presented in Figure 9, although OptimDes III has a higher heat recovery compared to OptimDes II 

(1197 kW vs. 1140.4 kW, the total U×A value is lower by 57 kW/K (166.9 kW/K vs. 224 kW/K). In 

addition, Table 15 shows that in all points of the three LNG heat exchangers in OptimDes III, except for 

the last point of LNG-3 where ∆T reached ∆Tmin = 2 K, ∆T is greater than ∆Tmin. On the other hand, in 

OptimDes II, ∆T reached ∆Tmin = 2 K four times (once in LNG-1 at i=1, once in LNG-2 at i=10, and twice 

in LNG-3 at i=1 and 5).  

Finally, it is noteworthy that the previous case studies were solved without using the preprocessing phase 

described in the solution strategy. Some cases experienced convergence problems, and thus, solutions 

could not be reached. This resulted in infeasible solutions with many function evaluation errors and high 

values for Jacobian matrix elements. In other cases, local solutions showed poor objective values, incorrect 

heat transfer areas, and electrical power distribution in compressors and expanders. Table 16 illustrates 

the increase in model size and the change in objective function values during the execution of the 

initialization phase. Figure 10 shows a comparison of the temperature profiles of Model-2 and Model-3. 
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Table 3. Number of equations and variables, and objective function values related to the models used in 

the preprocessing phase.   

 
Equations 

(both equality and 

inequality constraints) 

Variables  
Objective function 

 

   OptimDes I OptimDes II OptimDes III 

   �̇�𝑵𝑬𝑻 (U×A)  �̇�𝑵𝑬𝑻 (U×A)  �̇�𝑵𝑬𝑻 (U×A)  

Model-1 227 199 1266.3 - 1266.3 - 1266.3 - 

Model-2 297 310 - - - - - - 

Model-3 543 438 1277.3        - 1277.3  1277.3  

Model-4 612 507 1277.3 277.4 1278# 271.9 1278# 216.7 

# fixed value 

 
 

Figure 10. Comparison of temperature profiles within LNG heat exchangers obtained for Model-2 (a) 

and Model-3 (b). 

 

Table 16 shows that Model-2, which models only the LNG-1, LNG-2, and LNG-3 heat exchangers, 

requires more equations and variables than Model-1, which accounts for all global mass and energy 

balances of all process units. 

According to Fig. 10a, the simulation obtained from Model-2 shows that certain ∆T values at some points 

of the LNG-2 heat exchanger do not meet the ∆Tmin value since Eq. (32) is not considered in this model. 

The solution of Model 3, which now includes Eq. (32), shows how all ∆T values are conveniently 

distributed within the exchangers to satisfy ∆Tmin and optimize the objective function (Figure 10b). Thus, 

the preprocessing phase is an efficient and systematic procedure for initializing and bounding variables 

with a minimal number of infeasibilities. By combining this procedure with the robustness of the 

optimization algorithm used, the approach proves to be sufficiently robust to ensure convergence and find 

the optimal solution for the more detailed model proposed (Model-4). This procedure can be properly 
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extended to optimize other processes such as: optimization of design of CO2 capture processes (Mores et 

al. 2019), heat exchanger networks (Oliva et al. 2011), wastewater treatment plants (Alasino et al. 2010), 

liquid hydrogen regasification systems (Incer-Valverde et al. 2023b), cryogenics-based energy storage 

systems (Incer-Valverde et al. 2021).   

Finally, to verify the optimization results presented in this work, simulation runs were executed in Aspen 

HYSYS (Fig. 11), utilizing the optimal outcomes obtained from the proposed NLP model as input data. 

In essence, simulation runs were conducted under the optimal conditions determined by the model; the 

degrees of freedom of the optimization problem were fixed at the optimal values obtained. 

Figure 12 illustrates the differences obtained between our model and Aspen HYSYS, concluding that these 

differences are insignificant. For example, of a total of 507 variables, there are eight variables with 

differences lower than 1% and two others with differences of 2.2%. These results indicate that the quality 

of solutions obtained from the proposed model is similar to Aspen HYSYS. Thus, in addition to preserving 

the calculation quality of HYSYS, the proposed model enables simultaneous optimization, which would 

be challenging to perform with Aspen HYSYS alone. 

 

 

Figure 11. Flowsheet implemented in Aspen HYSYS for verification purposes. 
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Figure 12. Numerical differences in variables between ASPEN HYSYS and the proposed NLP 

optimization model. 

 

Conclusions 

This paper introduced an optimization framework that couples the advantages of mathematical 

programming and a dynamic link library (DLL) to optimize the design of LNG liquefaction cycles. The 

primary objective was to minimize the power consumption for a given configuration of liquefied natural 

gas. 

A nonlinear mathematical model was created and implemented within the General Algebraic Modeling 

System (GAMS). It was then linked to a DLL coded in the “C” programming language, enabling precise 

computation of the intricate thermodynamic properties essential for optimization. 

Furthermore, a preprocessing phase was proposed to enhance the convergence of the model. This phase 

involved initializing and bounding all variables. 

After successfully verifying the model by comparing its results with a base case from existing literature, 

it was applied to two case studies. In Case-1, pure N2 was used as the refrigerant, while in the second in 

Case-2, a mixture of N2 and CH4 was examined, with the mixture composition treated as an optimization 

variable. 

Optimizing Case-2 required solving a more complex model compared to the first, as it involved calculating 

the thermodynamic properties of the refrigerant mixture. In comparison to previously published results 

obtained using GA and ASPEN HYSYS, the deterministic approach yielded the following outcomes: 

• A significant reduction in electrical power consumption when employing pure N2 refrigerant. The 

optimized design led to a 10% reduction in electrical power usage in comparison to the base case, 

saving 1277 kW instead of 1398 kW. 
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• Additionally, optimizing the process using a mixture of N2 and CH4 resulted in an optimal CH4 

composition of 20.5 mol%, leading to approximately a 20% reduction in the total (U×A) value 

compared to using pure N2 as the refrigerant, while maintaining the same electrical power 

consumption of 1278 kW. 

 

In future research, the proposed nonlinear programming (NLP) model will be expanded to add the 

optimization of process layout. Consequently, a proposal for simultaneously optimizing operating 

conditions, sizing, and process layout will be introduced. Incorporating the process layout as an 

optimization variable in the current model will involve discrete decisions, necessitating the development 

of either a mixed-integer nonlinear programming (MINLP) model or a generalized disjunctive 

programming (GDP) model. 
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Highlights 

- A modeling framework for optimizing LNG processes is provided. 

- Dynamic link libraries with an optimization software program are coupled. 

- A rigorous thermodynamic model was implemented for optimization. 

- The proposed equation-based method handles the nonlinearities of the model. 

- The proposed initialization phase assures the convergence of the optimization model. 
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