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Abstract In flocking models, the collective motion of self-driven individuals leads to the
formation of complex spatiotemporal patterns. The Standard Vicsek Model (SVM) consid-
ers individuals that tend to adopt the direction of movement of their neighbors under the
influence of noise. By performing an extensive complex network characterization of the
structure of SVM flocks, we show that flocks are highly clustered, assortative, and non-
hierarchical networks with short-tailed degree distributions. Moreover, we also find that the
SVM dynamics leads to the formation of complex structures with an effective dimension
higher than that of the space where the actual displacements take place. Furthermore, we
show that these structures are capable of sustaining mean-field-like orientationally ordered
states when the displacements are suppressed, thus suggesting a linkage between the onset
of order and the enhanced dimensionality of SVM flocks.
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1 Introduction

Nature presents us with an astonishing variety of swarming and flocking phenomena span-
ning a huge range of lengthscales and organismal complexity, from bacterial colonies and
migrating cells to insects swarms [1–5], from fish schools and shoals to bird flocks and
mammal herds [6–10], extending even to crowd dynamics in human collective behavior
[11, 12]. Therefore, it is hardly surprising the enormous interest that swarming phenomena
has attracted across scientific disciplines, involving not just biologists, but also mathemati-
cians, physicists, and engineers. Indeed, the modeling of swarming and flocking behavior
contributes to the understanding of natural phenomena and becomes relevant for many prac-
tical and technological applications as well, e.g. collective robotic motion, design and con-
trol of artificial microswimmers, microscopic chemical robots (also known as chobots), etc.
[13–17] (see Ref. [18] for a recent review).

In this broad context, the model early proposed by Vicsek et al. [19], i.e. the so-called
Standard Vicsek Model (SVM), has gained large popularity within the Statistical Physics
community, which uses it as an archetypical model to study the onset of order upon the in-
teractive displacement of self-driven individuals. The SVM assumes that individuals tend to
align their direction of movement when they are placed within a certain interaction range.
This rule, which would trivially lead to a fully ordered collective motion, is complemented
by a second one that introduces noise in the communications (interactions) among individ-
uals. The interplay and competition between these simple rules leads to the observation of
a rather complex and interesting nonequilibrium behavior: an ordered phase of collective
motion is found for low enough levels of noise, while a disordered phase is observed at high
noise levels. Further interest in the SVM arises from the fact that the nature of the phase
transition between those phases could be physically described as first- or second-order, de-
pending on the type of noise considered [19–23].

The SVM, which describes a far-from-equilibrium phenomenon, has been compared
with the XY model, a widely studied critical system that operates under equilibrium con-
ditions [24]. The XY model considers nearest-neighbor interacting spins that may adopt
any possible orientation depending on the interplay between temperature and the nearest-
neighbor interaction strength [25, 26]. By interpreting the SVM as a model of interacting
“spins” that can undergo displacements in the direction of the spin, the basic difference be-
tween both models lies precisely in the SVM’s spin displacements. In fact, other relevant
symmetries for the study of phase transitions, such as the dimensionality of the space, the
nature of the order parameter, and the range of the interactions, are the same in both models.
On the other hand, it is well known that, according to the Mermin-Wagner Theorem [27–29],
the XY model, as well as other equilibrium systems sharing the same symmetries, cannot
exhibit large-scale ordered states in 2 dimensions. Therefore, the onset of ordering in the
SVM in 2D is quite intriguing and has become the subject of several studies. Using a vari-
ety of approaches such as hydrodynamic equations [30], long-range links in ad-hoc complex
network substrates [21], and off-lattice simulations [31], it has been shown that particle dis-
placements in the SVM play the role of effective long-range interactions.

Within this context, the aim of this paper is to investigate the structural characteristics
of the complex networks formed by clusters of self-driven individuals during the far-from-
equilibrium stationary states of the SVM. By means of standard topological measures bor-
rowed from the growing field of complex network research, we perform an extensive char-
acterization of the structure of SVM flocks and link our findings to intrinsic characteristics
of the SVM dynamics. Furthermore, we also investigate how the complex networks formed
as a consequence of the particle displacements can still support the onset of orientational or-
dering once those displacements are suppressed (i.e. after freezing the clusters). Since, after
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suppressing the displacements of the individuals, the SVM is essentially analogous to the
XY model defined on complex network substrates, we interpret the onset of local ordering in
terms of topological features of the frozen clusters that form the “spin” system’s substrates.

This manuscript is organized as follows: in Sect. 2, we define the model, describe the
computer simulation method and how the complex networks are obtained; Sect. 3 is devoted
to the presentation and discussion of the results; while our conclusions are stated in Sect. 4.
Finally, the Appendix presents the analytic calculation of the clustering coefficient for SVM
flocks in the large-cluster asymptotic limit.

2 The Standard Vicsek Model

The Standard Vicsek Model (SVM) is perhaps the simplest model that captures the essence
of collective motion in a non-trivial way [19]. It consists of a fixed number of interacting
particles, N , which are moving on a plane. The particles move off-lattice with constant and
common speed v0 ≡ |�v|. Each particle interacts locally and tends to adopt the direction of
motion of the subsystem of neighboring particles (within an interaction circle of radius R0

centered in the considered particle). Since the interaction radius is the same for all particles,
we define it as the unit of length throughout, i.e. R0 ≡ 1.

The updated direction of motion for the ith particle, θ t+1
i , is given by

θ t+1
i = Arg

[∑
〈i,j 〉

e
iθt

j

]
+ ηξ t

i , (1)

where η is the noise amplitude, the summation is carried over all particles within the inter-
action circle centered at the ith particle, and ξ t

i is a realization of a δ-correlated white noise
uniformly distributed in the range between −π and π . The noise term can be thought of as
due to the error committed by the particle when trying to adjust its direction of motion to
the averaged direction of motion of their neighbors. Although several variations to the SVM
have later been considered in the literature, such as different noise types, models without
alignment rule, adhesion between neighbor individuals, bipolar particles, etc. (see [18] for a
review), in this work we focus on the original SVM as formulated by Vicsek et al. in their
seminal article [19].

We implement the model dynamics by adopting the so-called backward update rule: after
the position and orientation of all particles are determined at time t , we update the position
of the particles at time t + 1 according to

�xi
t+1 = �xi

t + �vi
t
, (2)

which is then followed by the update of all velocities at time t + 1 according to Eq. (1). For
a detailed discussion on the impact of different updating rules, see Ref. [22].

The SVM exhibits a far-from-equilibrium phase transition between ordered states of mo-
tion at low noise levels and disordered motion at high noise levels. This order-disorder tran-
sition is manifested by the natural order parameter of the system, namely the absolute value
of the normalized mean velocity of the system, given by

ϕ = 1

Nv0

∣∣∣∣∣
N∑

i=1

�vi

∣∣∣∣∣, (3)
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where ϕ is close to zero in the disordered phase and grows up to one in the ordered phase.
Although the topic remains somewhat controversial, evidence suggests that the phase tran-
sition associated with the onset of large-scale ordered flocks is second-order, at least for the
type of noise and update rule used in this work. For recent discussions on the subject, see
e.g. Refs. [22, 32, 33].

The Standard Vicsek Model is studied by means of simulations implemented as a cellular
automaton, where all particles update their states simultaneously in one time step. The parti-
cles move off-lattice in a 2D square of side L = √

N/ρ, where ρ is the particle density. We
adopted N = 32768, v0 = 0.1, and ρ = 0.25 throughout. For these parameter values (which
are standard in the Vicsek model literature), the critical point takes place at the noise ampli-
tude ηc = 0.134 [34], although we explored a range of other noise values as well. It should
be also pointed out that scaling relations near the transition region have been reported, which
therefore link the behavior of different model parameters. For instance, noise amplitude and
density at criticality are known to scale as η ∼ √

ρ [34]. Since we were interested in station-
ary configurations, we started out our simulations with random initial states and disregarded
the first 2 × 106 time steps. As pointed out in Ref. [31], the order parameter remains un-
changed by taking any smaller value for the velocity amplitude v0 (which only affects the
duration of the transient period, i.e. the time needed to achieve stationary configurations).

After reaching the stationary regime, we determined the set of connected clusters by
means of the Hoshen-Kopelman algorithm [35] adapted for the case of off-lattice systems.
In order to build a set of complex networks that represent the stationary flocks generated
by the SVM dynamics, we defined that two individuals were linked if the distance between
them was within the interaction radius R0. Hence, complex networks representing flocks in
the stationary regime are non-weighted and undirected.

We have also investigated the onset of orientation ordering in so-called frozen clusters
(see Sect. 3.4). Clusters of individuals were first generated using the full SVM dynamics, as
explained above. However, once the stationary flocks were obtained, particle displacements
(Eq. (2)) were suppressed. In these frozen clusters, individuals were still allowed to change
their orientation following Eq. (1), with a noise amplitude in the range 0 < ηf < 1, but their
locations in space remained fixed.

3 Results and Discussion

Earlier studies on the Vicsek Model have shown that, starting with a disordered initial state in
which individuals are randomly distributed, the dynamic rules lead to the formation of local
structures of interacting individuals [19, 20]. These structures, which we will call flocks or
clusters throughout, are not permanent: their shape and size evolve with time, with new indi-
viduals and sub-flocks merging with them and, conversely, other individuals and sub-flocks
separating from them. Indeed, the process of merging and dismemberment of sub-flocks can
be regarded as an effective long-range interaction, since via this mechanism the information
of one part of the system may be carried to a different region of space [21, 30]. Although
individual clusters do change with time, the statistical properties of the ensemble of clusters
are constant once we disregard the initial transient regime. Hence, at any given time, statis-
tical measurements taken over the flock ensemble are representative of the Vicsek Model’s
stationary state. Besides this statistical perspective, in which flocks are the fundamental
building blocks of the flock ensembles that characterize SVM stationary states, flocks can
be regarded as “domains” that carry important information on the ordering of the system at
the mesoscopic level. Bearing in mind these two different perspectives on the role of flocks
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or clusters as key sub-units within a SVM system, we will alternate between the structural
analysis of single clusters and the analysis of flocks from the statistical ensemble approach.

In order to perform an extensive topological characterization of the flocks formed in the
stationary phase of the Vicsek Model, we will use the complex network approach, which pro-
vides us with a conceptual framework and a set of measures that have been applied to a huge
variety of networked systems from such diverse scientific realms as biology, ecology, soci-
ology, physics, computer science, engineering and technology, finance and economics, and
others [36–38]. By means of this approach, we identify connected clusters or flocks as the
basic units of the system and measure their structural properties following well-established
procedures from the complex network literature. As will be shown below, these measure-
ments allow us to characterize the topology of SVM flocks, relate them to other networked
systems, and understand their ability to sustain ordered states.

3.1 Cluster Structure and Size Distribution

Figure 1 shows the complex network structure of typical flocks in the stationary regime
of the Standard Vicsek Model. In this complex network representation, the length of the
links does not correspond to the actual physical distance between neighbor particles. No-
tice, however, that the intrinsic modularization of the network structure carries significant
spatial information. For instance, one can observe two distinct modules that correspond to
actual sub-flocks merging into (or separating from) each other. Indeed, flock collision and
dismemberment have been identified as mechanisms that play a major role in the SVM dy-
namics [22].

Nodes are colored according to their degree: nodes with fewer connections than average
(k/〈k〉 < 1) are shown in white, those slightly more connected than average (1 ≤ k/〈k〉 < 2)

Fig. 1 Complex network structure of a typical SVM flock with 226 nodes, 4147 links, and mean degree
〈k〉 = 36.7. The length of the links does not represent the actual physical distance between neighbor particles.
Node colors indicate their degree: white (k/〈k〉 < 1), grey (1 ≤ k/〈k〉 < 2), and red (2 ≤ k/〈k〉 < 3). This
complex network visualization was created with Cytoscape [39] (Color figure online)
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Fig. 2 Cluster mass probability distributions for different levels of noise, as indicated. The critical noise is
ηc = 0.134 (Color figure online)

in grey, and the highly connected ones (2 ≤ k/〈k〉) in red. In the flock of Fig. 1, 95 % of the
nodes fall in the first two categories, and there are no hubs with k/〈k〉 ≥ 3. We observe a
central core formed by the highly connected nodes, which is wrapped within layers of nodes
that are less and less connected towards the flock periphery. There are no distinguishable
nodes that monopolize most of the links (i.e. network hubs), meaning that there are no
leaders guiding the flock as a whole. Moreover, we observe that leaves (i.e. nodes with just
one neighbor) are very uncommon: only one leaf exists in the graph of Fig. 1, which appears
on the far left. Notice also the abundance of triangles, which indicates high local clustering.

In SVM stationary configurations, connected clusters (such as the network shown in
Fig. 1) are observed over a very wide range of sizes. The probability distribution of cluster
masses is shown in Fig. 2 for different noise values, as indicated. Notice that, here and
throughout this paper, we define the mass of a connected cluster, mc , as the number of
its constituent nodes. Over a wide range of noise values both below and above the critical
point ηc = 0.134, the distributions follow power-laws that cross over to exponential decay
tails. As expected, the power-law span is larger for smaller noise values. The exponents
that characterize the power-law distributions P (mc) ∼ m−βc

c lie in the range 2 ≤ βc ≤ 2.6.
For much smaller systems, Huepe and Aldana [40] had found βc 
 1.5 (for N = 500) and
βc 
 1.9 (for N = 5000), so we conclude that the mass cluster distribution exponents exhibit
rather strong finite-size effects.

In order to gain insight into the structure of the clusters, let us first evaluate the aver-
age path length, APL [41, 42]. According to the standard definition used in the study of
complex networks, for each pair of nodes (A,B) belonging to the same cluster, the path
length 
AB (also known as chemical distance) is given by the minimum number of links that
one has to use in order to pass from one node to the other. Notice that, in networks with
undirected links, this distance is the same in both directions. By calculating all the pairwise
node-to-node path lengths in the cluster and taking the average, one obtains the APL, which
consequently is a characteristic length of the cluster.
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Fig. 3 (a) Log-log plot of the
average path length APL as a
function of the cluster size mc

with ηc = 0.134. The fit of
Eq. (4) to the data yields
D = 4.0(2). (b) Log-log plot of
the average degree 〈k〉 as a
function of the cluster size mc at
the critical noise value
ηc = 0.134. By fitting Eq. (5) to
the data, we obtain α = 0.50(1)

In Euclidean lattices, the volume of an object is related to its characteristic length by an
integer power, i.e. the dimension of the object. Based on this observation, as well as on the
experience gained in the study of fractal objects, it is customary to define the dimension (D)
of a complex network according to:

APL ∝ m1/D
c , (4)

where mc is the complex network size or, in the present context, the cluster mass [42].
Figure 3(a) shows a log-log plot of the APL versus mc for SVM flocks with ηc = 0.134, i.e.
clusters corresponding to the critical point of the second-order phase transition. The best fit
to the data yields D = 4.0(2), which strongly suggests that the effective dimension of the
clusters is D = 4.

Another quantity of interest for the characterization of complex networks is the average
degree distribution as a function of the cluster mass [41, 42]. Figure 3(b) shows a log-log
plot of 〈k〉 versus mc , which demonstrates a power-law behavior, i.e.

〈k〉 ∝ mα
c , (5)

where α = 0.50(1).
The average degree is only the first moment of a more general property of a network,

namely the degree distribution P (k), defined as the probability of a vertex to have k links.
We evaluated P (k) vs k for different cluster mass ranges, as shown in Fig. 4 for flocks
generated at the critical noise value ηc = 0.134. Notice that, by scaling the horizontal axis
by the average degree, all curves collapse, thus indicating that clusters of all sizes have a self-
similar structure. Analogous results (not shown here for the sake of space) are obtained by
analyzing clusters in the network ensemble corresponding to the ordered phase (i.e. η < ηc).

The collapsed distribution is short-tailed with most nodes having degrees less than 3〈k〉.
Indeed, as noticed above when discussing the structure of individual clusters (Fig. 1), flocks
are not guided by leaders, thus the short-tailed nature of the degree distribution as opposed
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Fig. 4 Degree probability as a function of the normalized degree, obtained at the critical noise value
ηc = 0.134 and for different cluster mass ranges, as indicated (Color figure online)

to scale-free-like structures characterized by the existence of hubs. Notice, however, that
despite the short-tailed feature, the observed distribution does not match a Poisson distribu-
tion. In fact, Poisson degree distributions are characteristic signatures of classical random
graphs, which also show small local clustering and a substantial fraction of leaves, while
SVM flocks display high local clustering and a negligible fraction of leaves. We conclude
that the short-tailed SVM distribution is a result of geographical constraints due to the inter-
action radius cutoff, which prevents the emergence of scale-free topologies.

3.2 Effective Dimension of Flocking Clusters

In the previous section, we found through Eq. (4) that SVM clusters have an effective di-
mension D = 4. Moreover, the average degree was found to scale with the cluster mass as
〈k〉 ∝ m

1/2
c , Eq. (5). Based on these observations, we will now conjecture that these results

can be rationalized in terms of a projection of a D = 4 dimensional object into a d = 2
dimensional space.

Let us explore the effective topology of SVM clusters by considering the compactifica-
tion of a hypercubic regular lattice of dimension D and mc nodes. Hence, we begin with a
hypercube of side L = m

1/D
c and coordination number kD , as shown in Fig. 5. If we com-

pactify it once, keeping the same number of nodes but projecting them into a hypercube
of side L and D − 1 dimensions, the coordination number is increased to kD−1 ≈ kD × L.
Notice that we can think of this process by assuming that each particle (node) in the origi-
nal hypercube is slightly displaced at random off its corresponding lattice site, so that, after
the projection, we obtain increased local densities without any two particles sharing exactly
the same position. Indeed, the compactification process generates “particle lumps” that are
responsible for the enhanced effective coordination number. After projecting multiple times
(from the original D dimensions into a d-dimensional hypersurface), the coordination num-
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Fig. 5 Schematic representation
of the compactification process,
which leads to lower-dimensional
structures with enhanced
effective coordination numbers
that scale according to Eq. (7)
and average path length given by
Eq. (4). Two clusters of nodes are
shown in blue and red, as well as
the characteristic lengthscales L,

inter, and 
intra. See more details
in the text (Color figure online)

ber becomes

kd ≈ kDLD−d , (6)

or, by replacing the relation L = m
1/D
c ,

kd ∝ m
D−d

D
c . (7)

On the other hand, we can estimate the average path length of the compactified d-dimen-
sional object. This object has side L and lumps formed by nd = mc/L

d nodes around each
one of the Ld lattice sites. As shown in Fig. 5, the distance between nodes that belong to
the same lump is of the order of unity: 
intra ∼ O(1). However, node pairs that belong to
different lumps have 
inter ∼ O(L) on average. Thus,


 ∼
{
O(1) for nd(nd − 1)/2 × Ld node pairs,
O(L) for n2

d × Ld(Ld − 1)/2 node pairs.
(8)

Hence, the leading contribution to the average path length is due to node pairs in different
lumps and APL ≡ 〈
〉 ∝ L, which agrees with Eq. (4) after replacing L = m

1/D
c . In this way,

by taking D = 4 and d = 2, the compactification mechanism leads to node clusters that have
APL ∝ m

1/4
c (from Eq. (4)) and 〈k〉 ∝ m

1/2
c (from Eq. (7)), in agreement with the exponents

measured for SVM clusters. Let us point out that the behavior of L as a function of mc

signals the presence of a nontrivial scaling law for the areas of the clusters. In fact, L ∝ m
1/4
c

is compatible with areas that grow as m
1/2
c instead of lineary in mc.

Summing up, in this section we focused our attention on the average degree and charac-
teristic length of clusters of different mass. Our heuristic arguments show that SVM clusters
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can be understood as 4-dimensional networked objects compactified into a 2-dimensional
space. As will be discussed below (see Sect. 3.4), these arguments are also useful in order
to understand the onset of long-range ordering in frozen clusters.

3.3 Clustering Coefficient Analysis of SVM Flocks

A very important topological measure of a complex network is the clustering coefficient,
C [41, 42]. The clustering coefficient for node i with ki links is defined as

Ci = 2ni

ki(ki − 1)
, (9)

where ni is the number of links between the ki neighbors of i. Then, the network’s clustering
coefficient is calculated as the average of Ci taken over all vertices, i.e. C = 〈Ci〉. Empirical
results over a wide variety of real networks have shown that C is significantly higher for
most real networks than for corresponding random networks of similar size [41, 43, 44].
Furthermore, the clustering coefficient of real networks is to a high degree independent
of the number of nodes in the network. Interestingly, however, the archetypical complex
network models predict a marked drop of the clustering coefficient with the network size N .
For instance, classical random graphs have C = 〈k〉/N , while the Barabási-Albert scale-free
model leads to C ∼ N−0.75 [41].

Figure 6 shows the dependence of C on mc . Notice that flocks of all sizes display a very
high degree of clustering, as we anticipated based on the high density of triangles observed
in the network structure from Fig. 1. Also, we observe that the size dependence is very weak:
fitting the scaling relation C ∝ m

−γ
c , we obtain γ = 0.025(1).

As shown in the Appendix, the asymptotic clustering coefficient in the limit of an in-
finitely large cluster, C∞, can be calculated as a function of the density of particles inside
the cluster, ρin, according to

C∞ = [(4π − 3
√

3)ρin − 8]πρin

4(πρin − 1)(πρin − 2)
, (10)

which is expected to be an excellent approximation in the case of large clusters where
the surface-to-bulk ratio is negligible. Since the scaling relation 〈k〉 ∼ m0.5

c implies that

Fig. 6 Log-log plot of the
clustering coefficient C as a
function of the cluster size mc .
Inset: after subtracting the
asymptotic clustering coefficient
C∞, the exponent γ∞ = 0.30(2)

is determined
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Fig. 7 Log-log plot of the
clustering coefficient C(k) as a
function of the degree k. Due to
their strong geographical
constraints, flocks have a
nonhierarchical network
topology

ρin → ∞ in the mc → ∞ limit, Eq. (10) yields

C∞ = 1 − 3
√

3

4π

 0.587. (11)

The inset to Fig. 6 shows a log-log plot of C − C∞ as a function of the cluster mass mc ,
where it is shown that C −C∞ decays with mc as a power law with exponent γ∞ = 0.30(2).

In order to determine whether modular organization is responsible for the high clustering
coefficients seen in many real networks, Ravasz et al. [45, 46] introduced the scaling law

C(k) ∝ k−βh , (12)

where C(k) represents the distribution of the clustering coefficient as a function of the node
degree and βh is the exponent that measures the hierarchical structure of complex networks.
Indeed, it has been observed that many real networks are composed of modules that combine
into each other in a hierarchical manner. These hierarchical networks are uncovered by a
scaling behavior of C(k) that follows Eq. (12) with βh 
 1. Figure 7 shows a log-log plot
of C(k) as a function of the degree. The drop with the degree is very mild, namely βh =
0.043(1), which is also compatible with a logarithmic decay. This result points to a lack
of hierarchical organization in the network structure of flocks. We argue that, since links
in the network construction process are distance-driven and limited by spatial constraints
(namely, that particles must lie within an interaction radius R0 in order to be connected), the
emergence of a hierarchical topology is prevented.

Another important network characterization is the degree of assortative mixing, i.e.
whether high-degree vertices are preferentially attached to other high-degree vertices (in
which case the network is termed assortative) or whether, on the contrary, high-degree
vertices are preferentially attached to low-degree ones (in the case of disassortative net-
works) [47, 48]. Most often, social networks are assortatively mixed, while technological
and biological networks tend to be disassortative. Network models such as classical random
graphs and Barabási-Albert scale-free networks are neither assortative nor disassortative.

One way to determine the degree of assortative mixing is by considering the average de-
gree 〈kNN〉 calculated among the nearest-neighbors of a node of degree k. Figure 8 show a
log-log plot of the 〈kNN〉 vs k distribution, which reveals a very high degree of assortative
mixing. Indeed, by fitting the data to a power-law of the form 〈kNN〉 ∝ kγa , the assortativity
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Fig. 8 Log-log distribution of
the average degree 〈kNN〉 of
nearest-neighbors of nodes of
degree k, which reveals that
SVM flocks have a highly
assortative network topology

exponent turns out to be γa = 0.848(4). Alternatively, one can measure the degree of assor-
tativity as the Pearson correlation coefficient of the degrees at either ends of an edge. This
measure, originally introduced by Newman [47], is obtained from the expression

r = 1

σ 2
q

∑
ij

ij (eij − qiqj ), (13)

where i, j are the degrees of the vertices at the ends of a given edge and the summation is car-
ried over all edges in the network. Instead of using a node’s degree ki , here we are interested
in the node’s remaining degree qi = ki −1 that excludes the edge between the two nodes be-
ing considered. Moreover, eij is the joint probability distribution of the remaining degrees of
the two vertices at either end of a randomly chosen edge [49], and σ 2

q = ∑
k k2qk −[∑k kqk]2

is the variance of the qk distribution. The definition of r through Eq. (13) lies in the range
−1 ≤ r ≤ 1, with assortative networks having r > 0 and disassortative ones having r < 0.
For instance, several scientific collaboration networks show assortative mixing in the range
0.12 ≤ r ≤ 0.36, while the network of connections between autonomous systems on the
Internet has r = −0.19 and the food web from undirected trophic relations in Little Rock
Lake, Wisconsin has r = −0.28 [47]. The Pearson correlation coefficient measured among
large flocks turns out to be rA = 0.82(6), i.e. SVM flocks have very high assortative mixing.

As mentioned above, it is well known that high local clustering and high assortativ-
ity are distinct hallmarks of social networks. Moreover, the imitation mechanism between
neighboring interacting particles introduced by the SVM dynamics resembles well-studied
“ferromagnetic”-like interactions that play a key role in the occurrence of social cooperative
phenomena [50, 51]. Hence, these observed structural properties of SVM flocks can be inter-
preted as arising from the social nature that underlies the behavior of individuals according
to the SVM dynamics.

3.4 Onset of Orientation Ordering in Frozen Clusters

One of the most intriguing features of the SVM is the onset of long-range ordering and the
existence of an order-disorder phase transition in d = 2 dimensions. In order to explore this
phenomenon, here we analyze whether the topology of frozen clusters, once particle dis-
placements and cluster rearrangements are suppressed, is capable by itself of supporting the



282 G. Baglietto et al.

existence of an orientationally ordered phase. For this purpose, we first generate configura-
tions of clusters by applying the full SVM dynamics. Once the non-equilibrium stationary
state is reached, we identify the clusters and “freeze” them, i.e. we disallow any further dis-
placements of the individuals. From that point on, the orientation of the particles is allowed
to evolve according to the usual rule (Eq. (1)), but subsequent displacements (Eq. (2)) do
not occur. We will refer to this stage as “restricted SVM dynamics”.

In this section, we focus on single flocks, regarding them as domains that carry impor-
tant information on the ordering of the system at the mesoscopic level. With this aim, we
explore the relation between local topology and the ability for the restricted SVM dynamics
to sustain local ordering. Clearly, with the full SVM dynamics, the onset of ordering within
individual flocks is required in order to have ordered system-wide macroscopic states. How-
ever, the full SVM dynamics has an entanglement between particle displacements (“spin”
translations) and XY-type interactions (“spin” rotations). By resorting to “frozen clusters”,
we disentangle these two major components. Notice that, although ordering in individual
flocks is a necessary condition to have macroscopic system-wide ordering in the full SVM
dynamics, the sufficient conditions that guarantee macroscopic order are not understood
yet. We know that flocks merge, collide, and dismember, and it is by virtue of these trans-
port mechanisms that the ordering information within one flock is carried across the system,
thus resulting in effective long-range interactions [21, 30]. As shown by Toner et al. [30, 52],
the spontaneous symmetry breaking of the velocity field leads to “Goldstone mode” fluctua-
tions. In equilibrium systems, such fluctuations are strong enough to destroy the long-range
order in 2 dimensions. However, the nonequilibrium effect of the nonlinear terms (which vi-
olate Galilean invariance, as expected due to the existence of a preferential reference frame)
stabilize long-range ordering in the continuum model of flocking. Notice also that we are
concerned with stationary states (see Sect. 2 for simulation details), hence ensemble aver-
ages are independent of time. While individual flocks (such as the one shown in Fig. 1)
change over time, flock ensemble properties (such as the cluster mass distributions shown in
Fig. 2) are stationary. However, the detailed mechanisms leading to the emergence of global
order from locally ordered clusters are not well understood yet and remain an open question
that lies beyond the scope of this work.

Figure 9 shows the dependence of the order parameter ϕ on the inverse cluster mass
m−1

c , as obtained for frozen clusters. The clusters were first generated using the full SVM
dynamics with critical noise ηc . After freezing them, the restricted SVM dynamics was
applied using different noise values in the 0 < ηf < 1 range, as indicated. For each ηf , the
corresponding order parameter plot exhibits a plateau in the m−1

c � 1 region, thus indicating
that a finite order parameter ϕ∞ > 0 persists in the thermodynamic limit. Indeed, the order
parameter in the large-cluster limit remains positive even for very large noise amplitudes,
e.g. ϕ∞ 
 0.04 for ηf = 0.9.

Let us now present additional evidence of the orientation ordering sustained by SVM
frozen clusters. The symbols in Fig. 10 show the order parameter extrapolations to the
m−1

c → 0 limit as a function of the noise amplitude ηf . For the sake of comparison, this
figure also shows exact results from the mean field (i.e. fully-connected graph) solution
obtained for an infinite density of individuals, namely ϕMF = sin(πηf )/πηf [53], which
closely follows the trend of our computer simulation results. The inset to Fig. 10 shows a
fit to the scaling relation ϕ∞ ∼ |ηf − ηf,c|β (dashed line) in the neighborhood of the criti-
cal frozen noise amplitude ηf,c . By fitting our simulation data to this relation, we find that
β = 1.03(5) and ηf,c = 0.935(5). The leading term in the expansion of the mean-field solu-
tion around (ηf,c)MF = 1 leads to β = 1, in excellent agreement with the simulation results.

Figure 11(a) shows the order parameter as a function of the noise amplitude ηf for SVM
frozen clusters grouped according to cluster size, as indicated. Except for the very small
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Fig. 9 Log-log plot of the order parameter as a function of the inverse cluster mass for frozen clusters with
different noise levels, as indicated (Color figure online)

Fig. 10 Plot of the asymptotic values of the order parameter versus the noise amplitude. The solid line shows
the mean field (i.e. fully-connected graph) results [53]. Inset: Simulation results (symbols) and fit to the data
(dashed line), from which β = 1.03(5) and ηf,c = 0.935(5) are obtained

clusters, we observe that the ordering behavior falls into a universal curve that is essentially
size-independent. Therefore, the orientation ordering signaled by ϕ > 0 is expected to hold
for all noise amplitudes below the critical value ηf,c = 0.935 in the thermodynamic limit
(mc → ∞). In order to complete this picture, we can perform a finite-size scaling data col-
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Fig. 11 (a) Order parameter as a function of the noise amplitude ηf for SVM frozen clusters grouped
according to cluster size, as indicated. (b) Data collapse that shows universal behavior according to standard
finite-size scaling laws of critical systems, using ηf,c = 0.935, β = 1, ν = 1, and D = 4 (Color figure online)

lapse. From standard finite-size scaling theory, we know that 〈ϕ〉Lβ/ν ∼ |ηf − ηf,c|L1/ν ,
where L is a characteristic linear scale of the system and ν is the exponent that characterizes
the divergence of the correlation length at criticality [54]. Moreover, by combining Joseph-
son, Rushbrooke and Fisher’s critical exponent relations (see, e.g., Ref. [26]), we obtain the
relation ν = 2β/(D − 2). By replacing β = 1 (obtained from expanding the mean-field so-
lution to leading term, which is in agreement with the fit to our data shown in the inset to
Fig. 10) and D = 4 (the effective dimension of SVM clusters, as discussed in Sect. 3.2), we
obtain ν = 1. Furthermore, we can substitute L ∼ m

1/D
c in the finite-size scaling relation.
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Thus, the critical behavior of the orientation of particles under the restricted SVM dynamics
should manifest itself as the collapse of data from frozen clusters of different sizes when
plotted as 〈ϕ〉mβ/(Dν)

c ∼ |ηf − ηf,c|m1/(Dν)
c with ηf,c = 0.935, β = 1, ν = 1, and D = 4. Fig-

ure 11(b) shows the data collapse that confirms the finite-size scaling behavior of the system.
Based on the excellent agreement between our results and the expected behavior from finite-
size scaling theory, we argue that the observed mean-field-like behavior is related to the fact
that D = 4 is the upper-critical dimension of the XY model, which essentially has the same
symmetries as the SVM defined on frozen clusters.

4 Conclusions

In this work, we presented a detailed study of the structural properties of Standard Vicsek
Model (SVM) flocks from a complex network perspective. The main results are summarized
in Table 1. The complex network structure of SVM flocks is characterized by a short-tailed
degree distribution, very high clustering, very high assortative mixing, and nonhierarchi-
cal topology. Qualitatively, we can explain these common features as due to the intrinsic
distance-driven, “ferromagnetic” nature of the Vicsek model. On the one hand, the interac-
tion radius imposes a cutoff in the range of the particle interactions, which is reflected in the
nonhierarchical topology of SVM clusters and the short-tailed degree distribution. On the
other hand, the strong tendency among neighbor particles to align with each other, akin to
multiple-state ferromagnets such as the XY model and resembling typical interaction mech-
anisms of social networks, leads to very high local clustering and assortative mixing. Based
on these observations, we can characterize SVM flocks as geographically-constrained “so-
cial” networks.

Furthermore, the average path length dependence on cluster size shows the formation of
complex structures with an effective dimension higher than that of the space where the actual
displacements take place. These observations are consistent with assuming SVM clusters as
4-dimensional networked objects compactified into a 2−dimensional space. Further support
to these conclusions comes from our investigation on the onset of ordering in frozen clusters
(i.e. when the particle displacements are suppressed). Indeed, we observe that frozen clusters
are capable of sustaining mean-field-like orientationally ordered states (analogously to the

Table 1 Summary of results
Observable Result

Cluster size distribution: P ∝ m
−βc
c βc = 2 − 2.6

Average path length: APL ∝ m
1/D
c D = 4.0(2)

Average degree distribution: 〈k〉 ∝ mα
c α = 0.50(1)

Degree distribution: P(k) vs k Short-tailed

Clustering coefficient distribution: C ∝ m
−γ
c γ = 0.025(1)

Asymptotic clustering coefficient: C∞ C∞ = 0.587

Reduced clustering coefficient distribution:
C − C∞ ∝ m

−γ∞
c

γ∞ = 0.30(2)

Hierarchical modularity: C(k) ∝ k−βh βh = 0.043(1)

Assortative mixing: 〈kNN〉 ∝ k−γa γa = 0.848(4)

Assortative mixing (Pearson correlation coefficient) r = 0.82(6)

Frozen clusters: limmc→∞ ϕ Mean Field
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XY model in 4D). This behavior is in sharp contrast with that of equilibrium systems in 2D

space with short-range interactions and O(2) symmetry defined on translationally-invariant
substrates, which are indeed prevented from displaying ordered phases due to the Mermin-
Wagner Theorem [27–29].

Most of the quantitative results in this work were obtained in the critical region of the
SVM. A full quantitative analysis of the behavior of Vicsek flocks within the ordered phase
and its dependence upon the noise amplitude would require a great computational effort that
lies beyond the scope of the present paper, but remains a promising open question that would
certainly deserve attention in further work.
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Appendix

Here we derive Eq. (10) for the mean clustering coefficient of a vertex in the bulk of a large
cluster. Large flocks generally consist of a core that contains most of the particles and links
between them distributed in a highly uniform fashion. Indeed, the near-uniform distribution
of nodes and links within flock cores is not only spatial but it also manifests itself in the
network’s structure, as for instance shown by the short-tailed degree distributions in Fig. 4.
Based on these observations and for the sake of simplicity, we assume that particles in the
bulk are distributed homogeneously with a constant density ρin.

Let us recall that the clustering coefficient for node i with ki links is defined as
Ci = 2ni/(ki(ki − 1)), where ni is the number of links between the ki neighbors of i. Since
particles are distributed uniformly within the interaction radius R0 = 1, it follows straight-
forwardly that ki = πρin − 1. In order to evaluate ni , let us focus our attention on one of the
neighbor nodes of i, which we call node j . The number of nodes that are neighbors of i and
j simultaneously is, on average, given by

nij = ρinAij − 2, (14)

where Aij is the area of the intersection between the interaction circles centered at i and j .
Aij , which depends only on the distance r between i and j , can be expressed as

Aij (r) = 2
∫ √

1− r2
4

−
√

1− r2
4

(√
1 − x2 − r

2

)
dx. (15)

Therefore, the number of links between the ki neighbors of i is obtained by replacing
Eq. (15) in Eq. (14) and integrating ρinnij /2 over the unit circle (notice that we divide by 2
because we are dealing with undirected links, so we must count each pair of neighbor nodes
just once), i.e.

ni = πρin

∫ 1

0
rnij (r)dr. (16)

Solving the integrals and replacing in the definition of the clustering coefficient, we finally
arrive at

C∞ = [(4π − 3
√

3)ρin − 8]πρin

4(πρin − 1)(πρin − 2)
, (17)
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which provides an analytic solution for the mean clustering coefficient of particles in the
bulk of a large cluster.
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