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The formal characterization of abstract argumentation has allowed the study of many exciting 
characteristics of the argumentation process. Nevertheless, while helpful in many aspects, 
abstraction diminishes the knowledge representation capabilities available to describe naturally 
occurring features of argumentative dialogues; one of these elements is the consideration of 
the topics involved in a discussion. In studying dialogical processes, participants recognize 
that some topics are closely related to the original issue; in contrast, others are more distant 
from the central subject or refer to unrelated matters. Consequently, it is reasonable to study 
different argumentation semantics that considers a discussion’s focus to evaluate acceptability. 
In this work, we introduce the necessary representational elements required to reflect the 
focus of a discussion. We propose a novel extension of the semantics for multi-topic abstract 
argumentation frameworks, acknowledging that every argument has its own zone of relevance in 
the argumentation framework, leading to the concepts of neighborhoods and communities of 
legitimate defenses. Furthermore, other semantic elaborations are defined and discussed around 
this structure.

1. Introduction

Computational modeling of arguments is at the heart of many real-world scenarios given that they are especially suited for dealing 
with conflicting information since they are based on the study of reasons for and against specific claims. Arguments capture different 
ways in which available information or points of view may be leveraged towards reaching certain conclusions, which captures not 
only applications that are suited for this kind of knowledge representation and reasoning—such as political debates or discussions 
on social media [16,25]—but also other applications that need to handle conflicting points of view. Examples of the latter are 
recommendation systems [22], cybersecurity applications [27,23], health information systems [19,24], legal reasoning [2,28,26], 
and other decision-support systems [1,10].

Argumentation has been studied from a computational point of view for quite some time, with two main branches emerging with 
respect to the level of detail they consider: abstract and structured. In this paper, we focus on the former, whose main goal is to 
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Fig. 1. Same-distance defenders under irregular network.

characterize one or more argumentation semantics that indicate which arguments are accepted and which ones are not. In order to do 
so, such approaches abstract away the underlying structure of arguments, focusing only on the relationships between them. Therefore, 
the intrinsic characteristics of different proposals are not taken into account, and arguments are simply treated as abstract entities 
involved in several relationships like attack, defeat, support and weakening, among others [12,3,5,29]. In this conceptual direction, 
Dung [12] introduced Abstract Argumentation Frameworks (AFs) where arguments are atomic entities, and a binary attack relation 
is defined. The focus is put on argument interaction and the possible outcomes of the argumentation process. Since then, and due 
to the highest level of abstraction adopted in this seminal work, many authors introduced extensions enriching the representational 
capabilities of the basic framework by attaching additional features such as preference, support relations, weights, probability, and 
values [3,5,29,21,7,9].

In this work, we are interested in the study of argument scenarios where semantic information about the content of arguments 
is taken into account. Thus, an argument is associated with a set of abstract topics, denoting concepts somehow referenced by that 
argument. This model was introduced by Budán et al. in [6], where Hashtagged Argumentation Frameworks were presented. In this 
framework, arguments are associated with abstract labels, called topics or simply hashtags, denoting concepts possibly referred to 
by arguments. A formalization of distance between two topics is also introduced, based on a semantic network. Then, arguments 
may refer to different topics of varied proximity, inducing notions of distance also between arguments. In this way, an argument 
may defend another argument, which may be close or distant according to their hashtags, providing a pathway to distinguishing 
important features in argument extensions. For instance, an argument 𝙰 may refer to pandemic, to quarantine, and to the welfare state, 
while another argument 𝙱 may refer to pandemic and online music streaming. Although both arguments are related to one same issue, 
argument 𝙱 may not be as helpful while discussing health topics as argument 𝙰.

In Hashtagged Argumentation Frameworks, the notion of admissibility semantics based on proximity is defined, where only close

arguments can be involved in argument defense—an argument is considered close enough to defend another argument if the distance 
between them is smaller than a particular threshold 𝜏 , and any potential defender beyond 𝜏 will not be considered. This is the basis 
of a proximity-based semantics as introduced in [6]; however, this approach can be considered to be restrictive since the threshold is 
the same for the entire framework. This can be revised in order to capture a more refined version of proximity semantics. Consider 
the framework of Fig. 1, where only the relevant hashtags are mentioned and, for simplicity, there is only one hashtag per argument. 
Consider the distance between arguments as the length of the shortest path between their single hashtags. In this case, the distance 
between 𝙰 and 𝙲 and between 𝙳 and 𝙵 is 3. If the threshold of proximity for the framework is 3, both 𝙰 and 𝙳 are defended by 𝙲 and 
𝙵, respectively. However, there seem to be more closely related topics in the upper area of the semantic graph, where health issues 
are addressed, than around #tourism. Since the semantic network of hashtags is not necessarily uniform, a universal threshold may 
not be adequate in all cases. An individual threshold for 𝙰 may thus drop arguments about tourism, while a different threshold for 𝙳
may enable all the arguments as defenders as long as they are both related to health issues.

In this work, we refine the proximity semantics of Hashtagged Frameworks by defining an individual scope of proximity for every 
argument, which may vary in range from argument to argument. As discussed above, individual thresholds are reasonable since the 
closeness depends on the intrinsic set of topics of both arguments and the topology of the semantic network. Hence, an argument 𝙰
has an associated neighborhood formed by all the arguments close enough to 𝙰. Neighborhoods vary in size since they are induced 
by the topics of every individual argument. This leads to a new notion of proximity-based admissibility of arguments, where only 
defenders in the neighborhood are allowed, and out of range arguments are not considered relevant for interaction.

There exists, however, a particular effect that deserves further analysis: an argument may belong to different neighborhoods and 
it may then influence the acceptance or rejection of arguments not sharing the same neighborhood space. Suppose 𝙰 and 𝙱 are two 
arguments that are not in the same neighborhood, but share a common neighbor 𝙲. This is possible since the neighbor relation is 
not transitive, so 𝙰 and 𝙱 are not necessarily neighbors. Hence, argument 𝙲 is close enough to influence the status of arguments 𝙰
and 𝙱, even when neither 𝙰 nor 𝙱 identify each other as neighbors. This has some semantic consequences that ought to be studied, 
such as the fact that neighborhoods may form a network, linked by common arguments; we refer to this collection of neighborhoods 
2

as “communities”, and it is a novel formalization presented in this work. Intuitively, an argument 𝚇 in a community of 𝚈 may be 
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allowed to defend 𝚈 since, although not a neighbor, it is not completely disconnected. Argument 𝚇 is considered a “citizen” of an 
expanded, more flexible, notion of neighborhood for 𝚈. We define an admissibility semantics based on communities, and then inquire 
about the relation with previous semantic elaborations.

An early version of the neighborhood-based semantics is presented in [13]; however, in the present work, the concept of neighbor-

hood has been significantly refined, incorporating mathematical tools to establish the threshold of each argument based on its local 
and global topological features. As a result, the selected threshold more accurately represents the scope of arguments based on the 
semantic network of topics. Furthermore, as was mentioned before, here we introduce a novel notion of community, illustrating how 
neighborhoods can yield an improved set of accepted arguments. This concept of community constitutes a comprehensive refinement 
of the acceptability notions previously proposed for individual argument neighborhoods. In this direction, we explore the connections 
between the semantic notions of neighborhood and community, as well as their relevance to the semantics presented in the basic 
proximity formalism within the domain of argumentation. We also provide a full case study in which we analyze the argumentative 
model from various perspectives as outlined in the paper. This includes a comparative analysis of the semantics employed in each of 
these perspectives.

These two modifications of the original proximity-based semantics lead to novel admissible semantic notions that are addressed in 
this work. This paper is thus organized as follows. In Section 2, the multi-topic abstract argumentation frameworks are reviewed. In 
Section 3, we first introduce the intuitions behind a topological analysis over a hashcloud and the argumentation domain, formalizing 
later how we can compute topological properties associated with an argument, and then address the notion of neighborhood of an 
argument. Next, in Section 4, new proximity semantic concepts are introduced. In Section 5, we restrict defenses considering neigh-

borhoods and community notions, which preserves Dung’s original admissibility semantics. Furthermore, we present the properties 
that the proposed semantics satisfies, and we analyze the existing relationships between them. Finally, Sections 6 and 7 are devoted 
to discussion of related work and concluding remarks, respectively. Additionally, there are two appendices: Appendix A presents a 
case study that provides an application example in a real-world scenario, while Appendix B contains detailed formal proofs of the 
results presented in this work.

2. Background

In the realm of abstract argumentation, Dung introduced in [12] a conceptual framework that laid the foundation for analyzing 
and understanding complex reasoning structures. Building upon Dung’s pioneering work, Budán et al. in [6] extended this frame-

work to incorporate a nuanced perspective, delving into the thematic facets inherent to argumentative discourse. Dung’s original 
model provided a structured approach to abstract argumentation, while Budán’s extension enriched this paradigm by elucidating the 
thematic dimensions that arguments traverse within the discourse landscape. This section explores the theoretical underpinnings of 
Dung’s abstract argumentation and Budán’s augmentation, elucidating the thematic topics integral to the articulation and analysis of 
arguments in the context of argumentative discussions.

2.1. Abstract argumentation framework

In [12] the notion of Abstract Argumentation Frameworks (AF) was introduced as the simplest model for argumentation. In these 
frameworks, an argument is considered as an abstract entity with unspecified internal structure, which is related to other arguments 
through a conflict relation called attack.

Definition 1 (Argumentation framework [12]). An argumentation framework (AF) is a pair ⟨𝙰𝚛𝚐,𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩, where 𝙰𝚛𝚐 is a set of 
arguments, and 𝙰𝚝𝚝𝚊𝚌𝚔𝚜 is a binary relation defined over 𝙰𝚛𝚐 (representing attack), that is, 𝙰𝚝𝚝𝚊𝚌𝚔𝚜 ⊆ 𝙰𝚛𝚐 × 𝙰𝚛𝚐.

An argument 𝙰 may be attacked by another argument 𝙱. If 𝙱 is attacked by a third argument 𝙲, then it is said that 𝙲 defends 𝙰. 
This is the main idea behind acceptability semantics, defined as follows.

Definition 2 (Semantic notions [12]). Let 𝐴𝐹 = ⟨𝙰𝚛𝚐,𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩ be an argumentation framework, then:

– A set 𝚂 ⊆ 𝙰𝚛𝚐 is said to be conflict-free if there are no arguments 𝙰, 𝙱 ∈ 𝚂 such that (𝙰, 𝙱) ∈ 𝙰𝚝𝚝𝚊𝚌𝚔𝚜.

– An argument 𝙰 ∈ 𝙰𝚛𝚐 is acceptable with respect to a set 𝚂 ⊆ 𝙰𝚛𝚐 iff for each 𝙱 ∈ 𝙰𝚛𝚐 that attacks 𝙰 there exists an argument 
𝙲 ∈ 𝚂 such that (𝙲, 𝙱) ∈ 𝙰𝚝𝚝𝚊𝚌𝚔𝚜; it is also said that 𝙱 is attacked by 𝚂.

– A conflict-free set 𝚂 ⊆ 𝙰𝚛𝚐 is admissible iff each argument in 𝚂 is acceptable with respect to 𝚂.

– An admissible set 𝚂 ⊆ 𝙰𝚛𝚐 is a complete extension iff 𝚂 contains each argument that is acceptable with respect to 𝚂.

– A set 𝚂 ⊆ 𝙰𝚛𝚐 is the unique grounded extension of AF iff 𝚂 is a ⊆-minimal complete extension.

– A set 𝚂 ⊆ 𝙰𝚛𝚐 is a preferred extension of AF iff 𝚂 is a ⊆-maximal complete extension.

– A set 𝚂 ⊆ 𝙰𝚛𝚐 is a stable extension of AF iff 𝚂 is a conflict free set and 𝚂 attacks every argument in 𝙰𝚛𝚐 ⧵ 𝚂.

Next, we present an abstract example in order to clarify the concepts introduced in the previous definition. Note that in this 
context the topics associated with the arguments are not analyzed, since only the abstract entity with their relation (attacks) are 
3

involved in the argumentation process.
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Fig. 2. Dung argumentation framework from Example 1.

Example 1. Consider the 𝐴𝐹 = ⟨𝙰𝚛𝚐,𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩, graphically represented in Fig. 2, where:

𝙰𝚛𝚐𝚜 = {𝙰, 𝙱, 𝙲, 𝙳, 𝙴, 𝙵, 𝙶, 𝙷, 𝙸, 𝙹, 𝙺, 𝙻, 𝙼, 𝙽, 𝙾}.

𝙰𝚝𝚝𝚊𝚌𝚔𝚜 = {(𝙰, 𝙱), (𝙱, 𝙷), (𝙲, 𝙳), (𝙳, 𝙲), (𝙳, 𝙵), (𝙴, 𝙹), (𝙵, 𝙴), (𝙷, 𝙹), (𝙸, 𝙰), (𝙺, 𝙳), (𝙳, 𝙺), (𝙻, 𝙼), (𝙼, 𝙽), (𝙽, 𝙾), (𝙾, 𝙹)}

The set 𝚂1 = {𝙱, 𝙶, 𝙸, 𝙻, 𝙽} is a complete extension since it contains all the arguments that are defended by 𝚂1. Finally, it can be 
verified that 𝚂1 is a minimal set satisfying the previous conditions, and therefore it is the unique grounded extension of AF. Sets 
𝚂2 = {𝙱, 𝙲, 𝙵, 𝙶, 𝙸, 𝙹, 𝙺, 𝙻, 𝙽} and 𝚂3 = {𝙱, 𝙳, 𝙴, 𝙶, 𝙸, 𝙻, 𝙽} are admissible and complete sets. Finally, 𝚂2 and 𝚂3 are the maximal sets 
verifying the previous conditions, and therefore they are preferred extensions of AF.

Dung’s argumentation framework determines the status of arguments by considering only relations among them. Next, an exten-

sion of Dung’s framework using an abstract model for argument topics is presented.

2.2. Hashtagged argumentation framework

A hashtagged framework [6] extends the expressive power of abstract frameworks by adding the notion of topics that are ad-

dressed, or referred to, by arguments. As it is usual in abstract frameworks, no reference to the underlying construction of the 
argument is made; however, Budán et al. [6] give relevance to what an argument refers to, not as a linguistic construction depending 
on its structure but as a whole piece of reasoning. Topics are also treated abstractly through labels called hashtags, denoted with the 
prefix #. A hashtag identifies subjects somehow referred to by the argument, either implicitly or explicitly. Without loss of generality, 
arguments are assumed to always have associated at least one hashtag.

Definition 3 (Hashtagged argument [6]). Given an argumentation framework Φ = ⟨𝙰𝚛𝚐𝚜,𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩, let H be a finite non-empty set of 
hashtags. A hashtagged argument structure (or, when no confusion might arise, simply a hashtagged argument) is a pair ⟨𝙰, H𝙰⟩, where 
𝙰 ∈ 𝙰𝚛𝚐𝚜 and H𝙰 ⊆H, |H𝙰| > 0. Then, given ⟨𝙰, H𝙰⟩, it is said that 𝙰 is tagged with H𝙰 .

In the following, hashtagged arguments will generally be succinctly denoted with the letters 𝔸, 𝔹, . . . , possibly with subscripts 
or superscripts.

Hashtags as topics attached to arguments usually are not isolated knowledge, and they might be related to other hashtags, leading 
to a semantic network of concepts.1 The resulting network can be characterized as follows.

Definition 4 (Hashtag graph/hashcloud [6]). A hashtag graph is a graph 𝒢 = ⟨H, E⟩, where H is the set of vertices (hashtags) and E is 
a subset of H ×H that represents a set of edges between the vertices (hashtag relations) in H. Graph 𝒢 will also be referred to as a 
hashcloud.

A path is a finite or infinite sequence of edges that connects a sequence of vertices, assuming that they are all distinct from 
one another. A path represents connections between topics and, consequently, connections between arguments. Another essential 

1 As Michel Foucault keenly pointed out in [14], “the frontiers of a book are never clear-cut (...) it is a node within a network”; our semantic network of concepts 
4

follows this idea.
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component is the notion of distance in a graph, which is closely related to paths (see [4,15,11] for a comprehensive analysis). With 
these elements, not only the connections but also the distance between arguments can be analyzed.

Definition 5 (Distance between hashtags [6]). The (geodesic) distance 𝖽𝒢 ∶H×H→N0 ∪{∞} between two vertices 𝛼, 𝛽 ∈H, denoted 
𝖽𝒢(𝛼, 𝛽), is the number of edges in a shortest path connecting them; additionally, if there is no path between 𝛼 and 𝛽, we say that 
𝖽𝒢(𝛼, 𝛽) = ∞, where ∞, conventionally, represents the greatest possible distance. For all 𝛼, 𝛽, 𝛾 ∈H, 𝖽𝒢(⋅, ⋅) satisfies the following 
conditions:

1) 𝖽𝒢(𝛼, 𝛽) = 0 iff 𝛼 = 𝛽 (identity of indiscernible),
2) 𝖽𝒢(𝛼, 𝛽) = 𝖽𝒢(𝛽, 𝛼) (symmetry), and

3) 𝖽𝒢(𝛼, 𝛾) ≤ 𝖽𝒢(𝛼, 𝛽) + 𝖽𝒢(𝛽, 𝛾) (subadditivity or triangle inequality).

The hashtag network is independent of the argumentation graph, as it merely captures concepts and their semantic relations. From 
the point of view of knowledge representation, the topological structure 𝒢 implies that the closer the hashtags (vertices) are in the 
graph, the closer the topics they stand for are in the represented domain. Thus, given a pair of hashtagged arguments, a notion of 
proximity between these arguments can be induced by the distance existing between the referred topics in the hashtagged graph 
𝒢 [6].

Definition 6 (Distance between hashtagged arguments [6]). A distance function on 𝙰𝚛𝚐𝚜 is defined as 𝖽Ω ∶ 𝙰𝚛𝚐𝚜 × 𝙰𝚛𝚐𝚜→N0 ∪ {∞}, 
where for all ⟨𝙰, H𝙰⟩, ⟨𝙱, H𝙱⟩, ⟨𝙲, H𝙲⟩ ∈ 𝙰𝚛𝚐𝚜, the following conditions are satisfied:

1) 𝖽Ω(⟨𝙰, H𝙰⟩, ⟨𝙱, H𝙱⟩) = 0 iff H𝙰 =H𝙱 (identity of indiscernible),
2) 𝖽Ω(⟨𝙰, H𝙰⟩, ⟨𝙱, H𝙱⟩) = 𝖽Ω(⟨𝙱, H𝙱⟩, ⟨𝙰, H𝙰⟩) (symmetry), and

3) 𝖽Ω(⟨𝙰, H𝙰⟩, ⟨𝙲, H𝙲⟩) ≤ 𝖽Ω(⟨𝙰, H𝙰⟩, ⟨𝙱, H𝙱⟩) + 𝖽Ω(⟨𝙱, H𝙱⟩, ⟨𝙲, H𝙲⟩) (triangle inequality).

This formalization of a set of hashtags as a graph, representing both the topics and their abstract connections, enables the 
examination of interesting semantic issues emerging from the abstract notion of closeness or proximity. The following definition 
provides a formal framework for hashtagged argumentation.

Definition 7 (Hashtagged argumentation framework [6]). A hashtagged argumentation framework Ω is defined as a 3-tuple ⟨Φ, 𝒢Ω, 𝖽Ω⟩, where Φ = ⟨𝙰𝚛𝚐𝚜, 𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩ is an abstract argumentation framework in which 𝙰𝚛𝚐𝚜 is a set of hashtagged arguments 
and 𝙰𝚝𝚝𝚊𝚌𝚔𝚜 is a subset of 𝙰𝚛𝚐𝚜× 𝙰𝚛𝚐𝚜 representing an attack relation defined on 𝙰𝚛𝚐𝚜, 𝒢Ω = ⟨H, E⟩ is a hashtag graph, and 𝖽Ω(⋅, ⋅)
is a distance function between hashtagged arguments.

Given this formalization, an admissibility semantics is defined in [6] that uses the distance as a measure of relevance for defenses 
in the argumentation process. This is called proximity-based semantics, as recalled next.

2.3. Proximity-based semantics

The use of hashtags as abstract notions related to arguments enables the evaluation of argument extensions according to a 
semantic distance between their elements. In particular, proximity-based semantics as defined in [6] applies the intuition that, for any 
argument, a closer defender is preferred over a distant one. Therefore, acceptability for hashtagged arguments considering a threshold 
𝜏 of proximity is introduced. Under this interpretation of close defense, a potential defender that is beyond the threshold will not be 
considered as such.

Definition 8 (Basic proximity-based semantics [6]). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be a hashtagged framework, 𝚂 ⊆ 𝙰𝚛𝚐𝚜, and 𝜏 ∈ N0 be a 
threshold. Then:

– A set 𝚂 is said to be conflict free if there are no hashtagged arguments 𝔸, 𝔹 ∈ 𝚂 such that 𝔹 attacks 𝔸.

– A hashtagged argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜏-acceptable with respect to 𝚂 when for every argument 𝔹 ∈ 𝙰𝚛𝚐𝚜 that attacks 𝔸 there is a 
hashtagged argument ℂ ∈ 𝚂 such that ℂ attacks 𝔹 and 𝖽Ω(𝔸, ℂ) ≤ 𝜏 .

– 𝚂 is said to be 𝜏-admissible if every hashtagged argument in 𝚂 is 𝜏-acceptable with respect to 𝚂.

– A 𝜏-admissible set 𝚂 is a 𝜏-complete extension iff 𝚂 contains each argument that is 𝜏-acceptable with respect to 𝚂.

– A set 𝚂 is the 𝜏-grounded extension of Ω iff 𝚂 is a ⊆-minimal 𝜏-complete extension.

– A set 𝚂 is an 𝜏-preferred extension of Ω iff 𝚂 is a ⊆-maximal 𝜏-complete extension.

Proximity-based semantics mimic classical admissibility by restricting defenders according to its semantic distance.
5

Example 2. Consider the hashtagged argumentation framework Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩, graphically represented in Fig. 3, where:
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Fig. 3. Hashtagged argumentation framework and hashcloud for Ω.

H = {#𝛼1, #𝛼2, … , #𝛼25}.

E = {(#𝛼1, #𝛼2), (#𝛼1, #𝛼8), (#𝛼1, #𝛼5), (#𝛼1, #𝛼13), (#𝛼2, #𝛼4), (#𝛼2, #𝛼5), (#𝛼2, #𝛼24), (#𝛼3, #𝛼6), (#𝛼4, #𝛼5), (#𝛼4, #𝛼8), (#𝛼4, #𝛼16), (#𝛼4, #𝛼17
(#𝛼5, #𝛼8), (#𝛼6, #𝛼7), (#𝛼6, #𝛼20), (#𝛼7, #𝛼21), (#𝛼7, #𝛼10), (#𝛼8, #𝛼12), (#𝛼8, #𝛼11), (#𝛼11, #𝛼15), (#𝛼12, #𝛼13), (#𝛼15, #𝛼18), (#𝛼16, #𝛼23),
(#𝛼21, #𝛼25), (#𝛼21, #𝛼22), (#𝛼22, #𝛼25), (#𝛼23, #𝛼24),

𝙰𝚛𝚐𝚜 = {𝔸, 𝔹, ℂ, 𝔻, 𝔼, 𝔽 , 𝔾, ℍ, 𝕀, 𝕁, 𝕂, 𝕃, 𝕄, ℕ, 𝕆}.

𝙰𝚝𝚝𝚊𝚌𝚔𝚜 = {(𝔸, 𝔹), (𝔹, ℍ), (ℂ, 𝔻), (𝔻, ℂ), (𝔻, 𝔽 ), (𝔼, 𝕁), (𝔽 , 𝔼), (ℍ, 𝕁), (𝕀, 𝔸), (𝕂, 𝔻), (𝔻, 𝕂), (𝕃, 𝕄), (𝕄, ℕ), (ℕ, 𝕆)}

Then, consider the following non-intersection distance:

𝖽Ω(𝔸,𝔹) =

⎧⎪⎪⎨⎪⎪⎩

0 If H𝙰 =H𝙱,

∞ if there exist 𝛼 ∈H𝙰𝑎𝑛𝑑 𝛽 ∈H𝙱,

such that there is no path between them, and

𝑚𝑎𝑥(𝖽𝒢(𝛼, 𝛽)) otherwise.

Table 1 shows the distances between arguments, where “–” means that the distance is ∞. Considering a threshold 𝜏 = 4, we 
obtain the following extensions. The set 𝚂1 = {𝕀, 𝔹, 𝔾, 𝕃} is 𝜏-complete extension since it contains all the arguments that are defended 
by 𝚂1 (see Fig. 4 green marks). Furthermore, 𝚂1 is a minimal set satisfying the previous conditions, and therefore it is the 𝜏-grounded
extension of Ω. Note that arguments 𝔾, 𝕃, and 𝕀 are free of attackers, while 𝕀 is a proper defender for 𝔹 since the distance between 
6

these arguments is 4, and 4 ≤ 𝜏 . However, 𝔹 is not a proper defender for argument 𝕁, because 𝖽Ω(𝔹, 𝕁) = 5 (greater than 𝜏 , the same 
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Fig. 4. Extensions of Ω from the running example (colors denote different extensions).

Table 1

Distances between the hashtagged arguments in Ω from the running example.

𝔸 𝔹 ℂ 𝔻 𝔼 𝔽 𝔾 ℍ 𝕀 𝕁 𝕂 𝕃 𝕄 ℕ 𝕆

𝔸 0 5 3 7 1 3 - 4 3 6 3 3 4 6 2

𝔹 5 0 5 4 4 6 - 4 4 5 4 6 3 7 5

ℂ 3 5 0 7 2 4 - 4 1 6 3 4 5 6 3

𝔻 7 4 7 0 6 8 - 6 6 7 6 8 9 3 7

𝔼 1 4 2 6 0 2 - 3 2 5 2 2 3 5 1

𝔽 3 6 4 8 2 0 - 5 4 7 4 4 1 7 1

𝔾 - - - - - - 0 - - - - - - - -

ℍ 4 4 4 6 3 5 - 0 3 5 3 5 5 4 4

𝕀 3 4 1 6 2 4 - 3 0 5 2 4 5 3 3

𝕁 6 5 6 7 5 7 - 5 5 0 5 7 8 6 6

𝕂 3 4 3 6 2 4 - 3 2 5 0 4 5 5 3

𝕃 3 6 4 8 2 4 - 5 4 7 4 0 5 7 3

𝕄 4 3 5 9 3 1 - 5 5 8 5 5 0 8 2

ℕ 6 7 6 3 5 7 - 4 5 6 5 7 8 0 6

𝕆 2 5 3 7 1 1 - 4 3 6 3 3 2 6 0

analysis can be made for the failed defense between 𝕃 and ℕ). On the other hand, the even attack cycle between the arguments 𝔻
and ℂ, and 𝕂 and 𝔻, limit the acceptance of other arguments in the discussion, under a skeptical position. The set 𝚂2 = {𝕀, 𝔹, 𝔻, 𝔾, 𝕃}
(see Fig. 4 blue marks) and 𝚂3 = {𝕀, 𝔹, ℂ, 𝕂, 𝔽 , 𝔾, 𝕃} (see Fig. 4 orange marks) are 𝜏-admissible and 𝜏-complete since they contain all 
the arguments that are defended by 𝚂2 and 𝚂3, respectively. In particular, in 𝚂2, ℂ and 𝕂 are proper defenders of 𝔽 (this is because 
𝖽Ω(ℂ, 𝔽 ) = 4 = 𝜏 and 𝖽Ω(𝕂, 𝔽 ) = 𝜏 = 4). However, 𝔻 is not a proper defender argument for 𝔼 because 𝖽Ω(𝔻, 𝔼) = 6 (greater than 𝜏), 
while 𝕃 is not a proper defender argument for ℕ, because 𝖽Ω(𝕃, ℕ) = 7 (also greater than 𝜏). Finally, 𝚂2 and 𝚂3 are the maximal sets 
verifying the previous conditions; thus, they are both 𝜏-preferred extensions of Ω.

It is worth mentioning that in [6], a single threshold is fixed in the semantic analysis, which means that the same defense-

enabling distance is applied to each argument. As stated in the motivating discussion in the introduction, a more general approach 
is to establish an individual threshold for every argument; thus, for a given argument, the range of defenses available becomes an 
essential attribute. This move requires a more detailed analysis of the hashcloud and its semantic elaborations; we address these 
7

issues in the rest of this work.
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3. Topological analysis: unveiling argument properties derived from the hashcloud

A hashcloud, serving as a visual representation of topic relations, plays a central role in exploring not only various argument 
distances but also the topological properties of arguments derived from the hashtags that they possess. At the heart of this inquiry are 
essential topological metrics that shed light on the complex relationships among hashtags, influencing the topological characteristics 
associated with arguments.

Within the realm of hashcloud analysis, we will investigate two categories of metrics that will be useful in analyzing the struc-

ture and dynamics of interconnection among hashtags: local metrics and global metrics. Local metrics, at their core, focus on the 
individuality of hashtags. Hashtag degree, a fundamental metric, counts the number of direct connections a specific hashtag has. 
In a similar vein, the clustering coefficient is an indicator of the tendency of similar hashtags to form clusters, and thus measures 
thematic cohesion within the hashcloud. Expanding our focus to global metrics assumes a higher-level perspective. The hashcloud 
diameter emerges as a pivotal metric, shedding light on the maximum distance between two hashtags, providing insights into the 
semantic breadth of the hashcloud. Betweenness centrality measures the significance of specific hashtags as essential connectors 
between hashtags, serving as bridges between elements that might appear, at first glance, distant.

This combined analysis of local and global metrics within the context of hashclouds yields a more nuanced understanding of 
hashcloud topology and the nature of relationships among hashtags. In essence, these measures offer a better understanding of the 
hierarchical importance and interconnected influence of elements within the hashcloud [15]. Furthermore, it is worth noting that 
such hashcloud properties can be translated into argument properties, as will be explored in the following.

3.1. Characterizing a hashcloud

As described above, local metrics result in local properties that enable the analysis of hashtags individually, revealing their 
intrinsic characteristics and how they relate to neighboring elements. This is fundamental for understanding the specific features 
of each concept represented by a hashtag; furthermore, local metrics assist in identifying specific patterns and relationships in 
the proximity of each hashtag. This is critical for discovering more precise semantic connections and understanding how close 
interactions influence the interpretation of a particular hashtag. To achieve this, we assign 𝑚 local metrics to each hashtag 𝛼 that 
is part of hashcloud 𝒢Ω. In practical terms, this involves applying an operator across 𝒢Ω, resulting in a 𝑘 × 𝑚-matrix, where 𝑘
represents the total number of hashtags in 𝒢Ω and 𝑚 is the number of metrics applied to 𝒢Ω. This matrix provides a comprehensive 
characterization of each hashtag, offering insights from 𝑚 distinct perspectives.

Definition 9 (Local topological metrics associated with a hashcloud). Let 𝒢Ω = [H, 𝐸] be a hashcloud, and {𝛼1, 𝛼2, … , 𝛼𝑘} =H. A local 
topological metric associated with 𝒢Ω, denoted M↓

Ω(𝒢Ω), is defined as:

M
↓
Ω(𝒢Ω) =

⎡⎢⎢⎢⎣
𝑚1(𝛼1) 𝑚1(𝛼2) … 𝑚1(𝛼𝑘)
𝑚2(𝛼1) 𝑚2(𝛼2) … 𝑚2(𝛼𝑘)

⋮ ⋮ … ⋮
𝑚𝑚(𝛼1) 𝑚𝑚(𝛼2) … 𝑚𝑚(𝛼𝑘)

⎤⎥⎥⎥⎦
,

where 𝑚𝑖(.) are local metric functions applied to H with 1 ≤ 𝑖 ≤𝑚.

Next, we study the hashcloud 𝒢Ω as a whole, but considering 𝑡 global metrics that give us different perspectives on 𝒢Ω. This 
operator thus characterizes 𝒢Ω via a column vector of 𝑡 elements, where each element gives us information related to the type of 
distribution and the type of relations existing in 𝒢Ω.

Definition 10 (Global topological metrics assoc. with a hashcloud). Let 𝒢Ω = [H, 𝐸] be a hashcloud. A global topological metric associ-

ated with 𝒢Ω, denoted M↑
Ω(𝒢Ω), is defined:

M
↑
Ω(𝒢Ω) =

⎡⎢⎢⎢⎣
𝑀1(𝒢Ω)
𝑀2(𝒢Ω)

⋮
𝑀𝑡(𝒢Ω)

⎤⎥⎥⎥⎦
,

where 𝑀𝑖(.) are global metric functions applied to 𝒢Ω with 1 ≤ 𝑖 ≤ 𝑡.

In a practical case, we may wish to have a series of measurements associated with our hashcloud in order to analyze the scenario 
with different instruments. In the following example, we analyze the hashcloud proposed in the prior section.

Example 3. In this example, we employ the Degree centrality (see Equation (1)) and Mean Neighbor Degree (see Equation (2)) metrics 
to underscore the significance and impact of various topics, respectively. Specifically, Degree centrality is a metric indicating the 
centrality of a hashtag in 𝒢, defined as the number of edges connected to the node—in other words, it gauges the influence of other 
8

hashtags within its immediate neighborhood. Conversely, Mean Neighbor Degree is the average degree of the neighbors of hashtag 



International Journal of Approximate Reasoning 170 (2024) 109189I.M. Coronel, M.G. Escañuela Gonzalez, D.C. Martinez et al.

Fig. 5. Centrality and neighbor degrees for hashcloud 𝒢.

#𝛼, calculated as the mean of the degrees of all neighbors connected to #𝛼. In Fig. 5 we present the values of these metrics for each 
hashtag in 𝒢. In the following, we define:

InOut(#𝛼) = {#𝛽 ∈H ∣ (#𝛽,#𝛼) ∈𝐸 or (#𝛼,#𝛽) ∈𝐸}.

𝐷Centrality(#𝛼) = ∣ InOut(#𝛼) ∣ (1)

𝐷Neighbor(#𝛼) =
1

𝐷Centrality(#𝛼)

𝑛∑
𝑖=1

𝐷Centrality(𝛽𝑖), where 𝛽𝑖 ∈ InOut(#𝛼) (2)

On the other hand, we use the Radius and Diameter metrics (Equations (4) and (3), respectively) to identify how dispersed the 
discussion is. The radius of 𝒢 is the minimum eccentricity among all hashtags in 𝒢, while the diameter is the maximum eccentricity 
among all hashtags.2 To find the diameter of a graph, we first find the shortest path between each pair of vertices; the greatest length 
of any of these paths is then the diameter.

Radius(𝒢) = min
𝛼∈𝒢

eccentricity(𝛼), where eccentricity(𝛼) = max
𝛽∈𝒢

𝖽𝒢(𝛼, 𝛽) (3)

Diameter(𝒢) = max
𝛼∈I

eccentricity(𝛼) (4)

Under these metrics, certain hashtags, namely #𝛼1, #𝛼2, #𝛼8, #𝛼5, and #𝛼4, emerge as pivotal within the ongoing discussion, 
representing the focal points where the most central issues converge within the hashcloud. In contrast, there are topics occupying 
a more peripheral role, exemplified by #𝛼18, #𝛼20, and #𝛼10. Additionally, there are topics that appear interconnected, potentially 
sparking a new line of discussion, such as #𝛼21, #𝛼6, and #𝛼7. Conversely, some topics remain entirely disconnected from the current 
discourse, as observed in #𝛼14, #𝛼9, and #𝛼19. This prominence extends beyond individual degree centrality, manifesting in the 
conceivable formation of cohesive thematic clusters. Such clusters not only underscore the significance of these central hashtags, 
but also contribute to thematic consistency within associated arguments. This interconnectedness facilitates engagement and holds 
the potential to propel these arguments into trending discussions, thereby amplifying their impact and relevance within the broader 
discourse.

The radius and diameter for 𝒢 are infinite, signaling a highly dispersed discussion where certain issues lack connections with 
others in the cloud. Essentially, the global metrics are influenced by topics that are entirely unrelated to other topics within the 
cloud. If we exclude these isolated topics from the analysis, the diameter becomes 9 and the radius 5, indicating a more cohesive 

2 The eccentricity associated with a graph is defined as eccentricity(𝛼) = max𝛽∈𝒢 𝖽𝒢 (𝛼, 𝛽). Furthermore, if 𝛼 ∈ 𝒢 is not connected to any other hashtag in 𝒢, its 
9

eccentricity is associated with the constant ∞, which, conventionally, represents the greatest possible distance.
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argumentative landscape. In this scenario, the discussion is not very dispersed, emphasizing the significance of considering the 
interconnectedness of topics to obtain a more accurate representation of the argumentative structure.

We will now focus on how these tools can be applied to determine the topological properties associated with the arguments 
based on their topics. Note that metrics can be defined in different ranges or number spaces; therefore, it is necessary to normalize 
them to work on a single numerical measure. Next, we define how the metrics used on hashtags are translated to the arguments, 
representing, in this sense, specific topological properties. Thus, based on the arguments’ topics, we compose the corresponding 
degrees to calculate the topological property associated with an argument.

3.2. Argument properties: obtaining the neighborhood of arguments

As we mentioned before, every argument abstracting a unit of reasoning addresses certain specific topics and every topic is 
naturally associated with many others in varied degrees of “closeness”. Consequently, there is an underlying perception of distance

also between arguments when considering their topics. In a mathematical sense, a topological space may be described as a set of 
points along with a set of neighborhoods for each point. Any metric space will also be a topological space because, given a set, any 
properly specified distance function defined on it induces a topology on that set. The pair (𝙰𝚛𝚐𝚜, 𝖽Ω) associated with a Hashtagged 
Framework Ω can be regarded as a metric space in the topology sense, where a distance may be defined.

In this paper we are especially interested in neighborhoods. Intuitively speaking, a neighborhood of a point 𝑝 is a set of points 
containing 𝑝 and the points that can be reached within a given distance from 𝑝. It is not unique, since a point 𝑝 may have several 
neighborhoods of different sizes by considering different distances. In Topology, a ball is the space bounded by a sphere—it may be 
a closed ball, including the boundary points of the sphere, or an open ball by excluding them. Thus, a neighborhood associated with 
a point 𝑥 ∈ 𝑆 with radius 𝜀𝑥 is the closed ball defined as

𝐵(𝑥;𝜀𝑥) = {𝑦 ∈ 𝑆 ∶ distance(𝑥, 𝑦) ≤ 𝜀𝑥}.

It is important to remark that the property of being a “neighbor” is relative to an individual point since the threshold distance is not 
necessarily the same for every point.

Notation: Although both are related to distances, in order to highlight the contextual difference we will use 𝜏 to denote a general 
threshold and 𝜀 a local threshold for an argument in some semantic consideration.

Definition 11 (Argument neighborhood [13]). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be a hashtagged framework. Then, the neighborhood of an argu-

ment 𝔸 ∈ 𝙰𝚛𝚐𝚜 with radius 𝜀𝔸 ∈N0 under the metric (𝙰𝚛𝚐𝚜, 𝖽Ω) is defined as the set

𝔑𝜀𝔸
𝔸 = {𝕏 ∈ 𝙰𝚛𝚐𝚜 ∶ 𝖽Ω(𝔸,𝕏) ≤ 𝜀𝔸}.

The set of neighborhoods associated with arguments in Ω will be denoted 𝔑Ω.

A neighborhood is defined by a threshold based on a measure of distance, as discussed above; since several notions of distance 
could be used, we will focus on those influenced by the topics referred to by the arguments. Our primary purpose is to only allow 
defenses for an argument that are close enough to the topics represented by the set of hashtags associated with this argument. Since 
these hashtags may be closely related or widely dispersed, we need a measure of argument semantic coverage that will provide 
a reference regarding its centrality property (always from the semantic point of view). Next, we formalize two notions based on 
hashcloud characterization, local and global properties associated with arguments involved in a specific discussion.

First, to obtain the local properties associated with an argument 𝙰, we need to look at H𝙰 and analyze the local topological 
metrics assigned to each of its elements. As we formalized previously (cf. Definition 9), each hashtag 𝛼 is characterized by 𝑚 local 
metrics. To determine a specific local topological property associated with 𝙰, with respect to a local topological metric 𝗆, we need to 
combine the corresponding value assigned to each element of H𝙰 with respect to 𝗆. That is, performing this process for each 𝛼 ∈H𝙰
considering each metric 𝗆 computed in M↓

Ω(𝒢Ω), we will obtain the local metric property associated with 𝙰.

Definition 12 (Local topological metrics for an argument). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be a hashtagged framework, 𝔸 ∈ 𝙰𝚛𝚐𝚜 be a hashtagged 
argument, {𝛼1, 𝛼2, … , 𝛼𝑙} = H𝙰 be the set of hashtags associated with 𝔸, and 𝑚𝑖(.) be local metric functions applied to H with 
1 ≤ 𝑖 ≤𝑚. We will define the local topological property for 𝔸 = ⟨𝙰, H𝙰⟩, associated with the local topological metric M↓

Ω(𝒢Ω), as:

F↓Ω(M↓
Ω(𝔸)) = 𝑃

↓Ω
𝔸

where F↓Ω(M↓
Ω(𝔸)) is an abstract function R𝑚×𝑙 →R applied over the matrix M↓

Ω(𝔸), and 𝑃 ↓Ω
𝔸 ∈R is the local metric value associated 

with 𝔸.

As mentioned in Example 3, the global clustering coefficient, radius, and diameter are global measures applicable to a specific 
hashcloud. However, each argument encompasses a subcloud of hashtags formed by the minimal graph containing all the hashtags 
10

associated with the argument. That is, the subcloud associated with an argument 𝙰, denoted 𝒢𝔸, is composed of all elements that 
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Fig. 6. Subgraph corresponding to the hashtags of argument 𝔸 in the running example.

are found along the shortest paths between the hashtags belonging to H𝙰. Thus, we need to perform the analysis described in 
Definition 10 over 𝒢𝔸 to obtain the global topological properties for 𝙰, as follows:

Definition 13 (Global topological metrics for an argument). Let 𝒢Ω = [H, 𝐸] be a hashcloud, and 𝑑𝒢 ∶H ×H→ ℕ0 ∪ {∞} a geodesic 
distance, 𝔸 ⊆ 𝙰𝚛𝚐𝚜 be a hashtag argument, 𝒢𝔸 the subgraph generated by H𝙰, and 𝑀𝑖(.) global metric functions applied to 𝒢Ω with 
1 ≤ 𝑖 ≤ 𝑡. We will define the global topological property for 𝔸, associated with the general topological measure M↑

Ω(𝒢Ω), as:

F↑Ω(M↑
Ω(𝒢𝔸)) = 𝑃

↑Ω
𝔸

where F↑Ω(M↑
Ω(𝒢𝔸)) is an abstract function 𝑅𝑡×1 → 𝑅 applied over the vector M↑

Ω(𝒢𝔸) and 𝑃 ↑Ω
𝔸 ∈ 𝑅 is the global metric value 

associated with 𝔸.

Local measures computed for an argument are based on the valuations obtained on the hashcloud, while the global ones are 
analyzed from the cloud associated with the argument. The main reason is that we use a local level to gauge the importance of 
the participating hashtags throughout the domain, identifying what role they play in the discussion, while global measures give us 
information on dispersion of the cloud associated with the argument itself.

Next, we determine the neighborhood threshold for an argument. The intuition is that an argument threshold is defined by the 
topics that it addresses, but without neglecting the relationship of these topics in the hashcloud, which reflect the semantics of the 
specific domain. The following definition combines the topological properties to explore this intuition.

Definition 14 (Neighborhoods threshold for an argument). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be a hashtagged framework, 𝔸 ⊆ 𝙰𝚛𝚐𝚜 be a hashtagged

argument, 𝒢𝔸 be the subgraph generated by H𝙰, and M↓
Ω(𝔸) and M↑

Ω(𝒢𝔸) be the local and global properties associated with 𝔸
respectively. We will define the neighborhoods threshold for 𝔸, denoted 𝜀𝔸 , as

𝜀𝔸 = 𝑃 ↓Ω
𝔸 ⊗𝑃

↑Ω
𝔸

where ⊗ must satisfy the commutativity, associativity, and monotonicity (monotonically increasing) properties. We will denote with 
𝔑𝜀Ω

Ω = {𝔑𝜀𝕏
𝕏 ∶𝕏 ∈ 𝙰𝚛𝚐𝚜} the set of neighborhoods associated with the arguments of Ω.

In practice, the neighborhood threshold is obtained as the conjunction of the local and global topological measures associated 
with an argument; the ⊗ operator is used to combine the local and global argument property.

This definition provides a helpful characterization of the influence of an argument in the framework. The most natural way of 
doing this would be to directly add these, considering the conditions imposed by the domain. This is why the ⊗ operation is required 
to satisfy some of the same properties as addition of real numbers—it is commutative and associative. Furthermore, it must satisfy 
monotonicity to ensure that the neighborhoods threshold of an argument does not decrease if the topological properties associated 
with such argument increase. It is important to remark that this influence is evaluated according to the topics and not the underlying 
linguistic structure, which is not relevant here given our abstract approach. Topics are therefore our formal clues of what an argument 
is about.

Example 4. We now analyze hashcloud 𝒢Ω corresponding to the hashtagged argumentation framework Ω represented in Fig. 3. We 
wish to determine the neighborhood of the hashtagged arguments in order to allow only those defenses that are close enough to the 
topics represented by the set of hashtags associated with each argument. Thus, one possible characterization is to take the centrality 
degree and Neighbor Degree as local topological measures (represented in Fig. 5); and radius and diameter as general topological 
measures.

Then, for the hashtagged argument 𝔸 = ⟨A, HA⟩ where HA = {#𝛼4, #𝛼5, #𝛼12}, we obtain the subcloud derived from HA

considering those hashtags that are found along the shortest paths between #𝛼12, #𝛼4, and #𝛼5. Here, for argument 𝔸 the hashtag 
#𝛼8 plays the semantic role of connecting the hashtags #𝛼12 with #𝛼4 and #𝛼5, which belong to HA. That is, #𝛼8 is present along the 
shortest path between the hashtags #𝛼12 and #𝛼4, and the hashtags #𝛼12 and #𝛼5, as shown in Fig. 6.

So, to analyze the local topological measures we consider the centrality and eigenvector degrees obtained from the previous 
11

analysis. Then, applying Definition 12, the local topological measure is obtained as follows:
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M
↓
Ω(𝔸) =

[
𝑚1(𝛼4) 𝑚1(𝛼5) 𝑚1(𝛼12)
𝑚2(𝛼4) 𝑚2(𝛼5) 𝑚2(𝛼12)

]
=
[

5 4 2
16∕5 19∕4 7∕2

]
,

where 𝑚1(.) is the degree centrality metric and 𝑚2(.) is the neighbor degree metric that are applied to each element of H𝔸 considering 
the entire hashcloud. Thus, we obtain a matrix 𝑅2×3, which is the input for function F↓Ω(M↓

Ω(𝔸)), where F↓Ω is instantiated with the 
following function:

F↓Ω(M↓
Ω(𝔸)) = max

𝑖=1...2
min
𝑗=1...3

(𝑚𝑖𝑗 (𝛼)).

Then, we obtain that:

𝑃
↓Ω
𝔸 = 3.2 ≈ 3.

Now, in order to perform a global topological analysis, we consider the radius and diameter measures obtained from the subgraph 
corresponding to the argument involved (𝔸). Then, applying Definition 13, the global topological measure is obtained as follows:

M
↑
Ω(𝒢𝔸) =

[
𝑀1(𝒢𝔸)
𝑀2(𝒢𝔸)

]
=
[
2
2

]
,

where 𝑀1(.) is the radius and 𝑀2(.) is the diameter applied to 𝒢𝔸, representing the dispersion associated with the minimal subgraph 
that connects the hashtags that belong to H𝔸. Thus, we obtain a vector 𝑅2×1, which is the input for function F↑Ω(M↑

Ω(𝔸)), where 
F↑Ω is instantiated with the following function:

F↑Ω(M↑
Ω(𝔸)) = min

𝑖=1...2
(𝑀𝑖(𝒢𝔸)).

Then, we obtain:

𝑃
↑Ω
𝔸 = 2.

Finally, in order to define the neighborhood for 𝔸, we calculate the threshold composing the local and global property established 
in Definition 14 as follows:

𝜀𝔸 = 𝑃 ↓Ω
𝔸 ⊗𝑃

↑Ω
𝔸 ,

where ⊗ is instantiated as:

𝑃
↓Ω
𝔸 + 𝑃 ↑Ω

𝔸
2

Thus, the neighborhood threshold for 𝔸 is 𝜀𝔸 = 3+2
2 = 5

2 = 2.5 ≈ 3, yielding the neighborhood {𝔸, ℂ, 𝔼, 𝔽 , 𝕀, 𝕂, 𝕃, 𝕆}.

Naturally, the same model can be applied to every argument that participates in the discussion, as shown in Table 2. The whole 
argumentation scenario is depicted in Fig. 7.

Once the neighborhoods of arguments have been defined, it is necessary to establish certain bounds that will allow us to find 
links between the classical argumentation semantics and earlier proximity-based extensions.

Definition 15 (Metric associated with neighborhoods [13]). Consider a hashtagged framework Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩, let 𝖽Ω(⋅, ⋅) be a 
distance function over the set 𝙰𝚛𝚐𝚜, (𝙰𝚛𝚐𝚜, 𝖽Ω) be the metric space associated with the tagged framework Ω, and 𝔑𝜀Ω

Ω be the set of 
neighborhoods associated with the arguments of Ω. Then:

– A neighborhood 𝔑𝜀𝔸
𝔸 ∈𝔑Ω is the Greatest Neighborhood iff there is no 𝔑𝜀𝔹

𝔹 ∈𝔑Ω such that 𝜀𝔹 > 𝜀𝔸. We will use T𝚐
Ω to denote 

the greatest radius associated with the greatest neighborhood of 𝔑Ω .

– A neighborhood 𝔑𝜀𝔸
𝔸 ∈𝔑Ω is the Smallest Neighborhood iff there is no 𝔑𝜀𝔹

𝔹 ∈𝔑Ω such that 𝜀𝔹 ≤ 𝜀𝔸. We will use T𝚜
Ω to denote 

the smallest radius associated with the smallest neighborhood of 𝔑Ω .

In the next section, we analyze the proximity-based semantics as in [6] with this new context of individual thresholds. We consider 
first the classical proximity approach where restrictions are applied only to defenses.

4. Neighborhood-bounded admissibility

Since an argument 𝕏 now has a defense range 𝜀𝕏 defined by its neighborhood, it is necessary to provide a notion of admissibility

that is restricted to these spaces. A set of arguments will be admissible if every argument is acceptable with respect to that set, 
but only by using defenses inside every internal neighborhood. Thus, the following definitions and propositions characterize the 
semantics notions in our framework. In the following, we assume a framework Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩, where 𝖽Ω(⋅, ⋅) is a distance function 
12

on the set 𝙰𝚛𝚐𝚜, and (𝙰𝚛𝚐𝚜, 𝖽Ω) is the metric space associated with Ω.
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Table 2

Argument neighborhoods for Example 4.

Definition 16 (Conflict-freeness, acceptability and admissibility [13]). Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the argu-

ments of Ω. Then:

– A set 𝚂 ⊆ 𝙰𝚛𝚐𝚜 is said to be conflict free if there are no hashtagged arguments 𝔸, 𝔹 ∈ 𝚂 such that 𝔹 attacks 𝔸.

– A hashtagged argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable with respect to 𝚂 if for every argument 𝔹 ∈ 𝙰𝚛𝚐𝚜, if 𝔹 attacks 𝔸 then there is a 
hashtagged argument ℂ ∈ 𝚂 such that ℂ ∈𝔑𝜀𝔸

𝔸 and ℂ attacks 𝔹.

– 𝚂 is said to be 𝜂-admissible if every hashtagged argument in 𝚂 is 𝜂-acceptable with respect to 𝚂.

Note that we are considering a defense as valid only if it occurs within the neighborhood of an attacked argument.

Proposition 1 ([13]). Given an argument 𝔸 ∈ 𝙰𝚛𝚐𝚜, 𝔸 is not attacked in Ω iff 𝔸 is not attacked in Φ.

Under this notion of distance-bounded defense, an argument that may be a defender according to classical acceptability may no 
longer be a defender; however, the quality of a set being (classically) admissible is preserved because, as will be shown later, attacks 
are not restricted by distance, only defenses. Admissibility semantics is focused on the characterization of sets of arguments that 
provide mutual defenses in the set. By restricting defenses within a particular neighborhood, we are reshaping the original notion 
of admissible sets (and also changing the notion of a focused, rational position) while respecting argument conflicts in the whole 
scenario.

Proposition 2 ([13]). Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the arguments of Ω and Φ be the underlying abstract argumen-

tation framework. Then:
13

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂 in Ω, then it is acceptable w.r.t. 𝚂 in Φ.
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Fig. 7. Argumentation framework considering neighborhood thresholds.

ii) If a set 𝚂 is 𝜂-admissible in Ω then it is admissible in Φ.

The converses of the statements in Proposition 2 do not hold. For instance, an argument 𝔸 may be acceptable with respect to the 
set {𝔹}, but not 𝜂-acceptable if 𝔹 ∉𝔑𝜀𝔸

𝔸 . Therefore, an admissible set may not be 𝜂-admissible. Furthermore, as we mentioned, these 
semantic notions are a refined version of the semantics proposed in Section 2.3. Thus, we have the following proposition.

Proposition 3 ([13]). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be the underlying a hashtagged framework, 𝜏 ∈ N0 be a threshold, 𝔑𝜀Ω
Ω be the set of neigh-

borhoods associated with the arguments of Ω, T𝚜
Ω and T𝚐

Ω be the radius associated with the smallest and greatest neighborhoods of 𝔑Ω, 
respectively; let 𝚂 ⊆ 𝙰𝚛𝚐𝚜 be a set of hashtagged arguments. Then, we have:

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T𝚜
Ω, then it is 𝜂-acceptable w.r.t. 𝚂;

ii) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. 𝚂 then it is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T
𝚐
Ω;

iii) If 𝚂 is 𝜏-admissible with 𝜏 = T𝚜
Ω, then it is 𝜂-admissible; and

iv) If 𝚂 is 𝜂-admissible then it is 𝜏-admissible with 𝜏 = T
𝚐
Ω.

As usual in abstract argumentation, Definition 16 leads to different notions providing a new proximity-based interpretation of 
classical admissibility. In this version, we propose a more refined analysis considering the admitted interaction field associated with 
the hashtagged arguments. This new notion allows the analysis of the argumentation process from a new point of view, where the 
scope associated with the hashtagged arguments is taken into account.

Definition 17 (𝜂-complete, 𝜂-grounded, 𝜂-preferred ext. [13]). Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the arguments 

of Ω, and 𝚂 ⊆ 𝙰𝚛𝚐𝚜 be a set of hashtags arguments. Then:

i) An 𝜂-admissible set 𝚂 is an 𝜂-complete extension iff 𝚂 contains each argument that is 𝜂-acceptable with respect to 𝚂.

ii) Set 𝚂 is the 𝜂-grounded extension of Ω iff 𝚂 is an ⊆-minimal 𝜂-complete extension.

iii) Set 𝚂 is an 𝜂-preferred extension of Ω iff 𝚂 is an ⊆-maximal 𝜂-complete extension.

Next, we present an example to illustrate these new acceptability concepts.

Example 5. Continuing with the hashtagged argumentation framework depicted in Example 1, and based on the distance between 
hashtagged arguments presented in Table 1, the neighborhoods associated with each argument presented in Table 2, and represented 
14

in Fig. 6, we have that:
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Fig. 8. 𝜂-extensions from Example 5.

– 𝕀 is not a defender of 𝔹 since 𝕀 is not a neighbor of 𝔹 (the distance between 𝕀 and 𝔹 is 4, where 𝔹 has a neighborhood range 
of 3). Furthermore, 𝔹 is not a defender of 𝕁 since the distance between 𝕁 and 𝔹 is 5, and 𝕁 has a neighborhood range of 4; thus, 
𝔹 is not a neighbor of 𝕁. Also, 𝔸 is not a defender of ℍ since 𝔸 is not a neighbor of ℍ (the distance between ℍ and 𝔸 is 4, where 
ℍ has a neighborhood range of 3)

– On the other hand, ℂ is not a defender of 𝔽 since the distance between ℂ and 𝔽 is 4, while 𝔽 has a neighborhood range of 1. In 
addition, 𝕂 is not a defender of 𝔽 since 𝕂 is not a neighbor of 𝔽 (the distance between 𝕂 and 𝔽 is 4, where 𝔽 has a neighborhood 
range of 1).

– 𝔻 is not a defender of 𝔼 since 𝔻 is not a neighbor of 𝔼 (the distance between 𝔻 and 𝔼 is 6, where 𝔼 has a neighborhood range 
of 3). Also, 𝔽 is not a defender of 𝕁 since the distance between 𝕁 and 𝔽 is 7, and 𝕁 has a neighborhood range of 4. Thus, 𝔽 is not 
a neighbor of 𝕁.

– 𝕃 is not a defender of ℕ since 𝕃 is not a neighbor of ℕ (the distance between 𝕃 and ℕ is 7, where ℕ has a neighborhood range 
of 1). Also, ℕ is not a defender of 𝕁 since the distance between 𝕁 and ℕ is 6, and 𝕁 has a neighborhood range of 4. Thus, ℕ is 
not a neighbor of 𝕁. Finally, 𝕄 is a defender of 𝕆 since 𝕄 is a neighbor of 𝕆 (the distance between 𝕆 and 𝕄 is 2, where 𝕆 has 
a neighborhood range of 2)

Thus, analyzing the acceptability notions presented in Definition 16, the sets 𝚂4 = {𝕀, 𝔾, 𝕃}, 𝚂5 = {𝕀, 𝔻, 𝔾, 𝕃} and 𝚂6 = {𝕀, ℂ, 𝕂, 𝔾, 𝕃}
are the ⊆-maximal 𝜂-admissible extensions. Furthermore, 𝚂4 is the 𝜂-grounded extension (see Fig. 8) while 𝚂5 and 𝚂6 are the 𝜂-preferred 
extensions, under the conditions established in Definition 17.

Admissibility discards argument defenders that do not belong to the neighborhood associated with the attacked argument in this 
proximity semantics version. If the argument has associated topics covering a particular thematic field, it will be defended by those 
arguments that are related to the same field. On the other hand, an opinion cannot be defended by formulations or assertions out of 
its spectrum of discussion.

As expected, if the smallest neighborhood is large enough, Dung’s admissibility and 𝜂-admissibility coincide. Thus, the next 
results hold between the classical and the proximity-acceptable sets of arguments. In the following, we will consider a framework 
Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩, where 𝖽Ω(⋅, ⋅) is a distance function on the set 𝙰𝚛𝚐𝚜, (𝙰𝚛𝚐𝚜, 𝖽Ω) is the metric space associated with Ω, and 𝔑𝜀Ω

Ω is 
the set of neighborhoods associated with the arguments of Ω.

Proposition 4 ([13]). Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the arguments of Ω. If the smallest neighborhood T𝚜

Ω is such 
that T𝚜

Ω ≥ diameter(H), then every 𝜂-{admissible, complete, grounded, preferred} extension is an {admissible, complete, grounded, preferred}
15

extension, respectively.
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In abstract argumentation, a grounded extension is the skeptical position of acceptance, and it is unique. In our definition 
of proximity-based semantics, the skeptical position is related to the set of neighborhoods associated with the metric space, and 
different sets of neighborhoods lead to different 𝜂-grounded extensions; however, as in classical frameworks, the extension always 
exists.

Proposition 5 ([13]). There always exists a unique 𝜂-grounded extension.

As we said before, hashtagged argumentation frameworks are an extension of abstract frameworks in the sense that we are 
considering additional elements; thus, if hashtag-related information is discarded, a classical abstract framework remains. The new 
proximity-based and the classical abstract semantics are related, as the following theorem establishes by showing a link between this 
redefined proximity-based semantics and its corresponding abstract semantics counterpart, observing that the former is a refinement 
of the latter.

Theorem 1 ([13]). Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the arguments of Ω, and Φ = ⟨𝙰𝚛𝚐𝚜, 𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩ be the underlying 

abstract argumentation framework. Then, the following properties hold:

i) If 𝚂Ω is 𝜂-complete extension in Ω, then there exists a complete extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ;

ii) If 𝚂Ω is an 𝜂-grounded extension in Ω, then there exists a grounded extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ; and,

iii) If 𝚂Ω is an 𝜂-preferred extension in Ω, then there exists a preferred extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ.

Thus, the rationale of classic argumentation semantics is preserved. The addition of the concept neighborhood improves the 
argumentation model by introducing a new view on valid defenses for an individual argument; this idea is compelling because it 
leads to a new family of semantics, possibly parameterized with various metrics. Since the notion of neighborhood can be defined 
by considering different metrics associated with the hashcloud, different conceptualizations of the notion of neighborhood clearly 
influence the general outcome of the argumentation scenario. The relation of proximity between arguments is now relevant for the 
argumentation process.

Finally, considering the intuitions presented above, the following result establishes a connection between the proximity-based 
semantics and the proximity-based semantics based on the definition of neighborhood.

Theorem 2 ([13]). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be the underlying a hashtagged framework, 𝜏 ∈N0 be a threshold, 𝔑𝜀Ω
Ω be the set of neighborhoods 

associated with the arguments of Ω. Then, we have:

𝑖) If 𝜏 = T𝚜
Ω is the threshold associated with the smallest neighborhood of Ω, 𝚂𝜂Ω is an 𝜂-complete (respectively, 𝜂-grounded, and 𝜂-preferred) 

extension, and 𝚂𝜏Ω is an 𝜏-complete (respectively, 𝜏-grounded, and 𝜏-preferred) extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω.

𝑖𝑖) If 𝜏 = T
𝚐
Ω is the threshold associated with the greatest neighborhood of Ω, 𝚂𝜂Ω is an 𝜂-complete (respectively, 𝜂-grounded, and 𝜂-preferred) 

extension, and 𝚂𝜏Ω is an 𝜏-complete (respectively, 𝜏-grounded, and 𝜏-preferred) extension, then it holds that 𝚂𝜂Ω ⊆ 𝚂𝜏Ω.

As we postulated in the original proximity-based semantics, under this new interpretation of “defense”, where we consider an 
admitted defense field associated with each argument, a potential defender argument may no longer be considered as such. However, 
the interrelation of argument neighborhoods, considering the concept of neighborhood from Definition 11, can form an even more 
extensive defense field, allowing the emergence of new defending arguments. We will analyze this proposal in more detail below.

5. A more inclusive notion: communities

As mentioned before, when neighborhoods overlap, it is possible to consider a new range of defense based on a sort of familiar

closeness of arguments. Here, the neighbors of an argument can serve as connections to other neighborhoods, expanding then the 
borders of a “society” of arguments. We refer to this set of expanded neighbors as a community. First, we introduce the notion of 
close connection, where we formalize how the neighborhood of an argument is extended; then, based on this sequence, we define 
the concept of community.

Definition 18 (Semantic path between arguments). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be a hashtagged framework, 𝖽Ω(⋅, ⋅) be a distance function on 
the set 𝙰𝚛𝚐𝚜, (𝙰𝚛𝚐𝚜, 𝖽Ω) be the metric space associated with the tagged framework Ω, and 𝔑Ω be the set of neighborhoods associated 
with arguments in Ω. We say that there is a semantic path from an argument 𝕏1 to an argument 𝕏𝑛 if and only if there exists 
a sequence of arguments [𝕏1, … , 𝕏𝑖, … , 𝕏𝑛] where 𝔑

𝜀𝕏𝑖
𝕏𝑖

∪𝔑
𝜀𝕏𝑖+1
𝕏𝑖+1

≠ ∅, with 1 ≤ 𝑖 ≤ 𝑛 − 1. We will use 𝕏1 ⇝ 𝕏𝑛 to denote a path 
between 𝕏1 and 𝕏𝑛.

The key idea behind the notion of community is to consider the common neighbors. Hence, two arguments, 𝔸 and 𝔹, are in the 
same community if they belong to the same neighborhood or if there exists a semantic path between them. Formally, we define this 
16

as follows.
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Definition 19 (Community for an argument). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be a hashtagged framework, 𝖽Ω(⋅, ⋅) be a distance function on the 
set 𝙰𝚛𝚐𝚜, (𝙰𝚛𝚐𝚜, 𝖽Ω) be the metric space associated with the tagged framework Ω, and 𝔑Ω be the set of neighborhoods associated 
with arguments in Ω. A community for an argument 𝔸 ∈ 𝙰𝚛𝚐𝚜, denoted as ℭ𝔸, is defined as:

ℭ𝔸 = {𝔹 ∈ 𝙰𝚛𝚐𝚜 ∣𝔸⇝ 𝔹 ∨𝔹⇝𝔸}.

We denote with ℭΩ the set of communities associated with the arguments of Ω.

Different communities are always disjoint, since a common argument denotes two overlapping neighborhoods that, by definition, 
must be in the same community.

Proposition 6. Let ℭΩ be the set of communities associated with the arguments of Ω. Given any ℭ𝔸, ℭ𝔹 ∈ ℭΩ, either ℭ𝔸 ∩ ℭ𝔹 = ∅ or 
ℭ𝔸 =ℭ𝔹.

On the other hand, every argument belongs to a community since every argument has a neighborhood, which can be a community 
by itself if it is entirely isolated. Hence, the union of communities comprises the entire set of arguments in the framework. Then, 
based on the result presented in the previous proposition, the concept of community naturally induces a partition of 𝙰𝚛𝚐𝚜. In this 
case, we denote with ℭΩ = {ℭ1, ..., ℭ𝑛} the set of communities associated with the arguments of Ω without referring to the arguments 
belonging to a community.

Proposition 7. Let ℭΩ = {ℭ1, ..., ℭ𝑛} be the set of communities associated with the arguments of Ω. Then:

𝑛⋃
𝑖=1

ℭ𝑖 = 𝙰𝚛𝚐𝚜.

Thus, in the following, we formalize the notions introduced above using now the notion of community and their impact on the 
semantics in our argumentation formalism. In the following, consider framework Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩, where 𝖽Ω(⋅, ⋅) is a distance function 
on the set 𝙰𝚛𝚐𝚜, (𝙰𝚛𝚐𝚜, 𝖽Ω) is the metric space associated with Ω, and 𝔑𝜀Ω

Ω the set of neighborhoods associated with the arguments 
of Ω.

Proposition 8. Let ℭΩ be the set of communities associated with the arguments of Ω. Then, if ℭΩ is a singleton set then ℭΩ = 𝙰𝚛𝚐𝚜.

In other words, if there is only one community in the framework, then there are no isolated neighborhoods. This means that 
for any argument 𝙰 it is possible to reach another argument 𝙱 in 𝙰𝚛𝚐𝚜 simply by “jumping” through a sequence of overlapping 
neighborhoods. Hence, the community is itself the set of all arguments 𝙰𝚛𝚐𝚜.

Example 6. Consider the framework depicted in Fig. 7, with the neighborhoods associated with each argument as detailed in Table 2. 
Considering Definition 19, we can obtain the following four communities:

– ℭ1 = {𝔸, 𝔹, ℂ, 𝔼, 𝔽 , ℍ, 𝕀, 𝕂, 𝕃, 𝕄, ℕ, 𝕆} is the largest community. To obtain this set, we consider the neighborhoods associated 
with arguments 𝔸, 𝕀, 𝔹, and 𝔽 , highlighted with blue, green, gray, and orange, respectively in Fig. 9. Thus, we find a sequence 
to arrive from 𝔸 to ℕ navigating through the neighborhood of 𝔸 and 𝕀 (𝔸 has 𝕀 as neighbor and from 𝕀 we have a sequence 
to reach ℕ − 𝕀 ⇝ ℕ, since 𝕀 has ℕ as neighbor), a sequence to arrive from 𝕀 to 𝕄 (𝕀 has 𝔽 as neighbor and from 𝔽 we have 
a sequence to reach 𝕄 − 𝔽 ⇝𝕄, since 𝔽 has 𝕄 as neighbor), and a sequence to arrive from 𝕄 to 𝔹 (𝔹 has 𝕄 as neighbor −
𝔹 ⇝𝕄);

– ℭ2 = {𝔻} is a single community;

– ℭ3 = {𝔾} is a single community; and

– ℭ4 = {𝕁} is a single community.

In Fig. 10 we represent the communities associated with Ω, where ℭ1 is marked with purple dots, ℭ2 with red, ℭ3 with yellow, 
and ℭ4 with blue.

We have thus established an expanded notion of familiarity between arguments neighborhoods with common members form a 
larger society of arguments ready to defend themselves. We next characterize admissibility semantics over this expanded range of 
defense.

Now that arguments have a defense community range, it is necessary to provide a notion of admissibility that is restricted to these 
argument-intrinsic spaces. Here, a set of arguments is said to be admissible if every argument is acceptable with respect to that set, 
but only by using defenses inside every internal community range. This is formalized as follows.

Definition 20 (Conflict-freeness, acceptability, admissibility). Let ℭΩ be the set of communities associated with the arguments of Ω, 
17

and ℭ ∈ℭΩ. Then, we have:
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Fig. 9. Towards communities in the Proximity-based argumentation framework from the running example.

Fig. 10. Communities in the framework from the running example.

i) A set 𝚂 ⊆ 𝙰𝚛𝚐𝚜 is said to be conflict free if there are no hashtagged arguments 𝔸, 𝔹 ∈ 𝚂 such that 𝔹 attacks 𝔸.

ii) A hashtagged argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 and 𝔸 ∈ ℭ is 𝜁 -acceptable with respect to ℭΩ if for every argument 𝔹 ∈ 𝙰𝚛𝚐𝚜, if 𝔹 attacks 𝔸
then there is a hashtagged argument ℂ ∈ℭ such that ℂ attacks 𝔹.
18

iii) 𝚂 is said to be 𝜁 -admissible if every hashtagged argument that belongs to a community of ℭΩ is 𝜁 -acceptable with respect to ℭΩ.
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Note that, as before, we are considering a defense as valid only if it occurs within the community of an attacked argument.

Proposition 9. Let ℭΩ be the set of communities associated with the arguments of Ω. Then, 𝔸 ∈ 𝙰𝚛𝚐𝚜 is not attacked in Ω iff 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 
not attacked in Φ.

Proposition 10. Let ℭΩ be the set of communities associated with the arguments of Ω such that ℭΩ is a singleton set. Then, we have:

i) 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜁 -acceptable w.r.t. a set 𝚂 iff it is acceptable w.r.t. 𝚂; and

ii) A set 𝚂 is 𝜁 -admissible iff it is admissible.

By confining defenses to a particular community, we are relaxing the concept of admissible sets (and also adjusting the idea of a 
focused, rational position), particularly by expanding neighborhoods of arguments through the transitive closure.

Proposition 11. Let ℭΩ be the set of communities associated with the arguments of Ω. Then:

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂 then it is 𝜁 -acceptable w.r.t. 𝚂.

ii) If a set 𝚂 is 𝜂-admissible then it is 𝜁 -admissible.

The converse of the statements in Proposition 11 do not hold. For instance, an argument 𝔸 may be 𝜁 -acceptable with respect to 
the set {𝔹} because 𝔹 ∈ℭ𝔸, but not 𝜂-acceptable if 𝔹 ∉𝔑𝜀𝔸

𝔸 . Therefore, a 𝜁 -admissible set may not be 𝜂-admissible.

Lemma 1. Let ℭΩ be the set of communities associated with the arguments of Ω. Then, we have:

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜁 -acceptable w.r.t. a set 𝚂 then it is acceptable w.r.t. 𝚂.

ii) If a set 𝚂 is 𝜁 -admissible then it is admissible.

As mentioned, these semantic notions are an alternative version of the semantics proposed in Section 2.3. Thus, the following 
properties hold.

Proposition 12. Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be the underlying a hashtagged framework, 𝜏 ∈ N0 be a threshold, ℭΩ be the set of communities 
associated with the arguments of Ω, T𝚜

Ω and T𝚐
Ω be the radius associated with the smallest and greatest communities of ℭΩ, respectively, and 

𝚂 ⊆ 𝙰𝚛𝚐𝚜 be a set of hashtagged arguments. Then:

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T𝚜
Ω, then it is 𝜁 -acceptable w.r.t. 𝚂;

ii) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. 𝚂 then it is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T
𝚐
Ω;

iii) If 𝚂 is 𝜏-admissible with 𝜏 = T𝚜
Ω, then it is 𝜁 -admissible; and

iv) If 𝚂 is 𝜁 -admissible then it is 𝜏-admissible with 𝜏 = T
𝚐
Ω.

Now, Definition 20 leads to an extended proximity-based interpretation of neighborhood admissibility, where a collective defense 
is considered. That is, each argument belongs to a community depending on how their neighborhoods are connected.

Definition 21. Let ℭΩ be the set of communities associated with the arguments of Ω and 𝚂 ⊆ 𝙰𝚛𝚐𝚜 be a set of hashtags arguments. 
Then:

i) A 𝜁 -admissible set 𝚂 is a 𝜁 -complete extension iff 𝚂 contains each argument that is 𝜁 -acceptable with respect to 𝚂.

ii) Set 𝚂 is the 𝜁 -grounded extension of Ω iff 𝚂 is a ⊆-minimal 𝜁 -complete extension.

iii) Set 𝚂 is a 𝜁 -preferred extension of Ω iff 𝚂 is a ⊆-maximal 𝜁 -complete extension.

Next, we present an example to shed light on these new concepts.

Example 7. Now, continuing with Example 6 and analyzing the acceptability notions presented in Definition 21, the sets: 
𝚂7 = {𝕀, 𝔹, 𝔾, 𝕃, ℕ}, 𝚂8 = {𝕀, 𝔹, 𝔻, 𝔾, 𝕃, ℕ} and 𝚂9 = {𝕀, 𝔹, ℂ, 𝔽 , 𝔾, 𝕂, 𝕃, ℕ} are the maximal 𝜁 -admissible extensions. Fig. 11 depicts 
arguments with colored dots indicating their neighborhood’s range, using the same color of the communities to which they belong, 
as detailed in Example 6 (cf. Fig. 10). Furthermore, 𝚂7 is the 𝜁 -grounded extension, while 𝚂8 and 𝚂9 are the 𝜁 -preferred extensions, 
under the conditions established in Definition 17 (cf. Fig. 11).

Note that admissibility discards argument defenders that do not belong to the community associated with the attacked argument 
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in this proximity semantics version. If the argument has associated topics covering a particular thematic field, it will be defended by 
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Fig. 11. 𝜁 -extensions in Ω from the running example.

those arguments that are related to the same field. On the other hand, an opinion cannot be defended by formulations or assertions 
out of its spectrum of discussion.

As expected, and as before, if the smallest community is big enough, Dung’s admissibility and 𝜁 -admissibility coincide. Thus, we 
have the following connection between classical and proximity-acceptable sets of arguments.

Proposition 13. Let ℭΩ be the set of communities associated with the arguments of Ω. If the smallest community T𝚜
Ω is such that 

T𝚜
Ω ≥ diameter(H), then it holds that every 𝜁 -{admissible, complete, grounded, preferred} extension is an {admissible, complete, grounded, 

preferred} extension, respectively.

In abstract argumentation, a grounded extension is a single skeptical stance on acceptance. Our proximity-based semantics limits 
the concept of defense to a threshold linked to each argument labeled with a hashtag and its corresponding community, meaning 
that the skeptical stance is linked to the collection of communities, and distinct sets of communities result in different 𝜁 -grounded 
extensions. Nevertheless, as in traditional frameworks, the 𝜁 -grounded extension always exists (although it could be empty). The 
following result then holds.

Proposition 14. Let ℭΩ be the set of communities associated with the arguments of Ω. Then, there always exists a unique 𝜁 -grounded 
extension.

As we said before, hashtagged argumentation frameworks extend the scope of abstract frameworks by including additional 
elements. We are left with a classical abstract framework if we remove the hashtag information. The redefined proximity-based and 
traditional abstract semantics are connected, as demonstrated by the following theorem, which establishes a link between the two 
and shows that the former is a more precise version of the latter.

Theorem 3. Let ℭΩ be the set of communities associated with the arguments of Ω and Φ = ⟨𝙰𝚛𝚐𝚜, 𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩ be the underlying abstract 
argumentation framework. Then, the following properties hold:

i) If 𝚂Ω is a 𝜁 -complete extension in Ω, then there exists a complete extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ;

ii) If 𝚂Ω is a 𝜁 -grounded extension in Ω, then there exists a grounded extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ; and

iii) If 𝚂Ω is a 𝜁 -preferred extension in Ω, then there exists a preferred extension 𝚂Φ in Φ satisfying that 𝚂Ω ⊆ 𝚂Φ.

Thus, the rationale behind classical argumentation semantics is preserved.

The inclusion of the concept of community in argumentation models represents a significant improvement as it offers a fresh 
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perspective on valid defenses for individual arguments and leads to a new set of semantics. Note that the definition of community 
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Table 3

Summary of results for proximity-based semantics in Ω from the running example.

Grounded Extension Preferred Extension I Preferred Extension II

Basic Proximity {𝕀,𝔹,𝔾,𝕃} {𝕀,𝔹,ℂ,𝔽 ,𝔾,𝕂,𝕃} {𝕀,𝔹,𝔻,𝔾,𝕃}
Neighborhood {𝕀,𝔾,𝕃} {𝕀,ℂ,𝔾,𝕂,𝕃} {𝕀,𝔻,𝔾,𝕃}
Communities {𝕀,𝔹,𝔾,𝕃,ℕ} {𝕀,𝔹,ℂ,𝔽 ,𝔾,𝕂,𝕃,ℕ} {𝕀,𝔹,𝔻,𝔾,𝕃,ℕ}

can vary depending on the characterization used within the hashcloud. Thus, different conceptualizations of communities will have a 
noticeable impact on the overall outcome of the argumentation scenario—this highlights the significance of the proximity relationship 
between arguments. By incorporating the notion of community, argumentation-based models become a more capable representation 
tool, allowing for a more accurate model of the complex interplay between arguments. Using this representational device can 
ultimately lead to better decision-making and problem-solving in various domains, considering a more refined analysis based on how 
argument topics are related in an argumentative dispute.

After considering the intuitions presented above, we can establish a connection between the basic and community-centered 
proximity-based semantics. This connection has significant implications for the field of argumentation as a whole; by bridging these 
three approaches to argumentation, we can gain a more comprehensive understanding of the underlying principles and mechanisms 
at play, which allows us to refine and improve our methods for modeling and analyzing complex real-world scenarios.

Theorem 4. Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be a hashtagged framework, 𝜏 ∈N0 be a threshold, and ℭΩ be the set of communities associated with the 
arguments of Ω. Then, the following properties hold:

i) If 𝜏 = T𝚜
Ω is the threshold associated with the smallest community of Ω, 𝚂𝜁Ω is 𝜁 -complete (respectively, 𝜁 -grounded, and 𝜁 -preferred) 

extension and 𝚂𝜏Ω is 𝜏-complete (respectively, 𝜏-grounded, and 𝜏-preferred) extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜁Ω.

ii) If 𝜏 = T
𝚐
Ω is the threshold associated with the greatest community of Ω, 𝚂𝜁Ω is 𝜁 -complete (respectively, 𝜁 -grounded, and 𝜁 -preferred) 

extension and 𝚂𝜏Ω is 𝜏-complete (respectively, 𝜏-grounded, and 𝜏-preferred) extension, then it holds that 𝚂𝜁Ω ⊆ 𝚂𝜀Ω.

As proposed in the original proximity-based framework, this work analyzes the defenses between arguments using a proximity-

based framework. Two perspectives are considered: setting ranges of individual defenses through neighboring arguments and 
establishing communities of arguments for collective defense. To highlight the variations resulting from the proposed semantics, 
Table 3 summarizes the results of the different extensions.

Note that our analysis has only been conducted within the context of the defense relation. We decided to stay within the frame-

work of solutions originally proposed in abstract frameworks and refine them. If we consider the attack relation and dismiss some 
of these attacks based on distance, it would introduce a significant change in the argumentative process, potentially resulting in 
entirely different solutions than the original ones. In Appendix A, we present a case study that provides an application example in a 
real-world scenario that is limited in scope but complex enough to highlight the essential aspects of the framework. In future work 
we plan to address this issue and explore the implications of incorporating distance into the entire argumentation process.

6. Related work

In the context of classical abstract argumentation frameworks, there have been several proposals where other elements are added 
to the theoretical, abstract representational structure extending the possibility of representing more characteristics of the application 
domain. Some of these proposals bring new ways to identify the quality of attacks between arguments, a subject of interest in our 
work. In particular, several approaches provide mechanisms for discriminating the entire consideration of attacks, making some of 
those irrelevant and ignored under specific semantics. How an attack comes into play, and what the semantic consequences of this 
sort of filtering of attacks are, has been the focus of a few works through different argumentation models.

Bench-Capon [3] argues in his research that oftentimes it is impossible to conclusively demonstrate in the context of disagreement 
that either party is wrong, particularly in situations involving practical reasoning. The fundamental role of arguments in such cases 
is to persuade rather than to prove, demonstrate, or refute. In his own words: “The point is that in many contexts the soundness of an 
argument is not the only consideration: arguments also have a force which derives from the value they advance or protect.” Based on this 
intuition, the authors propose a formalism, called Valued-Based Argumentation Framework (VAF), extending Dung’s model to consider 
the strength of arguments and, through these assessments, reflect the preference of the audience to which the arguments are directed. 
Specifically, in VAF, an argument has associated a value from some set that has an ordering based on a specific audience. Then, from 
the valuations assigned to the arguments and the preferences defined by the audience, it is possible to specify when an argument is 
strong enough to attack and defeat another argument.

Therefore, different audiences specify different orders over the set of values, determining different defeat relations between 
arguments, leading to the distinction of arguments accepted by all the audiences (arguments accepted objectively), and another 
containing those arguments that are accepted by at least one audience (arguments accepted subjectively). In our work we do not 
have audiences, but we also provide a distinctive way to identify the force or relevance of an attack. For this we do not rely on the 
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perception of value of arguments, but in the semantic references that an argument can hold. In our model hashtags are not prohibited 
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from denoting values, but since we use graph distance notions to evaluate the relevance of defenses, then our model determines just 
how far values fall apart. Nevertheless, since we do not model audiences, there is no notion of subjective acceptance.

We associate an abstract argument with a set of hashtags. In [18], S. Kaci and L. van der Torre generalize Bench-Capon’s value-

based argumentation theory such that arguments can promote multiple values, and preferences among values or arguments can be 
specified in various ways. Each value can be associated with one or more arguments, and vice versa. Then, once the different values 
are mapped to each argument involved in the discussion, the existing conflict relations are analyzed with the intention of identifying 
the successful attacks. In Bench-Capon’s value-based framework, the attack of an argument 𝙰 over an argument 𝙱 is successful if 
and only if 𝙰 attacks 𝙱 and the value promoted by 𝙱 is not preferred over that promoted by 𝙰. However, in this new proposal, the 
arguments can promote more than one value—this increases the difficulty of determining when an argument is preferred to another 
based on their valuations. Again, here the preference among values is used to determine the success (somehow the validation) of 
an attack. The plurality of values requires an analysis that integrates these values into a single decision about the attack. There 
is a similar problem in our model, where several hashtags must lead to a distance measure that finally establishes the relevance 
of a defense. In [18], the authors provide a different solution based on the principles of minimal/maximal specificity, that allow 
to establish a unique possible ordering (total ordering) over the set of values associated with the arguments. This is possible since 
preferences are present in the formalization.

The enrichment of individual arguments with some form of meta-information is also present in [17]. There, Hunter addresses 
the idea that attacks might have attached some uncertainty about whether these attacks hold, i.e., some attacks might be believed, 
some might be disbelieved, and some might be unknown. To investigate how the attachment of probability to attacks influences 
the semantic analysis in the abstract framework, the author considers a probability distribution over the spanning subgraphs of an 
argumentation graph. From this distribution, the probability that a set of arguments is admissible or included in an extension can 
be determined. Therefore, adding probabilities to attacks in abstract argumentation frameworks leads to a formalism where attacks 
might or might not be a part of the semantic analysis, choosing a direction that differs from our approach. In our model, hashtags 
are abstract decorations of a single argument that denotes a set of semantic references. Uncertainty is a numeric valuation of an 
argument; a hashtag may denote an uncertainty level, and then the induced hashcloud is a linear graph. A defense is then allowed if 
the gap of uncertainty between two arguments is larger than a threshold. This is clearly a different approach to the one in [17], but 
the interpretation of hashtags as uncertainty levels is interesting, since the intuition is sound.

In [8], Budán et al. presented a formalization of a bipolar abstract argumentation framework that incorporates a novel mechanism 
for identifying meta-structures (coalitions) based on the similarity between supported related arguments, which is used as a measure 
of the coalition’s cohesion. The coherence of the coalition was determined by the similarity between supported related arguments, 
and this concept allowed for the evaluation of the coalition and identification of conversational trends. They also used the similarity 
degree to describe the attacks between coalitions, thereby advancing a measure of controversy. Additionally, a method for deter-

mining the level of weakening over a set of arguments was proposed by computing all the attacks received by an s-coalition. In our 
model, we use the classic argumentation framework proposed by Dung as a basis, which analyzes the effects of the distance between 
arguments in terms of defense. However, we incorporate a semantic topics network to conduct various metric analyses and determine 
how arguments can impact each other based on the topics they address. Additionally, we formalize two perspectives: a neighborhood 
and a community admissibility range, which enables us to obtain different families of semantic extensions. In another sense, in [8]

the authors emphasize the importance of detecting communities in social networks by identifying clusters of individuals with similar 
tastes and preferences. Towards this end, they propose a novel mechanism for finding meta-structures (coalitions) based on the simi-

larity between related arguments in discussions, considering their internal descriptors and their values (semantic internal structure). 
In order to establish a more informative relation to the present work using topic-based measures, one could explore methods to 
enhance the identification of these communities by incorporating topic modeling techniques. By associating arguments with specific 
topics or themes, similarity measures could be refined based on the relevance of arguments’ content. That is, we can explore based 
on a semantic hashcloud how relevant the arguments are in a specific discussion, how the different topological measures affect the 
similarity notion between arguments, and which relation exists between them. This would provide a more nuanced understanding 
of the relationships between individuals in discussions, capturing not only the structural but also the thematic aspects of community 
formation.

Another proposal for allowing the consideration of attacks is [20], where Kontarinis et al. advance an idea in the context of 
modeling online multi-agent debates involving multi-party argumentation. The introduction of agents in a debate with expertise 
on specific areas opens an interesting perspective: when a debate is deemed unresolved in a “controversial” manner, calling an 
additional expert may be a natural way to help make a decision. The expert then can analyze the situation from a more informed 
point of view, and introduce a resolution. Different examples of application domains are studied, such as the construction of more 
interactive forums on the Web like Debate Graph. Some of these systems just provide a way to represent arguments, attacks (in a 
declarative or abstract way) and information about them. Furthermore, some systems include reasoning machinery, usually from 
argumentation theory, which provides a formal way to decide on the acceptability of statements supported by acceptable arguments. 
However, the conflicting relation between arguments presented in a debate has different importance levels according to the votes 
presented by experts. The quality of these experts can vary depending on the topics of each argument. Thus, the influence of an expert 
to judge an attack relation depends on the quality of such expert in the topics presented by the conflicting arguments. Furthermore, 
in some domains, an argumentation process can be controversial: one case is when several conflicting (in some sense) acceptable 
outcomes are returned after the argumentation process; another case arises when voting does not offer a clear majority to support 
the fact that an attack should be taken or not into account. In order to avoid these issues, the authors set up a model extending 
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the classical argumentation framework, assuming that arguments are tagged with the topics they refer to. Although arguments are 
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decorated with topics, there is no semantic network that allows an inter-argument analysis to evaluate a relative difference between 
arguments. The whole process is related to the context of multi-agent argumentation—briefly speaking, they propose a procedure 
composed by three phases: the first phase consists in the aggregation of the different opinions of the agents, and allows to obtain an 
aggregated weighted argumentation system (WAS); then comes an evaluation phase, which allows to determine how controversial 
the aggregation is; finally, in the third phase, they choose an expert to make the aggregated WAS less controversial.

7. Conclusions

In essence, abstract argumentation is the study of arguments and their relationships, transcending certain details of the underlying 
structural logic. Arguments are treated as abstract entities linked through specific relations like attack and defeat, and later support 
and weakening, among others. Since the seminal work of Dung, some authors elaborated new semantic notions on the same abstract 
framework, while others proposed enriched formalizations by adding new details towards different models of argumentation. The 
addition of these elements is needed because a wide range of expressions of arguments and dialogues with intrinsic properties cannot 
be captured by only two simple elements of a graph: nodes and attacks.

In this paper we have developed a formalization of an enriched abstract argumentation framework that aims to include, in the 
semantic analysis, information about what the arguments are referring to. This is important because abstract frameworks and their 
corresponding semantics are based on an exhaustive consideration of arguments and attacks while ignoring the fact that, when 
considering the acceptance of an argument, some arguments may be more relevant than others. Usually, when humans argue about 
a subject they tend to include, sooner or later, arguments that refer to minor, almost unrelated subjects that are not close to the 
original subject. In our proposal, arguments are decorated with abstract topics in the form of hashtags as it is commonly done 
in social media. These topics provide abstract information about what the arguments are addressing, and provide a supporting 
structure for the analysis of multi-topic argumentation. Basic admissibility semantics were presented in previous papers, where the 
consideration of argument defenses is restricted to close (in the sense of topics) arguments. In this work we elaborate new semantic 
notions by the characterization of individual areas of closeness for every argument, called neighborhoods. Topics are related to each 
other, configuring a graph structure as a semantic network in which a notion of distance between topics is introduced naturally and 
is used to identify closeness between topics, leading to the study of proximity-based semantics.

The central aspect of these argumentation semantics is the initial idea that an argument should be defended by closely related 
arguments linked to the addressed topics. We explore this idea by defining here new elements such as neighborhood-bounded 
admissible sets and the connections between neighborhoods. A community is a chain of neighborhoods sharing arguments—such 
shared arguments serve as a bridge for expanding the notion of proximate defenders. Hence, an argument may find defenders that 
although are not neighbors, belong to a somehow familiar set of indirect neighbors. A community is then a connected, second 
range of proximity-based defenses. We analyzed the relation between these new formalizations, an earlier version of proximity-based 
admissibility, and the classical admissibility semantics. These semantic notions provide new characterizations for the idea of focused 
argumentation, where extensions are defined only by arguments that relate to a subset of interconnected topics, close enough to 
each other, avoiding an analysis of arguments that digress from certain subjects. We believe that the semantic extensions presented 
constitute an important step in the search for novel models of concentrated argumentation.

The addition of topics to abstract argumentation suggests several directions for future work. There is room for a wide study of 
centrality notions applied to topics and their arguments; for instance, central and peripheral arguments can be identified in a similar 
way as central and peripheral nodes are in a graph, and varied centrality-inspired semantic extensions can be defined. If more detail 
about the underlying logical structure is added, like rules or literals, more precise forms of focused extensions can be explored. We 
are also interested in the construction and analysis of the semantic network of hashtags. We believe that the areas of information 
retrieval and social network analysis may contribute to establish the importance of arguments according to their own set of hashtags 
in a given hashcloud, leading to new characterizations of focused argumentation.
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Fig. A.12. Proximity-based argumentation framework – case study.
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Appendix A. A case study for proximity-based semantics based on neighborhoods and communities

Higher education has been a topic of debate for decades, with many people believing it is crucial for success in life and career, 
while others question its value. In this discussion, we will present arguments for and against higher education, offering a variety of 
perspectives. By considering these arguments, we can gain a more comprehensive and critical understanding of the impact of higher 
education on society.

𝔸 Higher education is a valuable investment that offers numerous benefits, including higher incomes, improved job security, and 
enhanced critical thinking skills. Education also promotes social mobility, personal growth, and self-esteem. Graduates can make 
positive contributions to society by addressing environmental challenges and healthcare disparities. Additionally, education can 
improve overall health and well-being. In summary, higher education is crucial for personal and societal development and 
creating a more sustainable future for all.

𝔹 College graduates tend to earn more money over the course of their careers than non-graduates, which can improve their quality 
of life and financial stability.

ℂ Higher education provides opportunities to develop social and emotional skills, as well as to build valuable professional and 
personal networks.

𝔻 Many jobs do not require higher education and can be equally rewarding and well paid, especially in trades and practical fields.

𝔼 The cost of higher education has increased significantly in recent decades, making access to higher education more difficult for 
many low-income students.

𝔽 Higher education can improve people’s health, as health professionals require specialized and detailed training, leading to better 
overall health care.

𝔾 Higher education can have a positive impact on transport, as educated people tend to be more environmentally aware and can 
develop innovative solutions to reduce congestion and pollution.

ℍ Higher education can help strengthen democracy and politics, as educated citizens are more informed, critical thinkers and can 
make more informed and responsible decisions at the ballot box.

𝕀 Higher education can have a negative impact on mental health, as university students experience high levels of stress, anxiety, 
and depression due to workload, pressure, and competition.

𝕁 The concentration of universities in urban areas can lead to traffic problems and congestion, which can have negative effects on 
city transport, leading to environmental problems.

𝕂 University students may be less critical and more conformist in their political thinking, which may affect their ability to challenge 
the status quo and contribute to positive societal changes.

Thus, based on the previous argumentation discussion, we consider the Hashtagged Argumentation Framework Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩, 

24

graphically represented in Fig. A.12, where:
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Fig. A.13. Topics comprising the argumentation discussion – case study.

Fig. A.14. Hashcloud associated with the argumentation discussion – case study.

H = {#𝛼1, #𝛼2, … , #𝛼19} (detailed in Fig. A.13).

E = {(#𝛼1, #𝛼2), (#𝛼1, #𝛼3), (#𝛼1, #𝛼4), (#𝛼1, #𝛼5), (#𝛼1, #𝛼6), (#𝛼1, #𝛼7), (#𝛼1, #𝛼8), (#𝛼1, #𝛼10), (#𝛼2, #𝛼7), (#𝛼3, #𝛼4), (#𝛼3, #𝛼7), (#𝛼4,
#𝛼5), (#𝛼5, #𝛼6), (#𝛼5, #𝛼11), (#𝛼6, #𝛼7), (#𝛼6, #𝛼11), (#𝛼7, #𝛼10), (#𝛼8, #𝛼9), (#𝛼8, #𝛼10), (#𝛼9, #𝛼13), (#𝛼10, #𝛼14), (#𝛼10, #𝛼15), (#𝛼10,
#𝛼16), (#𝛼11, #𝛼12), (#𝛼11, #𝛼16), (#𝛼12, #𝛼13), (#𝛼14, #𝛼15), (#𝛼15, #𝛼16), (#𝛼16, #𝛼17), (#𝛼17, #𝛼18), (#𝛼18, #𝛼19)} (cf. Fig. A.14).

𝙰𝚛𝚐𝚜 = {𝔸, 𝔹, ℂ, 𝔻, 𝔼, 𝔽 , 𝔾, ℍ, 𝕀, 𝕁, 𝕂}.

𝙰𝚝𝚝𝚊𝚌𝚔𝚜 = {(𝔻, ℂ), (ℂ, 𝔼), (𝔼, 𝔹), (𝔹, 𝔸), (𝔾, 𝕁), (𝕁, 𝔸), (𝔸, 𝕀), (𝕀, 𝔽 ), (𝕂, 𝔽 ), (𝕂, ℍ), (ℍ, 𝕂)}

Then, consider the following non-intersection distance:

𝖽Ω(𝔸,𝔹) =

⎧⎪⎪⎨⎪⎪⎩

𝑚𝑎𝑥(𝖽𝒢(𝛼, 𝛽)) where 𝛼 ∈H𝙰 ⧵H𝙱 and 𝛽 ∈H𝙱 ⧵H𝙰,

0 when H𝙰 =H𝙱,

∞ if for all 𝛼 ∈H𝙰𝑎𝑛𝑑 𝛽 ∈H𝙱,

there is no path between them.

We calculate the distances between arguments detailed in Table A.4, and analyze in depth the hashcloud 𝒢Ω corresponding to 
Ω represented in Fig. A.14. Now, in this state, we determine the neighborhood of the hashtagged arguments in order to allow only 
those defenses that are close enough to the topics represented by the set of hashtags associated with each argument. We take, as 
we established in the previous example, the centrality degree and neighbor degree as local topological measures, and radius and 
diameter as general topological measures. Table A.5 shows the neighborhood associated with each argument that belongs to the 
25

argumentation discussion.
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Table A.4

Distances between the hashtagged arguments in Ω – case study.

𝔸 𝔹 ℂ 𝔻 𝔼 𝔽 𝔾 ℍ 𝕀 𝕁 𝕂

𝔸 0 4 5 4 4 5 6 5 4 6 5

𝔹 4 0 3 2 3 3 5 4 3 5 4

ℂ 5 3 0 3 2 4 6 4 4 6 4

𝔻 4 2 3 0 3 3 5 4 3 5 4

𝔼 4 3 2 3 0 3 6 3 4 5 3

𝔽 5 3 4 3 3 0 6 4 4 6 4

𝔾 6 5 6 5 6 6 0 6 5 5 6

ℍ 5 4 4 4 3 4 6 0 4 6 4

𝕀 4 3 4 3 4 4 5 4 0 5 4

𝕁 6 5 6 5 5 6 5 6 5 0 6

𝕂 5 4 4 4 3 4 6 4 4 6 0

Table A.5

Argument neighborhoods from the case study.

Continuing with the Hashtagged Argumentation Framework depicted in Fig. A.15 based on the neighborhoods associated with 
each argument presented in Table A.5, we have that:

– 𝔾 is not a defender of 𝔸 since the distance between 𝔾 and 𝔸 is 6, while 𝔸 has a neighborhood range of 3.

– On the other hand, 𝔻 is not a defender of 𝔼 since 𝔻 is not a neighbor of 𝔼 (the distance between 𝔻 and 𝔼 is 3, where 𝔼
has a neighborhood range of 2). Furthermore, 𝔼 is not a defender of 𝔸 since the distance between 𝔼 and 𝔸 is 4 and 𝔸 has a 
neighborhood range of 3.

– ℍ is not a defender of 𝔽 since ℍ is not a neighbor of 𝔽 (the distance between ℍ and 𝔽 is 4, where 𝔽 has a neighborhood range 
of 3). Also, 𝕂 is not a defender of 𝕀 since the distance between 𝕂 and 𝕀 is 4 and 𝕀 has a neighborhood range of 2. Thus, 𝕂 is not 
a neighbor of 𝕀.

– Finally, 𝔽 is not a defender of 𝔸 since 𝔽 is not a neighbor of 𝔸 (the distance between 𝔸 and 𝔽 is 5, where 𝔸 has a neighborhood 
range of 3).

Thus, analyzing the acceptability notions presented in Definition 16, the sets 𝚂1 = {𝔻, 𝔾}, 𝚂2 = {𝔻, 𝔾, ℍ}, and 𝚂3 = {𝔻, 𝔾, 𝕂} are the 
maximal 𝜂-admissible extensions. Furthermore, 𝚂1 is the 𝜂-grounded extension, while 𝚂2 and 𝚂3 are the 𝜂-preferred extensions under 
26

the conditions established in Definition 17 (see Fig. A.16).
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Fig. A.15. Framework from the case study considering neighborhood parameters.

Fig. A.16. The 𝜂-extensions in Ω from the case study.

Now, taking as basis the Hashtagged Argumentation Framework depicted in Fig. A.15, the neighborhoods associated with each 
argument detailed in Table A.5 and considering the Definition 19, we can obtain the following four communities:

– ℭ1 = {𝔸}, ℭ2 = {𝔾}, ℭ3 = {𝕀}, ℭ4 = {𝕁} and ℭ5 = {𝕁} are single communities; and

– ℭ6 = {𝔹, ℂ, 𝔻, 𝔼, 𝔽 , ℍ}, where from 𝔽 we find a sequence to arrive to ℂ (𝔽 has 𝔼 as neighbor, which is at the same time neighbor 
of ℂ); Furthermore, since we have 𝔼 in the community we can incorporate ℍ (by Definition 16, we have a sequence between 
arguments iff ℍ ⇝ 𝔼 or 𝔼 ⇝ℍ).

These communities are non-empty, disjoint, and their union is the set 𝙰𝚛𝚐𝚜.

Now, analyzing the acceptability notions presented in Definition 21, the sets: 𝚂4 = {𝔻, 𝔼, 𝔾}, 𝚂5 = {𝔻, 𝔼, 𝔽 , 𝔾, ℍ} and 𝚂6 =
{𝔻, 𝔾, 𝔼, 𝕂} are the maximal 𝜁 -admissible extensions. Note that the color of the spheres accompanying the arguments indicating 
their neighborhood’s range differentiates the color of the communities to which they belong. Furthermore, 𝚂4 is the 𝜁 -grounded ex-

tension, while 𝚂5 and 𝚂6 are the 𝜁 -preferred extensions, under the conditions established in Definition 17 (see Fig. A.16 and Fig. A.17). 
In Table A.6, we summarize the extensions obtained from the different proposed semantics to highlight the differences between 
them.

We have analyzed a case study to evaluate the effects of Higher Education on graduates’ lives and other related concerns. We con-

sidered arguments from various perspectives, both in favor and against the arguments involved. Thus, considering the Neighborhood 
27

point of view, we can arrive at the following conclusions:
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Fig. A.17. The 𝜁 -extensions in Ω from the case study.

Table A.6

Summary of proximity-based argumentation semantics in Ω from the case study.

Grounded Extension Preferred Extension I Preferred Extension II

Neighborhood {𝔻,𝔾} {𝔻,𝔾,ℍ} {𝔻,𝔾,𝕂}
Communities {𝔻,𝔼,𝔾} {𝔻,𝔼,𝔽 ,𝔾,ℍ} {𝔻,𝔼,𝔾,𝕂}

– Considering the accepted arguments 𝔻, 𝔾, and ℍ, we can conclude the complex relationship between higher education and 
various domains of society. While many jobs do not require higher education, it can have a positive impact on transport by 
creating environmentally aware individuals who can develop innovative solutions to reduce congestion and pollution. Moreover, 
higher education can strengthen democracy and politics by producing more informed and critical thinkers who can make better 
decisions at the ballot box. However, the potential for university students to become less critical and more conformist in their 
political thinking suggests that higher education may only sometimes lead to positive societal changes. Ultimately, the value of 
higher education depends on its ability to prepare individuals for their roles in society, whether in practical fields or in shaping 
the future of our democracy.

– Based on 𝔻, 𝔾, and 𝕂, the accepted arguments highlight the importance of considering the role of higher education concerning 
different domains of society. While many jobs do not require higher education, it can positively impact areas such as trans-

portation by creating environmentally aware individuals who can develop innovative solutions to address challenges such as 
congestion and pollution. However, the potential for university students to become less critical and more conformist in their 
political thinking suggests that higher education may not always lead to positive societal changes. Therefore, it is crucial to 
consider the potential drawbacks of higher education as well as its benefits, particularly in promoting critical thinking and a 
willingness to challenge the status quo. Ultimately, a well-rounded approach to education that balances practical skills and 
critical thinking may be the most effective way to promote positive societal changes.

Now, taking into account the communities point of view, we can conclude the following:

– Based on 𝔻, 𝔼, 𝔽 , 𝔾, and ℍ, we can conclude that there exist both benefits and challenges of higher education in different 
domains of society. While many jobs do not require higher education, they can positively impact areas such as transportation, 
democracy, and health care. Educated individuals tend to be more environmentally aware and can develop innovative solutions 
to address transportation issues such as congestion and pollution. They also have the potential to make more informed and 
responsible decisions at the ballot box, ultimately strengthening democracy and politics. Additionally, specialized training in 
health care professions can lead to better overall health care. However, the rising cost of higher education has made access 
to higher education more difficult for many low-income students, presenting a challenge to the potential benefits of higher 
education. Therefore, it is essential to consider both the benefits and challenges of higher education in order to ensure that it 
remains accessible and beneficial to individuals and society as a whole.

– From these arguments 𝔻, 𝔾, and 𝕂, it can be concluded that while higher education can have benefits such as improving envi-

ronmental awareness and critical thinking skills, it is only sometimes necessary for a successful and fulfilling career. However, 
the increasing cost of higher education may limit access to those who could benefit from it the most. Additionally, higher edu-
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cation may lead to conformity in political thinking, potentially limiting the ability of graduates to challenge established systems 
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and contribute to positive change. Ultimately, the decision to pursue higher education should be weighed carefully, considering 
both personal goals and the potential societal impact.

We aimed to demonstrate how including specific characteristics in abstract argumentation frameworks can enhance the represen-

tation of topological elements associated with an argument’s proximity to other framework members, underscoring the value of our 
approach as a reliable knowledge representation tool. To demonstrate these capabilities more comprehensively, we plan to conduct 
a more elaborate experiment in a forthcoming paper.

Appendix B. Proofs

Proposition 1. Given an argument 𝔸 ∈ 𝙰𝚛𝚐𝚜, 𝔸 is not attacked in Ω iff 𝔸 is not attacked in Φ.

Proof. This result follows from the definitions of Φ and Ω. If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is not attacked in Ω, then there is no hashtagged argument 
𝔹 ∈ 𝙰𝚛𝚐𝚜 such that 𝔹 attacks 𝔸 in Ω. Since Φ is an extension of Ω, there is no hashtagged argument 𝔹 ∈ 𝙰𝚛𝚐𝚜 such that 𝔹 attacks 𝔸
in Φ. □

Proposition 2. Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the arguments of Ω and Φ be the underlying abstract argumentation 

framework. Then:

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂 in Ω, then it is acceptable w.r.t. 𝚂 in Φ.

ii) If a set 𝚂 is 𝜂-admissible in Ω then it is admissible in Φ.

Proof. This demonstration follows directly from the definitions, and it will be done in two parts:

𝑖) If ⟨𝙰, H𝙰⟩ ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂 in Ω, then 𝙰 is acceptable w.r.t. 𝚂 in Φ. By hypothesis, ⟨𝙰, H𝙰⟩ is 𝜂-acceptable w.r.t. 𝚂, 
then for every attacker hashtagged argument ⟨𝙱, H𝙱⟩ ∈ 𝙰𝚛𝚐𝚜 there exists a defender ⟨𝙲, H𝙲⟩ ∈ 𝚂. Thus, we can say that 𝙰 is acceptable

w.r.t. 𝚂 since there exists a defender 𝙲 for 𝙰 from 𝙱 attack’s.

𝑖𝑖) If a set 𝚂 is 𝜂-admissible in Ω then it is admissible in Φ. By hypothesis, 𝚂 is 𝜂-admissible in Ω. Thus, every hashtagged argument 
in 𝚂 is 𝜂-acceptable w.r.t. 𝚂. Furthermore, by consequence of i) if a hashtagged argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂 in Ω
then it is acceptable w.r.t. 𝚂 in Φ. Then, we can deduce that 𝚂 is admissible in Φ. □

Proposition 3 ( [13]). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be the underlying a hashtagged framework, 𝜏 ∈N0 be a threshold, 𝔑𝜀Ω
Ω be the set of neigh-

borhoods associated with the arguments of Ω, T𝚜
Ω and T𝚐

Ω be the radius associated with the smallest and greatest neighborhoods of 𝔑Ω, 
respectively; let 𝚂 ⊆ 𝙰𝚛𝚐𝚜 be a set of hashtagged arguments. Then, we have:

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T𝚜
Ω, then it is 𝜂-acceptable w.r.t. 𝚂;

ii) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. 𝚂 then it is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T
𝚐
Ω;

iii) If 𝚂 is 𝜏-admissible with 𝜏 = T𝚜
Ω, then it is 𝜂-admissible; and

iv) If 𝚂 is 𝜂-admissible then it is 𝜏-admissible with 𝜏 = T
𝚐
Ω.

Proof. This demonstration will be done in four parts:

1) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜏-acceptable w.r.t. a set 𝚂 with 𝜏 = T𝚜
Ω, then it is 𝜂-acceptable w.r.t. 𝚂. By hypothesis, 𝔸 is 𝜏-acceptable w.r.t. 𝚂

with 𝜏 = T𝚜
Ω. Thus, the threshold applied to obtain the acceptable set of arguments is equal to the radius associated with the lowest 

neighborhood of 𝔑Ω. Then, for every attacked hashtagged argument 𝔸 ∈ 𝚂 there exists a defender ℂ ∈ 𝚂 such that ℂ ∈𝔑𝜀𝔸
𝔸 . Then, 

𝔸 is 𝜂-acceptable w.r.t. 𝚂.

2) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂, then it is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T
𝚐
Ω. By hypothesis, 𝔸 is 𝜂-acceptable w.r.t. 𝚂. Thus, 

for every attacker hashtagged argument 𝔹 ∈ 𝚂 there exists a defender ℂ ∈ 𝚂 such that ℂ ∈𝔑𝜀𝔸
𝔸 where the radius of 𝔑𝜀𝔸

𝔸 is lower or 
equal than 𝜏 . Then, 𝔸 is 𝜏-acceptable w.r.t. 𝚂 with 𝜏 = T

𝚐
Ω.

3) If a set 𝚂 is 𝜏-admissible with 𝜏 = T𝚜
Ω, then it is 𝜂-admissible. By hypothesis, 𝚂 is 𝜏-admissible; then, every hashtagged argument in 

𝚂 is 𝜏-acceptable w.r.t. 𝚂. Furthermore, as a consequence of 𝑖), if a hashtagged argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜏-acceptable w.r.t. a set 𝚂 then it 
is 𝜂-acceptable w.r.t. 𝚂.

4) If a set 𝚂 is 𝜂-admissible then it is 𝜏-admissible with 𝜏 = T
𝚐
Ω. By hypothesis, 𝚂 is 𝜂-admissible; thus, every hashtagged argument in 

𝚂 is 𝜂-acceptable w.r.t. 𝚂. Furthermore, by consequence of 𝑖) if a hashtagged argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂 then it is 
𝜏-acceptable w.r.t. 𝚂. □

Proposition 4. Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the arguments of Ω. If the smallest neighborhood T𝚜

Ω is such that 
T𝚜
Ω ≥ diameter(H), then every 𝜂-{admissible, complete, grounded, preferred} extension is an {admissible, complete, grounded, preferred}
29

extension, respectively.
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Proof. For the acceptability-based semantics, it is sufficient to prove that the hashtagged defender arguments in Ω are also present 
as defenders in the underlying abstract argumentation framework, for the 𝜂-admissible, complete, grounded, preferred extension. 
Suppose that an argument 𝙰 is defended by an argument 𝙲 from the attacks of 𝙱 in the underlying abstract argumentation framework, 
but the counterpart hashtagged argument 𝔸 is not defended in Ω by the hashtagged version of ℂ. This means that, by Definition 16, 
𝖽Ω(𝔸, ℂ) ∉ 𝔑𝜀𝔸

𝔸 (†). However, the radius associated with the smallest neighborhood T𝚜
Ω ≥ diameter(H) where diameter(H) is the 

maximum eccentricity of the hashtags in H. Nevertheless, the relation (†) is not possible since diameter(H) is the maximum of the 
distances to all other hashtags in H. Contradiction. □

Proposition 5. There always exists a unique 𝜂-grounded extension.

Proof. Suppose there are two distinct sets 𝚂 and 𝚂′, both serving as 𝜂-grounded extensions. Let 𝔸 ∈ 𝚂 and 𝔸 ∉ 𝚂′. This implies that 𝔸
is not 𝜂-acceptable with respect to 𝚂′. Therefore, for any argument 𝔹 ∈ 𝙰𝚛𝚐𝚜 attacking 𝔸, there does not exist a hashtagged argument 
ℂ ∈ 𝚂′ such that ℂ ∈𝔑𝜀𝔸

𝔸 and ℂ attacks 𝔹. However, according to our hypothesis, 𝔸 ∈ 𝚂 is an 𝜂-complete extension. Thus, 𝔸 ∈ 𝙰𝚛𝚐𝚜
is 𝜂-acceptable with respect to 𝚂. This means that for any argument 𝔹 ∈ 𝙰𝚛𝚐𝚜, if 𝔹 attacks 𝔸, there exists a hashtagged argument 
ℂ ∈ 𝚂 such that ℂ ∈𝔑𝜀𝔸

𝔸 and ℂ attacks 𝔹. Furthermore, if 𝚂′ is a ⊆-minimal 𝜂-complete extension, and 𝔸 ∉ 𝚂′, then 𝔸 ∈ 𝙰𝚛𝚐𝚜 is not 
𝜂-acceptable with respect to 𝚂′. However, as mentioned earlier, there exists a set of arguments 𝚂 defending 𝔸 in 𝜙. Consequently, 𝚂′
cannot be a ⊆-minimal 𝜂-complete extension. Thus, we arrive to a contradiction. □

Theorem 1 ([13]). Let 𝔑𝜀Ω
Ω be the set of neighborhoods associated with the arguments of Ω, and Φ = ⟨𝙰𝚛𝚐𝚜, 𝙰𝚝𝚝𝚊𝚌𝚔𝚜⟩ be the underlying 

abstract argumentation framework. Then, the following properties hold:

i) If 𝚂Ω is 𝜂-complete extension in Ω, then there exists a complete extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ;

ii) If 𝚂Ω is an 𝜂-grounded extension in Ω, then there exists a grounded extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ; and,

iii) If 𝚂Ω is an 𝜂-preferred extension in Ω, then there exists a preferred extension 𝚂Φ in Φ such that 𝚂Ω ⊆ 𝚂Φ.

Proof. We separate the proof into three parts:

1) If 𝚂Ω is a 𝜂-complete extension in Ω, then there exists a complete extension 𝚂Φ in Φ satisfying that 𝚂Ω ⊆ 𝚂Φ. Suppose that 𝚂Ω is 
a 𝜂-complete extension in Ω, but there is no complete extension 𝚂Φ in Φ satisfying that 𝚂Ω ⊆ 𝚂Φ. Then, there exists the hashtagged 
argument 𝔸 which is 𝜂-acceptable w.r.t. the 𝜂-admissible extension 𝚂Ω but the underlying argument (no hashtags) 𝙰 is not acceptable 
w.r.t. 𝚂. Thus, 𝔸 is defended by 𝚂Ω but it is not defended by 𝚂 in the underlying abstract argumentation framework. However, by 
Proposition 2, if 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂 then it is acceptable w.r.t. 𝚂, and if a set 𝚂 is 𝜂-admissible then 𝚂 is admissible. 
Contradiction.

2) If 𝚂Ω is a 𝜂-grounded extension in Ω, then there exists a grounded extension 𝚂Φ in Φ satisfying that 𝚂Ω ⊆ 𝚂Φ. This holds trivially, 
since because of 𝑖) if 𝚂Ω is a 𝜂-complete extension in Ω, there exists a complete extension 𝚂Φ in Φ satisfying that 𝚂Ω ⊆ 𝚂Φ. Thus, the 
proof of this point is a special case where 𝚂Ω is the minimal 𝜂-complete extension in Ω and 𝚂Φ is the minimal complete extension in 
Φ.

3) If 𝚂Ω is 𝜂-preferred extension in Ω, then there exists a preferred extension 𝚂Φ in Φ satisfying that 𝚂Ω ⊆ 𝚂Φ. This holds trivially, 
since because of 𝑖) if 𝚂Ω is 𝜂-complete extension in Ω, there exists a complete extension 𝚂Φ in Φ satisfying that 𝚂Ω ⊆ 𝚂Φ. Thus, the 
proof of this point is a special case where 𝚂Ω is a maximal 𝜂-complete extension in Ω and 𝚂Φ is a maximal complete extension in Φ
where the inclusion condition is satisfied. □

Theorem 2 ([13]). Let Ω = ⟨Φ, 𝒢Ω, 𝖽Ω⟩ be the underlying a hashtagged framework, 𝜏 ∈N0 be a threshold, 𝔑𝜀Ω
Ω be the set of neighborhoods 

associated with the arguments of Ω. Then, we have:

𝑖) If 𝜏 = T𝚜
Ω is the threshold associated with the smallest neighborhood of Ω, 𝚂𝜂Ω is an 𝜂-complete (respectively, 𝜂-grounded, and 𝜂-preferred) 

extension, and 𝚂𝜏Ω is a 𝜏-complete (respectively, 𝜏-grounded, and 𝜏-preferred) extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω.

𝑖𝑖) If 𝜏 = T
𝚐
Ω is the threshold associated with the greatest neighborhood of Ω, 𝚂𝜂Ω is an 𝜂-complete (respectively, 𝜂-grounded, and 𝜂-preferred) 

extension, and 𝚂𝜏Ω is a 𝜏-complete (respectively, 𝜏-grounded, and 𝜏-preferred) extension, then it holds that 𝚂𝜂Ω ⊆ 𝚂𝜏Ω.

Proof. We separate the proof in two parts, each one divided into three items:

𝑖) 𝑎) If 𝜏 = T𝚜
Ω is the threshold associated with the smallest neighborhood of Ω, 𝚂𝜂Ω is an 𝜂-complete extension and 𝚂𝜏Ω is a 𝜏-

complete extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω. Suppose that 𝚂𝜂Ω is an 𝜂-complete extension and 𝚂𝜏Ω is not a 𝜏-complete 
extension Then, there exists a hashtagged argument 𝔸 which is 𝜏-acceptable w.r.t. the 𝜏-admissible extension 𝚂𝜏Ω but 𝔸 is 
not 𝜂-acceptable w.r.t. 𝚂𝜂Ω. Thus, 𝔸 is defended by 𝚂𝜏Ω but it is not defended by 𝚂𝜂Ω. However, by Proposition 3, if 𝔸 ∈ 𝙰𝚛𝚐𝚜
is 𝜏-acceptable w.r.t. a set 𝚂𝜏Ω with 𝜏 = T𝚜

Ω, then it is 𝜂-acceptable, and if a set 𝚂𝜀Ω is 𝜏-admissible then it is 𝜂-admissible. 
Contradiction.

𝑏) If 𝜏 = T𝚜
Ω is the threshold associated with the smallest neighborhood of Ω, 𝚂𝜂Ω is a 𝜂-grounded extension and 𝚂𝜏Ω is a 𝜏-
30

grounded extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω. Trivial, since by 𝑎) if 𝚂𝜂Ω is 𝜂-complete extension and 𝚂𝜏Ω is 𝜏-complete 
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extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω. Thus, the proof of this point is a special case where 𝚂𝜏Ω is the minimal 𝜏-complete 
extension in Ω and 𝚂𝜂Ω is the minimal 𝜂-complete extension in Ω.

𝑐) If 𝜏 = T𝚜
Ω is the threshold associated with the smallest neighborhood of Ω, 𝚂𝜂Ω is a 𝜂-grounded extension and 𝚂𝜏Ω is a 𝜏-

grounded extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω. Trivial, since by 𝑎) if 𝚂𝜂Ω is a 𝜂-preferred extension and 𝚂𝜏Ω is a 𝜏-preferred 
extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω. Thus, the proof of this point is a special case where 𝚂𝜏Ω is the maximal 𝜏-complete 
extension in Ω and 𝚂𝜂Ω is the maximal 𝜂-complete extension in Ω.

𝑖𝑖) 𝑎) Let 𝜏 = T
𝚐
Ω be the threshold associated with the greatest neighborhood of Ω, 𝚂𝜂Ω is 𝜂-complete extension and 𝚂𝜏Ω is 𝜏-complete 

extension, then it holds 𝚂𝜂Ω ⊆ 𝚂𝜏Ω. 𝚂𝜂Ω is 𝜂-complete extension and 𝚂𝜏Ω is not a 𝜏-complete extension Then, there exists a 
hashtagged argument 𝔸 which is 𝜂-acceptable w.r.t. the 𝜂-admissible extension 𝚂𝜂Ω but 𝔸 is not 𝜏-acceptable w.r.t. 𝚂𝜏Ω. Thus, 
𝔸 is defended by 𝚂𝜂Ω but it is not defended by 𝚂𝜏Ω. However, by Proposition 3, if 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜂-acceptable w.r.t. a set 𝚂𝜂Ω, then 
it is 𝜏-acceptable, and if a set 𝚂𝜂Ω is 𝜂-admissible then it is 𝜏-admissible. Contradiction.

𝑏) If 𝜏 = T
𝚐
Ω is the threshold associated with the smallest neighborhood of Ω, 𝚂𝜂Ω is a 𝜂-grounded extension and 𝚂𝜏Ω is a 𝜏-

grounded extension, then it holds that 𝚂𝜂Ω ⊆ 𝚂𝜏Ω. Trivial, since by 𝑎) if 𝚂𝜂Ω is 𝜂-complete extension and 𝚂𝜏Ω is 𝜏-complete 
extension, then it holds that 𝚂𝜂Ω ⊆ 𝚂𝜏Ω. Thus, the proof of this point is a special case where 𝚂𝜂Ω is the minimal 𝜂-complete 
extension in Ω and 𝚂𝜏Ω is the minimal 𝜏-complete extension in Ω.

𝑐) If 𝜏 = T
𝚐
Ω is the threshold associated with the smallest neighborhood of Ω, 𝚂𝜂Ω is a 𝜂-grounded extension and 𝚂𝜏Ω is a 𝜏-

grounded extension, then it holds that 𝚂𝜂Ω ⊆ 𝚂𝜏Ω. Trivial, since by a) if 𝚂𝜂Ω is 𝜂-preferred extension and 𝚂𝜏Ω is 𝜏-preferred 
extension, then it holds that 𝚂𝜏Ω ⊆ 𝚂𝜂Ω. Thus, the proof of this point is a special case where 𝚂𝜂Ω is the maximal 𝜂-complete 
extension in Ω and 𝚂𝜏Ω is the maximal 𝜏-complete extension in Ω. □

Proposition 6. Let ℭΩ be the set of communities associated with the arguments of Ω. Given any ℭ𝔸, ℭ𝔹 ∈ ℭΩ, either ℭ𝔸 ∩ ℭ𝔹 = ∅ or 
ℭ𝔸 =ℭ𝔹.

Proof. Suppose ℭ𝔸 and ℭ𝔹 are two communities whose intersection is non-empty and are not equal. This means that there is an 
argument 𝕏 that is in both communities, but there is at least one argument 𝕐 that is in ℭ𝔸 but not in ℭ𝔹, or vice versa. If there is 
a semantic path from 𝔸 to 𝕐 and there is a semantic path from 𝔸 to 𝕏, then there is a semantic path from 𝕏 to 𝕐 , which means 
that 𝕐 should be in ℭ𝔹 as well. The same is true if there is a semantic path from 𝔹 to 𝕐 , which implies that 𝕐 should also be in 
ℭ𝔸. This contradicts our initial assumption that 𝕐 is in one community but not in the other. Therefore, our initial assumption that 
there are two communities whose intersection is non-empty, but they are not equal, leads to a contradiction. This means that, if the 
intersection between two communities is non-empty, then the two communities are equal. □

Proposition 7. Let ℭΩ = {ℭ1, ..., ℭ𝑛} be the set of communities associated with the arguments of Ω. Then:

𝑛⋃
𝑖=1

ℭ𝑖 = 𝙰𝚛𝚐𝚜.

Proof. It follows directly from Definition 19. □

Proposition 8. Let ℭΩ be the set of communities associated with the arguments of Ω. Then, if ℭΩ is a singleton set then ℭΩ = 𝙰𝚛𝚐𝚜.

Proof. If ℭΩ is a singleton set, that is ℭΩ = {ℭ1}, then ℭΩ consists of all arguments 𝔹 ∈ 𝙰𝚛𝚐𝚜 such that there is a hashtagged 
argument 𝔸 ∈ℭ1 that verifies 𝔹 ∈𝔑𝜀𝔸

𝔸 . □

Lemma 1. Let ℭΩ be the set of communities associated with the arguments of Ω. Then, we have:

i) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜁 -acceptable w.r.t. a set 𝚂 then it is acceptable w.r.t. 𝚂.

ii) If a set 𝚂 is 𝜁 -admissible then it is admissible.

Proof. This demonstration follows directly from the definitions; we show this in two parts:

𝑖) If 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜁 -acceptable w.r.t. a set 𝚂 then it is acceptable w.r.t. 𝚂. Suppose that 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜁 -acceptable w.r.t. a set 𝚂 but 
𝔸 ∈ 𝙰𝚛𝚐𝚜 is not acceptable w.r.t. a set 𝚂. Then, there exists a hashtagged argument 𝔹 ∈ 𝙰𝚛𝚐𝚜 such that 𝔹 attacks 𝔸 and there not 
exists a hashtagged argument ℂ ∈ 𝙰𝚛𝚐𝚜 such that ℂ attacks 𝔹. However, 𝔸 is 𝜁 -acceptable w.r.t. 𝚂 and then for every attacker 
hashtagged argument 𝔹 ∈ 𝙰𝚛𝚐𝚜 there exists a defender ℂ ∈ 𝚂. Contradiction.

𝑖𝑖) If a set 𝚂 is 𝜁 -admissible then it is admissible. Suppose that 𝚂 is 𝜁 -admissible but it is not admissible. Then, there exists a hashtagged 
argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 such that 𝔸 is not acceptable w.r.t. 𝚂. However, 𝚂 is 𝜁 -admissible. Thus, every hashtagged argument in 𝚂 is 
𝜁 -acceptable w.r.t. 𝚂. Furthermore, by consequence of i) if a hashtagged argument 𝔸 ∈ 𝙰𝚛𝚐𝚜 is 𝜁 -acceptable w.r.t. a set 𝚂 then it is 
31

acceptable w.r.t. 𝚂. Contradiction. □
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Note regarding remaining proofs. Given the similarity between the remaining propositions and theorems that stem from the 
extension of the neighborhood-based framework and those corresponding to the community-based framework, their presentation is 
omitted here. Since the proofs addressed thus far lay the groundwork for understanding the underlying reasoning, it is evident that 
addressing the remaining propositions and theorems merely requires adapting the application of concept of neighborhood to that of 
community.
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