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We study vortexlike solutions to the Lifshitz-Chern-Simons theory. We find that such solutions exist

and have a logarithmically divergent energy, which suggests that a Kostelitz-Thouless transition may

occur, in which voxtex-antivortex pairs are created above a critical temperature. Following a suggestion

made by Callan and Wilzcek for the global Uð1Þ scalar field model, we study vortex solutions of the

Lifshitz-Chern-Simons model formulated on the hyperbolic plane, finding that, as expected, the resulting

configurations have finite energy. For completeness, we also explore Lifshitz-Chern-Simons vortex

solutions on the sphere.
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I. INTRODUCTION

First proposed in Ref. [1], Lifshitz-Chern-Simons (LCS)
theory can be understood as a modification of the 2þ 1
dimensional z ¼ 2 Lifshitz scalar theory [2,3] by the addi-
tion of a nonlocal term. The action is obtained by dualizing
the scalar field into a gauge vector and then deforming the
resulting Lagrangian with a Chern-Simons three-form. In
terms of the original scalar field, the Chern-Simons term
corresponds to a nonlocal deformation.

Asoriginally presented, theLifshitz-Chern-Simons theory
models a system that experiences an isotropic to anisotropic
phase transition at zero temperature. In the anisotropic phase,
the SOð2Þ rotational symmetry enjoyed by the action is
spontaneously broken by the electric field acquiring a non-
zero vacuum expectation value.

In Ref. [4], the LCS action was shown to be equivalent to
themodel introduced inRefs. [5,6] todescribe the lowenergy
behavior of a charged spinless 2D fluid in the presence of an
external perpendicular magnetic field. The anisotropic phase
appears through renormalization of the free parameters of
the theory, and reproduces the phenomenology in the pres-
ence of a parallel magnetic field [7].

In the present work, we study vortex solutions of the
Lifshitz-Chern-Simons action. We find that such solutions
exist and have a logarithmically divergent energy.A heuristic
argument then suggests that theymay be entropically favored
at high temperatures, leading to a Kosterlitz-Thoules-like
transition.

It was suggested in Ref. [8] that the logarithmically
divergent energy of the global vortex solution to the
charged scalar field model could be cured by formulating
the model in a negatively curved space. Following such a
suggestion, we study vortex solutions to the LCS model in
the hyperbolic plane. For completeness we also analyze the
vortex solution on the sphere. We find that the resulting

configurations have finite energy. At this point, one may
wonder whether it makes sense to formulate the theory in
curved space. We would like to point out that a scalar
theory in curved space, which reduces to a Lifshitz scalar
with z ¼ 2 on a flat metric, turns out to describe the off-
plane fluctuations of a tensionless membrane [9].
The plan of the paper is the following: in Sec. IIwe present

the Lifshitz-Chern-Simons theory defined on a general
curved manifold. In Sec. III we show that vortex solutions
exist in this model by solving numerically the Euler-
Lagrange equations; the relevant properties of the solution
are also discussed in this section. In Sec. IV we give a brief
summary of our results. In the Appendix we review the
relation between the Lifshitz-Chern-Simons theory and the
Lifshitz scalar one.

II. THE LIFSHITZ-CHERN-SIMONS ACTION

The Lifshitz-Chern-Simons action in an arbitrary two-
dimensional curved space with metric gij is defined as

S¼
Z
dtd2x

ffiffiffi
g

p �
eið@tai�@iatÞ�1

2
ð�2ðriejÞ2þb2Þ

þk

�
atb� �ij

2
ffiffiffi
g

p ai@taj

�
�1

2

�
m2ðeiÞ2þ�

2
ðeiÞ4

��
; (2.1)

where repeated (or squared) lower latin indexes are under-
stood to be contractedwith the curved inversemetric gij, i.e.,
xiyi � gijxiyj.ri is the standard covariant derivative, and b

is a shorthand for b ¼ �ij@iaj=
ffiffiffi
g

p
with �ij the Levi-Civita

symbol �00 ¼ �11 ¼ 0 and �01 ¼ ��10 ¼ 1. The couplings
�2, k,� are dimensionless,while ½m2� ¼ 1=L2. Stated differ-
ently, the Weyl (scale) transformation of the metric
gij ! �2gij is a symmetry of the first three parentheses

and the � deformation provided one simultaneously scales
the time coordinates as t ! �2t, at ! ��2at.
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By electric/magnetic duality the first two parentheses are
mapped to the Lifshitz scalar action, while the third one,
representing a Chern-Simons deformation, leads to a non-
local term for the Lifshitz scalar field (see the Appendix).
Finally, the last parentheses in (2.1) takes into account
possible deformations of the theory.

The equations of motion derived from the above action
read

riei þ kb ¼ 0; (2.2)

@tai � @iat þ �2r2ei � ðm2 þ �ðejÞ2Þei ¼ 0; (2.3)

gij@tej þ �ijffiffiffi
g

p ð@jbþ kð@taj � @jatÞÞ ¼ 0; (2.4)

where r2 ¼ gijrirj. The first equation can be used to

obtain the magnetic field b once the electric field ei is
known. The second equation on the other hand defines the
electric field in terms of the vector potentials at, aj.

Combining the first and second equations to eliminate b
and at, aj from the third, we find

kgij@tej¼ �ijffiffiffi
g

p ðrjrkekþk2ð�2r2ej�ðm2þ�ðekÞ2ÞejÞÞ:

(2.5)

Since we are interested in static solutions, we will drop the
time derivative appearing on the left-hand side. In the
following sections we will solve for ei using (2.5) and
obtain b from (2.2).

For static configurations, the energy functional takes the
form

E ¼ 1

2

Z
d2x

ffiffiffi
g

p �
�2ðriejÞ2 þ 1

k2
ðrieiÞ2 þm2ðeiÞ2

þ �

2
ðeiÞ4 þ Eo

�
; (2.6)

where we have added a zero point (constant) contribution
Eo, which will be adjusted below.

III. SOLUTIONS

A. Flat space

Inflat spacegij ¼ �ij and theWeyl rescalingmentioned in

the previous section can be realized by the coordinate trans-
formation xi ! �xi: the combined transformation ðt; xiÞ !
ð�2t;�xiÞ and ðat; ai; eiÞ ! ð��2at;�

�1ai;�
�1eiÞ is a

symmetry of the first three parentheses of action (2.1). We
therefore conclude that the first three parentheses in (2.1)
describe a critical point with z ¼ 2 dynamical scaling
exponent.

The last parentheses in (2.1) amounts to possible local
deformations of the Lifshitz action (see the Appendix to see
its expressions in terms of the Lifshitz scalar �). It is

immediate to see that the term m2ðeiÞ2 is relevant, dominat-
ing in the IR. When m2 > 0 the ð@iejÞ2 can be ignored and

the theory flows to a z ¼ 1 infrared fixed point. Ifm2 < 0, a
ðe2i Þ2 term with positive coefficient � becomes mandatory to
stabilize the theory. In this situation, a classical expectation
value for ei will appear (see Refs. [10,11] for related com-
putations involving the � term).
As discussed above, the order parameter of the theory is a

vector on the two-dimensional plane. We shall classify the
topological disjoint classes of solutions by the winding of
the vector ei on the circle at infinity. Explicitly, for solutions
approaching infinity as ðe1; e2Þ ! ðcosðn�Þ; sinðn�ÞÞe0, the
topological charge can be defined as

n ¼ 1

2�

I
C
�ij �eid �ej; (3.1)

where C is the circle at infinity and �ei is the electric field
normalized by its vacuum expectation value. Note that n
takes integer values.

1. Vacuum solution

The true vacuum of the theory corresponds to the lowest
energy static solution of (2.3) and (2.4) and its symmetry
will depend on the sign of m2. For m2 > 0 the minimum
energy solution to (2.5) is ei ¼ 0; we call this the
‘‘isotropic’’ phase. For m2 < 0, a uniform vacuum expec-

tation value develops ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�m2=�

p
ui, with ui an arbitrary

unit constant vector. This solution breaks the global SOð2Þ
symmetry enjoyed by the flat space action (2.1) and we
name it the ‘‘anisotropic’’ phase. It has n ¼ 0 winding
number, and vanishing energy provided Eo ¼ �m4=2.

2. Vortex solution

In what follows we will consider solutions with n ¼ 1
for the m2 ¼ �jmj2 < 0 case and write the flat metric in
polar coordinates as

ds2 ¼ dr2 þ r2d�2: (3.2)

To simplify the equations it is useful to rescale r ¼ Ro�,

where Ro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2�2

p
~Ro with ~Ro ¼ 1=jmjk. The n ¼ 1

static vortex ansatz corresponds to

e�ð�; �Þ ¼ jmjRoffiffiffiffi
�

p fð�Þ; e�ð�; �Þ ¼ 0: (3.3)

Plugging it into (2.5) the resulting equation of motion reads

f00 þ 1

�
f0 � 1

�2
f� fðf2 � 1Þ ¼ 0: (3.4)

Remarkably, this equation coincides with the relativistic
n ¼ 1 global Uð1Þ vortex equation [12]. The appropriate
boundary conditions for a vortex configuration are

fð�Þ ! 0; � ! 0; (3.5)
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fð�Þ ! 1; � ! 1: (3.6)

A power series expansion close to the origin shows two
independent behaviors fð�Þ � ��1, the linear one being
the proper choice for a nonsingular vortex,

fð�Þ ¼ 	�þOð�3Þ; � � 1: (3.7)

At infinity the radial profile asymptotes its vacuum expec-
tation value as

fð�Þ � 1� 1

2�2
þO

�
1

�4

�
; � � 1: (3.8)

In this last expression we have dropped the exponentially
decaying homogeneous piece that arises upon linearizing
(3.4) at infinity.

We numerically explored the space of solutions of
Eq. (3.4) shooting from the origin for different values of
	 looking for the asymptotics (3.8). The solution we found
is plotted in Fig. 1 with the slope of f at the origin being
	 � 0:58319.

At this point, it is important to stress that the vortex
solution for the present model does not exist in the absence
of the Chern-Simons term. Indeed, a glimpse at Eq. (2.2)
shows that the Chern-Simon coupling k induces a charge
density proportional to the magnetic field b, which turns
out to be crucial to source the vortex electric field.

3. Energy, entropy, and free energy

In the previous section we have shown the existence of a
vortex solution in the system. A natural question to ask is
whether the system will choose it as its ground state or not.
In order to answer this question, we write the expression
for the energy (2.6) in the form

Ev ¼ �jmj4R2
o

�

Z L

a
d��

�
f02 þ f2

�2
þ 1

2
ðf2 � 1Þ2

�
; (3.9)

where a is a UV cutoff and L is the size of the system. The
vortex is regular at the origin, so we do not expect any

singularity in the a ! 0 limit. Taking into account the
asymptotic behavior (3.8), one immediately finds that

Ev � EcoreðRÞ þ �jmj4
�

ln

�
L

R

�
; (3.10)

where EcoreðRÞ is the finite contribution arising from the
energy density integrated up to a distance R bigger than the
core radius Ro.
Since the vortex energy diverges logarithmically with

the size of the system, the standard Kosterlitz-Thouless
argument follows [13]: energetic considerations imply that
at negligible temperatures the system will never choose the
vortex configuration, but at finite temperatures, the choice
of background is governed by the Helmholtz free energy
F ¼ E� TS and the entropic contribution could favor
vortices for high enough T. In our vortex example, this
entropic contribution arises from the number of possible
places on the plane in which the vortex can sit,

S ¼ 2kB ln

�
L

a

�
: (3.11)

The similar logarithmic behavior for both the energy and
entropy contributions will compete on the free energy,

F ¼ E� TS ¼ EcoreðRÞ þ �jmj4
�

ln

�
L

R

�
� 2kBT ln

�
L

a

�
:

(3.12)

As a result, Kosterlitz and Thouless argued that a tempera-
ture should exist above which the system lowers its free
energy by popping vortex-antivortex pairs out of the an-
isotropic vacuum [13,14]. This phenomenon is described in
the literature as vortex unbinding and named topological
phase transition. The critical temperature TKT for this
phase transition can be estimated from the F ¼ 0 condi-
tion, Taking into account the L dependence we find for the
present case

TKT � �jmj4
2kB�

: (3.13)
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FIG. 1 (color online). Profile of the radial electric and magnetic fields as functions of �: the slope at the origin for f [see Eq. (3.7)]
obtained by our numerical shooting method is 	 � 0:58319. The electric and magnetic fields in the plots have been rescaled
appropriately.
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Below this critical temperature the system will be in a
quasi-long-range ordered anisotropic phase. As soon as
the system reaches TKT it will be energetically favored to
produce vortices and the quasi-long-range order will be
destroyed.

B. Hyperbolic plane

Negative curvature spaces have been proposed as inter-
esting setups to cure infrared divergences. The argument is
pretty simple [8]: since the volume of space grows exponen-
tially with the distance to the origin, Gauss’ law implies an
exponential decay for massless fields. In this section wewill
analyze the modifications that arise on the vortex solution
when we formulate the LCS model on the 2D-hyperbolic
plane [15].

As in the previous section, the vortex solution is easily
found when writing the metric in polar coordinates,

ds2 ¼ R2ðd�2 þ sinh2�d�2Þ: (3.14)

Here R is the curvature radius of the space. Inserting the
static radial ansatz (3.3) into the equations of motion (2.5)
again with m2 ¼ �jmj2 leads to

f00 þ 1

tanh�
f0 � 1

tanh2�
f� fðf2 � f2oÞ ¼ 0; (3.15)

where f2o ¼ ðR2 þ ~R2
oÞ=R2

o. The existence of curvature in
the two-dimensional space results in an equation of motion
now depending on a parameter f2o which cannot be
reabsorbed.

The behavior for f near the origin coincides with that of
flat space (3.7), but the large distance behavior changes
drastically. The relevant case for us is f2o > 1 which results
in a nonzero value at infinity for the electric field and an
asymptotic radial profile given by

fð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2o � 1

q �
1� 2

f2o � 2
e�2� þOðe�4�Þ

�
: (3.16)

Notice that the exponential decay for the profile is inde-
pendent of the parameters of the model. We have depicted

in Fig. 2 the numerical solutions we find for different
values of f2o.
The vortex energy functional in the hyperbolic plane

case takes the form

EðhypÞ
v ¼ �jmj4R4

o

�R2

Z L

a
d� sinh�

�
f02 þ f2

tanh2�

þ 2
~R2
o

R2
o

ff0

tanh�
þ 1

2
f4 � R2

R2
o

f2 þ ~Eo

�
; (3.17)

with a, L being, respectively, UV and IR cutoffs. The
energy density behavior near the origin coincides with
that of flat space and far away from the origin, although
the volume element grows exponentially fast at large dis-
tances, the electric field decays more rapidly [see (3.16)]
and overwhelms the divergence. Taking the asymptotic
behaviors into account, we find that the vortex logarithmic
divergence present in flat space is cured by the spatial
negative curvature. We have therefore found that the
n ¼ 1 solution is a true soliton (finite energy) for the hyper-
bolic space case. The appropriate value for ~Eo results:

~Eo ¼ ðR2 � R2
o � ~R2

oÞðR2 � R2
o � 3 ~R2

oÞ
2m4 ~R4

oR
4
o

: (3.18)

C. Sphere

For completeness we will now consider the LCS model
formulated on a sphere with metric

ds2 ¼ R2ðd�2 þ sin2�d�2Þ: (3.19)

Here R is the radius of the sphere. Introducing the ansatz
(3.3) into (2.5), the equation of motion with m2 ¼ �jmj2
results in

f00 þ 1

tan�
f0 � 1

tan2�
f� fðf2 � f2oÞ ¼ 0; (3.20)

with f2o ¼ ðR2 � ~R2
oÞ=R2

o. To avoid singularities, we
should demand the electric field to vanish at the north
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FIG. 2 (color online). Profile of the electric and magnetic fields in the hyperbolic plane as functions of �. For f2o ¼ 4, 2, 1.25 the
corresponding slopes of the electric field at the origin, obtained by our numerical shooting method, are 	 � 2:01093, 0.80291,
0.30023, respectively.
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and south pole of the 2-sphere. The appropriate boundary
conditions in the sphere case result:

e�ð�; �Þj�¼0;� ¼ 0 ) fð0Þ ¼ fð�Þ ¼ 0: (3.21)

The asymptotic behavior at the poles coincides with the flat
space case and the configurations we obtain with these
boundary conditions correspond to a vortex and an anti-
vortex located at antipodes on the 2-sphere. This last fact is
a consequence of (2.2): no net charge can be supported on a
compact manifold. Therefore the flux lines emanating from
the north pole should end on an equally opposite charge
located in our case at the south pole. Some typical profiles
are plotted in Fig. 3.

The energy for the vortex-antivortex configuration on
the 2-sphere takes the form

E
ðsphÞ
v �v ¼ �jmj4R4

o

�R2

Z �

0
d� sin�

�
f02 þ f2

tan2�
þ 2 ~R2

o

R2
o

ff0

tan�

þ 1

2
f4 � R2

R2
o

f2
�
: (3.22)

In the sphere case the energy of the solution is finite due to the
compactness of the spatial manifold and the regularity of the
solution; there is no need for a compensating constant Eo.

IV. CLOSING REMARKS

We found vortexlike solutions to the Lifshitz-Chern-
Simons theory. The presence of the Chern-Simons term
is crucial to the existence of such solutions, since it sources
the Gauss law (2.2). The logarithmically divergent energy
suggests that a Kostelitz-Thouless transition may occur on
the system. To fully clarify the nature of this phase tran-
sition, a renormalization group analysis along the lines of
Ref. [16] should be performed; this is currently under way
and will be presented elsewhere. Unlike the Uð1Þ global
vortex case, extensions to higher winding are nontrivial,
due to the vector character of the electric field.

Following a suggestion made in Ref. [8], we studied
vortex solutions of the Lifshitz-Chern-Simons model for-
mulated on the hyperbolic plane. We found, as expected,

that the resulting configurations have finite energy. For
completeness, we also explore Lifshitz-Chern-Simons
vortex solutions on the sphere. In this last case, as in any
compact manifold, the solution we found consisted in a
vortex-antivortex pair. An open point is to study the stabil-
ity of such a solution.
An important question is whether the flat space version

of action (2.1) at m ¼ 0 is the most general action describ-
ing the critical point. In principle, higher order terms like
those introduced in Ref. [17] could be added, without
breaking the z ¼ 2 scaling symmetry. We will explore
this issue in a separate publication.
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APPENDIX: ELECTROMAGNETIC DUALITY
IN LIFSHITZ SYSTEMS

In this appendix we will shortly review the electromag-
netic duality mapping the k ¼ 0 action (2.1) into a z ¼ 2
scalar field theory [1,11].
We start with the flat space action (2.1) without the

Chern-Simons deformation,

S ¼
Z

dtd2x

�
eið@tai � @iatÞ � 1

2
ð�2ðriejÞ2 þ b2Þ

� 1

2

�
m2ðeiÞ2 þ �

2
ðeiÞ4

��
: (A1)

The equations of motion following from the action are

ð�2r2 �m2 � �e2j Þei ¼ @iat � @tai; (A2)
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FIG. 3 (color online). Profile of the electric and magnetic fields for the sphere as a function of the azimuthal angle � [see Eq. (3.19)].
For f2o ¼ 3, 5, 10, the slopes of the electric field at the origin are 	 � 1:91747, 3.143601, 6.090353.
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@ie
i ¼ 0; (A3)

�ij@jbþ @tei ¼ 0: (A4)

Written in terms of the gauge invariant fields ei, b they read

ð�2r2 �m2Þ�ij@iej � ��ij@iðe2kejÞ ¼ �@tb; (A5)

@ie
i ¼ 0; (A6)

�ij@jbþ @tei ¼ 0: (A7)

The duality transformation is defined by solving Gauss
law (A6) as

ei ¼ �ij@j�: (A8)

and then plugging (A8) into equation (A7). This implies
that b can be written in terms of � as

b ¼ �@t�: (A9)

where a time dependent integration ‘‘constant’’ has been
reabsorbed in �. Replacing (A8) and (A9) into (A5)
leads to

�ð�2r2 �m2Þr2�þ �@iððr�Þ2@i�Þ ¼ @2t �: (A10)

This equation of motion for the scalar field can be derived
from the action

S½�� ¼
Z

dtd2x
1

2

�
ð@t�Þ2 � �2ðr2�Þ2

�m2ðr�Þ2 � �

2
ðr�Þ4

�
: (A11)

The first two terms correspond to the z ¼ 2 Lifshitz action
for a scalar field. As it happens in its electromagnetic dual,
the m2 term drives the theory away from its z ¼ 2 fixed
point into a z ¼ 1 IR fixed point. Note that the gauge vector
ai, at decouples from � and can be integrated out.
In the presence of a CS term, the dualization described

above leads to a non-local action for the scalar field [1]. An
alternative non-local duality transformation leading to a
local equation of motion for the scalr field can be found in
Ref. [18].
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