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This work is mainly devoted to the description of processes that involve the interaction between an atom and
a surface, in which a strong Coulomb repulsion on the atomic(Eljelimits the charge exchange to one
electron(infinite-U limit). In this limit, the Anderson Hamiltonian for a many-foltl) of states localized on
the atomic site can be represented in terms of auxiliary bosons and physical operators in the mixed boson-
electron space can be defined. In this work the Hamiltonian is solved by defining appropriate Green'’s functions
for physical operators. Then we solved the equations of motion of these Green'’s functions, up to a second order
in the atom-surface coupling, either for the stationary case or for a real time-dependent problem. We show that
our approach reproduces the known exact results in the nondegefisrate case, and folN>1 gives
excellent agreement with exact calculations and approximations valid forNa¢te 1/N expansion Finally,
the accurate description of dynamical processes is shown by the comparison with the exact results available for
a small four-level system. In this case we also compare with results obtained by using the noncrossing
approximation and with the usual spinless model calculation.
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[. INTRODUCTION tions introduced by Keldysh and defined in the boson-
electron mixed space. We will show that a solution of the
An accurate description of the interaction between atomiequations of motion up to a strict second order in the atom-
localized states and the conduction electrons of a metal is surface coupling gives a very good approximate method to
matter of constant interest due to the importance this subjegolve either the stationary or the dynamical interaction pro-
has in many different physical problems as magnetic impucess. The EOM has been previously used in the stationary
rites in metalst? quantum dots coupled to electronic case and in the limit of large values bf, by considering a
reservoir$ and atoms moving outside a metal surface. Pure fermion description and only the spin momentum pro-
The two-electron terms related with either intrasite or interJ€Ction (N=2),12"%but a consistent second-order solution
site Coulomb repulsions represent the main complexity fof!@S not been found in these works. Other very used method
solving this kind of problems. Different approximations are!S the one based on the noncrossing approximation
attempted depending on the particular features of the intelNCA), "> that has been also generalized to the time-

acting system. A mean-field approximation is adequate, pffependent nonequilibrium situation a while #gbThe for-

alism developed in this work accounts for the same rate
general, for small values of the Coulomb terms, and a perr-‘n . ) .
turbative correction up to a higher order when they are no quations obtained by the NCA, and also for the exact time

. . . ~evolution in theN=1 case. The augmented power of the
small enough compared with the one-electron interactiong 5\ method when applied to time-dependent processes can

mvolvgd. In the opposite I|_m|t, that is a strong electronic po shown through the comparison with the exact results
repu.IS|on, the zeroth order m_cludes Fhe electron-electron r€&vailable in the case of a four-level systéfThis discrete
pulsion and the one-electron interactions are the perturbativg,qgel system has been used in a previous work to study a
terms. The Anderson model first introduced to describe gerturbative calculation up to a second order of the on-site
magnetic impurity in a metdl,has played a very important electronic correlation term within a dynamical evolutirin
role in the later developments related with the interactionthat case it was found an excellent agreement with the exact
between extended and localized states. This model can hesults within a range of values of the correlation term com-
extended in a straightforward way to nonequilibrium prob-parable to those of the one-electron hopping, for which the
lems as is the case of ion-surface collisions and allows us teecond order treatment cannot be justified in the stationary
include different kind of interactions between the localizedcase. A similar analysis is performed in this work by com-
electrons(direct and exchange Coulomb terms paring our approach to the infinité-limit with the exact
This work is mainly devoted to the description of pro- results. The usual approximation for strong intra-atomic
cesses that involve the interaction between an atom and @oulomb repulsion based on the use of only one active state
surface, in which a strong electronic correlatids) on the localized on the atom sitghe spinless modehnd the NCA

atom site limits the charge exchange to one eledtirinite- results for this four-level system are also analyzed.

U limit). The slave-boson approach to the Anderson Hamil- II. MODEL AND THEORETICAL ANALYSIS
tonian provides a fair description of a many-fo{tll) of
strongly correlated states localized on the atomita.this A. Model

work we will solve this Hamiltonian using the equation of  In this work we consider the case of an atomic lewgl
motion (EOM) method for the time-dependent Green func-interacting with a metal surface defined by thestates of
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energiese,. We are interested in the case of a high intra- G(A) = {Do[{dr(t)b(t"), A1)} PO(t" —1).
atomic Coulomb interactiotJ, which can be described by
means of the following slave-boson Hamiltoni¥h: whereA=cy, d, 0y, Ny i iN the different terms of Eq.
(7). The equations of motion of these new Green functions
H(t) = D) 6nim+ > emlidm+ >, [VicCi(b*din) are.
km m km
+ V(A )l (1) idGp(Cm)/dt = 6Gm(Cim) + ViGmm: (8

where an auxiliary boson fielth andb®, is introduced; and it jgG_ (d,d,Cpy)/dt
is considered a\-fold fermion state withm denoting the "
angular momentum projectiof), m;=m). The constraint re- = —<d;,bckm,>t,5(t—t’) +(em—em + e@Gm(d:n,dmckm,)

lation +
- Vk(t)Gm(nm’dmb+) + 2 VK(t)Gm(CKm/Ckm’ b+dm)
b*b+ > didm=Q=1 ) K
m = 2 V()G iy DG 9
K

is imposed to guarantee that no more than 1 electron occu-
pies the atomid level. ] .
We are going to analyze the time-dependent solution of  1dGm(Nmy Cum)/dt = €GNy Cem) + Vi(t) Gl Ny ™)
Eqg. (1) using the Green function technique. The Keldysh- +
Green functions appropriate for the physical operators +2K“VK(t)[Gm(dm’chm’ckm)
b*(t)d,(t) andd; (t)b(t) of this problem are
— G Cpy O D G 1. (10)

G t,t') = HPol{d(1)0(t"), b (O dn(DH PO 1), The G(nyydyb*) is zero identically because it is not pos-

©) sible to have at the same time one electromiand another
in m" #m. Here we have to remark the differences with a
Frndt,t') = {Do|[d(1)b(t'), b (1) d(1)]| Do) (4) previous work® where an incorrectn,, )G, approximation
to this function is assumed and the equal time value of the
+ - - -
{} and[ ] being the anticonmutator and the conmutator of theGm(dy, dmCiny) function is neglected. Instead of calculating
corresponding operators respectively; and the initial statéhe new Green functions that appear in E§and(10), one
|®p)=]0;Q=1) is the direct product of the unperturbed can follow the approach proposed by Lacrdifor the static
Fermi sea by the state with one boson and none ferifion case and make the following mean-field-like decouplings:
none hole) in the localizedd state. It is important to notice . .
that Gm(CKerkm’ b+dm) = <CKm’Ckm’>tGmrT{t1t,)i (11)

Gt —t',t") =i{nyp+ Ny, (5) . +
" me G’ CumrDGr) = (I DG )G Cem) . (12)

Frmt=t/,t) =i{nn— ny+ 2nn) =iy —ny),  (6) However, one of the goals of this work is to show that a
strict solution to ordeN? of Egs.(9) and(10) provides a fair
where we have used than,n,)=0 according with the better solution. This implies the following approximations:
infinite-U limit and (ny)=1 -2,/ {Ny). . . )
Gl Cxy Ckmy 0 dm) = (M YoGmd 1, 1) Sk + O(V9), (13)

B. The equations of motion for the G, (t,t")

+ — O\2
By using Eq.(1) we obtain the following equation of GGy Cie DGem) = OV, (14

motion for the advanced Green functi t,t'): . ) .
ot 1) where(n,o is thekmrstate occupation fov, =0, that in the

. N , , case of a metal surface is given by the Fermi distribu¢®n
IdGmn{t,t)/dt =28t = ') + £qGu(t, ') + % VdOGm(&m  denotes the Fermi energly, the Boltzman constant arid

the absolute temperatyre
+ E Vk(t)Gm(d;rdkam’)

k,m’#m 1
' (Nkmdo = Mk = .
S VOGN C, @ 1+ exfh(gm- ErliiqT]
km' £m In the following and for the sake of simplicity, we write
down the equations of motion for the Green’s functions to
wherez,,=(n,+ny), and the following notation is used: orderV?, but another set of equations of motion can be easily
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derived with the mean-field decoupling of E¢$1) and(12) idE- (tt/dt= e F (t.t') —i 2 — DIVt
in an analogous way. Results with both kind of approxima- LU= et ) =1 20 (2 = VA

tions will be presented in the next section, however. After k'lm o )
some algebra, the final equation &,,.{t,t’)/dt is X(d; DGy )y €7 e e ()
idGft,1)/dt = 2ot = t') + £ Gronf L, 1) J dAER(, 7) + EX5 (4 D IF pf 7ot')
—i E Vk(t)<dmrbckm’>t’ i(epem+ed(t-t") to
t!
k' #m +f drLQ(t, 1) + QO (t, D G 1t),
to
=A »—1A<
+ft drE°(t, 1) + By (6 ) 1Gmnf7t), (18)
(15  where it has been defined as
where Qt, 1) =12 (2= DV V(DK (19
k
EAL D =i0(r—1) D, Vi (Vi (r)e«™D 16 .
(L7 =160 )g (O (10 Ot D=0 2 (2N = DVIOVi DNy e+
k,m’#=m
)—1A<(t 'T) )—1A<(t T) (20)

and the retarded self-energi&$ are related to the advanced

. _ —i(eqmem T (t-7) :
=i0(T-1) 2 VOVi(DNyye ™ Emmem = onesE” by the equations

k,m’#=m

(17) ERt D =[EAnD]*,

»—«R<(t T) [»—1A<(T t)] *
C. The equations of motion for theF,,(t,t")

In the case of ,{t,t), the equation of motion is D. Analysis of the numerical solution to the integrodifferential
me equations
idF dt,t)/dt= &P tt) + 2 Vi) Frn(Cer) For time-dependent processes where the initial time value
k t, corresponds to the noninteracting situatiori,=0), the
. following quantities are well defined:
+ 2 VOFr(dy, dnCim)
kvm’#m <nm(t0)> = Ol
- 2 Vi OF Ny G - + _
km' #m mem <dmbckm>t0_ 0’
The following notation is now introduced: <CEkam>tO: NmOkk-
Fr(A) = (Dol (t)b(t), A D). To solve the integrodifferential equatiori$5) and (18)

for the G,(t,t") and F.(t,t") respectively, implies to
The equations of motion for the,,(A) are calculated by a evolve along the two time values: that varies fromt, to
complete similar procedure to that for tk&functions. The t,,{(—=), andt from t, to t’, for eacht’ value. But
main differences arise from the boundary conditions at thes (t,t') andF,,{(t,t’) depend on the correlation functions
initial time t,. It can be shown that the following relations are (ny(t)) and <g|+|0¢km>t that have to be calculated self consis-

satisfied: tently. Notice tha¥d;,bc.; is given by the following equa-
tion
Frl Cm(to)] = [2nm — 1]Gpf Cunlto)], . .
(dibCGmteat = Fm(Cim)/ (2% 1)
t+dt
Fm[d;,dmckm,(to)] =[2ny — 1]Gm[d:n,dmckmf (to)], - _ (1/2)<f APV DF (7.t + )
to
t+dt
Fm[nm/Ckm(to)] = [anm_ 1]Gm[nerkm(to)] . Xeiek(r—t—dt) _ (anm_ 1)f dTVk(’T)
These kind of relations make necessary to know@hg, t

functions for calculating th&,,, ones. Finally, the/? order _ »
solution to the equation of motion results X Gppf 7.t + dt)g (™t (21

035112-3



GOLDBERG, FLORES, AND MONREAL PHYSICAL REVIEW B/1, 035112(2005

Then, an initial guess fofd} bc.y; is introduced in Egs. by the crossed term&g. (23)) as in the noncorrelated case,
(15) and (18) by using the following equation obtained by with the only difference of the boson operator that keeps
making the same approximation®©(V?)] leading to the ~memory of the infiniteU-limit situation. This fact causes

equations of motion for th& andF: different time behaviors of th& and G functions in each
- . case. The semiclassical approximati@CA) to Eq. (25) is
id(dbGem/dt = (€ = £m){drb Gt = ZnVikm + Vi - obtained by assuming,(t)=Vu(t), and a constant density of

(22)  statesp for the metal. Then, the self-energies within this

, . ) ) wide band-width approximation are
In this form(d;bc,y is calculated at timeé+dt from the

values determined at the preceding titjeand the atomic SR(t,7)=-i0t-n2A1) 8t - 1),
state occupation at the same time is obtained by using the
exact equation Q(t,7) =—i2A() 8t - 7)
dn(®)/dt=2 Im S Vi )b (29 i " g it - 7)]
m 2 Vil Cmht +i2(Ag/mu(t)u(s) B der - B E]

Once the Green functionBy{7,t+dt) and Gu{7.t+dt)  where=1/ksT, Ag=mpV2, andA(t)=Ayu2(t). By introduc-
with to<7<t+dt are calculated, the correlation function jng these expressions for the self-energies in ©§) and
(dyboy is obtained again at the time valuedt by using  considering Fynf7,t)=forf 7, Dexd-ieg(7=1)], Gmnf7:1)

the integral expressiof21) now, while (ny(t+dt)) is recal-  =g_ (7 t)exg-ig4(7—t)], the following result is obtained:
culated from
(N(t + db)) =[Gyl 7 — t+ dt,t + dit) drvdt= Im(— A fnrdt,1) + Gmnft, 0]
+ Fon(t+dtt +dt)]/(2i). (24 - de
Notice that the approximate equati¢2?2) does not yield + Z(AO/W)”(UJ_% 1+exgB(e-Ep)]

the appropriate solution even for the case of a spinless

Hamiltonian(N=1). Therefore it is only used for providing t )

an initial guess, being then the correct value calculated by X f dru(r)exp - i(e - e)(t = D]gmn( 7.1 |-
using the accurate expressi(®i) in terms of the time evo- o

lution of the G andF functions. (26)

The interdependence of the occupation of a localized state 1o sca assumes thet,(7,t) is a slowly varying func-

with angular ,momentum projectian with the occupation of 5 ¢ - and can be taken out of the integral in E26); this
the other m’ states, and also with the crossed termsleads t6

<d:n,bckm,>, is due to the strong intra-atomic correlation ef-
fects. In the particular case =1, our resultdEgs. (15  AVdt=Im{= AQ[fmn{t,1) + G, )] + 2A(0F~ (6 0) G L, 1)}
and (18)] recover the exact expressions for the spinlessyih f<(sg=1/{1+exdBleq—Ep)].. Finally, the SCA is
Hamiltonian, where only one active state is assumed in th%my related with the state occupations
atom site. The validity of this formalism for any value Nf
marks a difference with the NCA that is only well justified Fonlt,t) + Gmn(t,t) = 2in,
from a largeN expansion®
Gmnft,t) — i(Ny(t) + n(1)).

Ill. RESULTS AND DISCUSSION The only difference introduced in the rate equation by the
infinite U limit is the appropriate equal time behavior of the
advanced physical Green function that also contemplates the
N=1 case. The SCA result can be written as

dr/dt=2A(){- n(t) + (ny(t) + n(t))f~(eg)}  (27)

that is the same expression already obtained by Langreth

A. Semiclassical and static limit situations in the case of a
N-fold degenerated state
In this casee,=¢gq, (=N, and =(n,)=N#*n=ny. The
N, are also independent of, n,,=n,.

1. Semiclassical limit et al* within the NCA.
By using Eqs(21) and(23) we have that 2. Static solution
t The static limit is easily calculated assuming all the dif-
drn/dt=-R J drER(t, DF el 7,1) ferent self-energies to depend é+-7). This allows us to
to Fourier transform Eq(15) to
t

gl

Notice thatdn/dt in the infiniteU limit is determined only  where:

drQ(t, T)Gmrﬁ(r,t)} : (25) G(w) = a _2(’(“ _) 1):,(\:") s (28)
W~ &g~ zo\w) — - <

0
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spectral density p(w)

FIG. 1. Spectral density foN=2 and e4=-0.04D. The solid
curve corresponds to the calculation derived from expresdddn
and the dashed curve to the one from Lacroix approximation.

So(w) =2 ———— — (29
C 0 €&—in

()= S TG (30)
Kk @~ €~17

S (@)= M (31

K 0§~

The (d*bg,) and{n) correlation functions are given by

D ’
(@*bey = (1/m) f do'f _(e')Im M, (32)
-D €~ 17y
1 D
<n>:—f do'f ()M G(w'), (33)
TJ-D

whereD is the half-bandwidth and_(w’) is the Fermi dis-
tribution at temperaturd.

AssumingV, independent ork and D —«, the spectral
density of statep(w)=Im G(w)/ m is found to be

p(w)
_ Ag/m
[w—eq— (N- DRES () P+ AY1+ (N2 - D)f“(w)]’
(34)
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35 ——— T

spectral density p(w)

FIG. 2. The same as Fig. 1 feg=0. T, is the low energy scale
deduced from the density of states.

The use of the decoupling terms given by Ekl) and
(12) leads to the proposal of Lacrdixfor the spectral den-
sity of states, where also a self-consistent calculation with
the correlation functiofc,c,) has to be performed.

Meir et al,*>13 by working within a pure fermionic de-
scription, neglected in the EOM the equal time boundary
condition of Green functions such asi®(t’'-t)
x{di(t'),dZ, (t)c-,(t)d,(t)}) that are the equivalent ones to
the Gm(d+m,dmckm,) in the slave-boson approach, see Hj.
Even though this might be a reasonable approximation at
high temperatures, it is found that a poor description of the
state occupations is obtained when neglecting the self-
consistency with the crossed terms suchdis(t)c,_,(t)) at
T=0 K.

Figures 1-3 show the spectral densitys) derived from
Eqg. (34) for N=2 and T=0 K, using A;=0.01D, and the
following values forey=-0.04D, 0.0, and 0.0R, respec-
tively. In this form the three relevant regimes, Kondo, mixed-
valence, and empty orbital, are covered. In the same figures
we show the density of states obtained by using the Lacroix
approximation:* Both solutions are very similar, except near
the Fermi level where the Kondo resonance appears. While
our approximation(34) yields zero density of states at the
Fermi level and a too narrow Kondo peak, the Lacroix solu-
tion produces a finite value of the density of states at
Er—even though the Fried el-sum rule is far from being
satisfied] p(0) =sir?(mny/ 2)/ mAy]—and a very much dimin-
ished Kondo peak. When comparing with the NCA, we no-
tice that the NCA presents a pathological cusp at the Fermi
level. On the other hand, we found that the method presented
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FIG. 3. The same as Fig. 1 feg=0.0D.

in this work yields very accurate values for the atomic statedefined in the text, foN=2. The full curve gives the exact results
and the dashed curve the leading order in & Bkpansion(J. W.

occupation. The values fary by using Eq.(33) are 0.879,
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0.0 T T T T T T
-10 -5 0 5

e +/(NA)

10

FIG. 4. The occupatiomy as a function ofmsy/NA,, with e

)

0.306, and 0.182, which are very near to the exact ones oliRasul and A. C. Hewson, 1984Full circles corresponds to the
tained by using the NRG calculation 0.874, 0.314, anccalculation ofny derived from expressiof83), and the full triangles
0.17220 while the Lacroix approximation yields the follow- to the one from Lacroix approximation.

ing values: 0.88, 0.36, and 0.206. We will see below that this
is also reflected in a better performance of our solution for
dynamical cases.

Figures 4 and 5 showy as a function of(mey/NAy),
where gg=gq+[(N-1)Aq/ 7]in(7D/NAy), for N=2 and N
=6, respectively. The results of our approximation are com-
pared with the ones from Lacroix approximation, with the
exact results and those obtained from the leading order cal-
culation of a(1/N) expansiorf! From these figures it is pos-
sible to appreciate the excellent occupation values that are
obtained for a wide range of parameters when usinguthe
order calculation presented in this work.

B. Dynamical processes: Comparison with exact results

Our model system consists of a chain of four atoms, one
representing the scattered particle and the other three the
solid substrate, with a total number of electrons equal to 4.
The three-atom substrate accounts for an incipient solid band
formation and allows for an exact treatment of the dynamical
charge exchange between the projectile and the discrete sur
face states. The exact solutions are obtained by solving the
time-dependent Anderson Hamiltonian within the subspace
of 36 many-electron configurations with a total spin compo-
nentS,=0.722 For the three-atom linear substrate the atom-
atom hopping interaction i8=-2 eV, and the site energy is
g0=0.0 eV. The energies of the band states are then
e=—V2*|8], €=0.0, e=vy2*|8]. The time-dependent
projectile-substrate hopping term is given by,(t)

035112-6
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0.1

T T T T T Y T T T
0.02 0.03 0.04 0.05

velocity (a.u.)

T T
0.03 0.04 0.05

velocity (a.u.)

T T
0.06 0.01 0.02 0.06

FIG. 6. The occupationy vs ion velocity fore;=-1 eV. Empty
and full squares correspond to the exact calculation uding
=10.0 eV. andJ=50.0 eV, respectively. Full circles correspond to
our calculation(i) using Egs.(15) and (18), full triangles to the
calculation (i) based on Lacroix approximation, and empty dia-
monds to the spin-less calculatidiii ). The crosses correspond to
the NCA results.

FIG. 7. The same as in Fig. 4 fey=0.

=0 and no dependence @hvalug for values ofU around
50.0 eV. While in the case af;=0.0 eV, Fig. 7, this limit is
accomplished by =6.0 eV in the whole velocity range. In
this very discrete level system as the solid target, pr
-1.0 eV andey=1.0 eV a nearly adiabatic regime is being
reached forju/eg <1 (in a.u), and the requirement/V
>1 becomes more restrictive to reproduce the infinite limit
‘ situation than in the well defined non adiabatic evolution.
neighbor in thek-band state(b,=0.5, 1.42, 0.5, for k  The probability of having one electron in the projectile site is
=1,2,3respectively. In the infinitel limit approximation given by Py=n;+n =nq in the infiniteU limit, while in the
this model system corresponds to ldffold degenerate state case of the spinless approximation this probability is given
with N=2 (the spin-up and spin-down statel all the cases  py the occupatiom of the only one projectile state consid-
we compare the exact results with our approximation ered. In Figs. 68 the exact resultsmfas a function of the
[Egs. (15 and (18)], (i) dynamical solution equivalent to projectile ~ velocity (in  a velocity range from
Lacroix static approximation(jii) a spinless solution where (.01 a.u. to 0.055 aju.are compared with the results ob-
N=1 (this approach is often used to analyze the case of gined by using the calculations i, ii, and iii and the NCA, for
very high electron-electron interactioriWe also compare the three values o€y (1.0 0.0, and 1.0 e)/ respectively.
with the NCA results obtained by implementing Egs. From Figs. 6-8 it is concluded that in all the cases our cal-
(2023 of the work of Shaoet al.® for this four-level  cuylation(i) is the best approximation to the exact results, not
system. only with respect to the values af, but also with respect to
Initially empty projectile spin statesn this case the four the velocity dependent behavior. The striking case isethe
electrons occupy initially(t=to) the lowest energy band =0.0 eV one. The typical oscillatory behavior for a very dis-
states(g=e€1, €,), that meansy =1 for k=1,2 andn,=0 for  crete system within a resonant condition is obtained. Only
k=3. The values ofe; are chosen as representative of thethe infiniteU limit approximation where the self-energies are
different regimes in strong correlated systems interactingalculated up to & order, is able to reproduce the marked
with a continuum band-state substraégg=-1.0 eV (Kondo  oscillations of the exact results along the whole velocity
regime, €;=0.0 eV (mixed-valence regimeande;=1.0 eV range. When compared to the usual spinless approximation,
(empty-orbital regime TheU values used in the case of the the infiniteU limit calculation represents clearly an improve-
exact calculation vary from 6.0 to 50.0 eV, depending on thement, and it evidences the nonstraightforward predictable

=bVyexp—-2v|t|), where v is the atom velocity,
Vo=-1.0 eV, andby is the weight of the projectile first

atom velocity range. Figure 64=-1.0 eV} and Fig. 8(e4
=1.0 eV) show that for low velocitiegv $0.02 a.u) the ex-
act calculation reaches the infinite-limit (n,=n;, (n;n))

correlation effects in a dynamical process. Figures 6—8 also
show the results obtained by using the NCA. We observe that

for velocitiesv £ 0.03 a.u. the NCA reproduces the exact val-
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0.1

0.01 4

T T T
0.03 0.04 0.05

velocity (a.u.)

T T
0.01 0.02 0.06

FIG. 8. The same as in Fig. 4 feg=1 eV.

ues. In the low velocity range and fef=-1.0 eV (Fig. 6)
this calculation underestimates thg values, but the most
striking situation occurs foey=1.0 eV (Fig. 8), where the
NCA gives an unphysical growth afy for low velocities.

The average occupation for each spin-sate is shown as
function of time in Fig. 9, for thee;=0.0 eV case and a

ﬂ
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T — 1
-400

1 T
-200

0 200
time (a.u.)

T T T
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FIG. 9. Occupation per spin as a function of time for
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1.5
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1.1-
104

0.9 —

n, per spin

0.8 —
0.7 4
0.6 -

0.5

0.4 -

—
-200

time (a.u.)

| L N — T T 1
-600  -400 0 200 400 600

FIG. 10. Band-state occupations per spin as a function of time
(v=0.02 a.u.,e4=0.0 e\). Square symbols correspond to the exact
calculation, circles to our calculatigi and triangles to the calcu-
lation (ii). Empty symbols correspond toy,) with k=2 and full
ones to(ny,) with k=1 in the case of the exact and our calculation,
Wahile the opposite is valid for calculatiafi).

velocity value equal to 0.02 a.u. The results obtained by us-
ing (i) coincides practically with those from the exact calcu-
lation along the whole projectile trajectory, while the calcu-
lation (ii) gives a final average occupation slightly less than 0
in this case. In Fig. 10 the average occupations of the band
states per spikny,(t)) are shown. These ones are calculated
by using the exact relation

ANy, (0)/dt = = 2 IM[V,(D)(d2D G )]

We find that the calculatiofii) yields{ny,(t)) > 1 in some
cases, reflecting a problem with the conservation of the num-
ber of total electrons,;=ny(t) + = {Nk(t)), shown in Fig.

11; while our solution(i) presents a good behavior for the
(nky(1)), very close to the exact ones. This fact suggests
strongly a lack of consistency when higher order terms with
respect to the ordev? criteria used to close the equation of
motions are conserved in the self-energies.

We can also treat in a similar way the case in which the
initial projectile charge configuration corresponds to a nega-
tive ion. In this case two electrons occupy the lowest energy
band statee,=¢€;), and the other two occupy the projectile
state. The infinitdd limit calculation requires to think in
term of holes, and in this form we have again tkatn,)
=0. The calculation is performed by assuming initially the
following hole-state occupations,=0 for k=1, n,=1, for

=0.02 a.u. andy=0. The same symbols as in Fig. 6 are used for thek=2,3 andn,=n;=0. The neutral charge state probability

different calculations: i, ii, and exact.

(Po) is given byng=n,+n, in the infiniteU limit, while in
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AL L L in the exact calculation. Due to the symmetries of the prob-
lem, the same neutral charge probabilities are obtained for
the incoming negative ion witlly;=-1.0 eV and the incom-
ing positive ion withe;=1.0 eV (Fig. 8); the incoming nega-

: tive ion with ¢4=1.0 eV and the incoming positive ion with
234 ; 4 €4=-1.0 eV (Fig. 6); and finally the incoming negative ion

: and the incoming positive ion witk;=0.0 eV (Fig. 7).

244 .. -

IV. CONCLUSIONS

22+ : T A solution for the infinitet limit is found by using the
: | physical Green functions of the slave-boson approach to the
: Anderson Hamiltonian and solving the equations of motion
2.1 4 : i up to aV? order. We obtain in this form accurate results for

static and dynamical situations shown by the comparison
. : with exact calculations. The integro-differential equations for
the Green functions are solved in a consistent way with the
2.0 - —rrrrrrrrrees = correlation functions related with the atom state occupation
and the atom-surface crossed terms, thus leading to the very
accurate results obtained. While we find a lack of consis-
tency when higher order terms are not introduced appropri-

total number of electrons per spin

1.9 +—7— IR, S A, T ately. Our calculation allows to treat M-fold of localized
-600  -400  -200 0 00 00 600 states on the atom site for any value Nf reproducing the
time (a.u.) exact result for theN=1 case.
FIG. 11. Total number of electrons per spin as a function of ACKNOWLEDGMENTS

time: ng;=n,+ 2N, (v=0.02 a.u.,4=0.0 eV). Dashed line corre-
sponds to our calculatiofi), and the dot line to the calculatidii).
Solid line corresponds to the exact calculation.
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