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This work is mainly devoted to the description of processes that involve the interaction between an atom and
a surface, in which a strong Coulomb repulsion on the atomic sitesUd limits the charge exchange to one
electronsinfinite-U limit d. In this limit, the Anderson Hamiltonian for a many-foldsNd of states localized on
the atomic site can be represented in terms of auxiliary bosons and physical operators in the mixed boson-
electron space can be defined. In this work the Hamiltonian is solved by defining appropriate Green’s functions
for physical operators. Then we solved the equations of motion of these Green’s functions, up to a second order
in the atom-surface coupling, either for the stationary case or for a real time-dependent problem. We show that
our approach reproduces the known exact results in the nondegeneratesN=1d case, and forNs1 gives
excellent agreement with exact calculations and approximations valid for largeN sthe 1/N expansiond. Finally,
the accurate description of dynamical processes is shown by the comparison with the exact results available for
a small four-level system. In this case we also compare with results obtained by using the noncrossing
approximation and with the usual spinless model calculation.
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I. INTRODUCTION

An accurate description of the interaction between atomic
localized states and the conduction electrons of a metal is a
matter of constant interest due to the importance this subject
has in many different physical problems as magnetic impu-
rities in metals,1,2 quantum dots coupled to electronic
reservoirs,3 and atoms moving outside a metal surface.4–8

The two-electron terms related with either intrasite or inter-
site Coulomb repulsions represent the main complexity for
solving this kind of problems. Different approximations are
attempted depending on the particular features of the inter-
acting system. A mean-field approximation is adequate, in
general, for small values of the Coulomb terms, and a per-
turbative correction up to a higher order when they are not
small enough compared with the one-electron interactions
involved. In the opposite limit, that is a strong electronic
repulsion, the zeroth order includes the electron-electron re-
pulsion and the one-electron interactions are the perturbative
terms. The Anderson model first introduced to describe a
magnetic impurity in a metal,9 has played a very important
role in the later developments related with the interaction
between extended and localized states. This model can be
extended in a straightforward way to nonequilibrium prob-
lems as is the case of ion-surface collisions and allows us to
include different kind of interactions between the localized
electronssdirect and exchange Coulomb termsd.

This work is mainly devoted to the description of pro-
cesses that involve the interaction between an atom and a
surface, in which a strong electronic correlationsUd on the
atom site limits the charge exchange to one electronsinfinite-
U limit d. The slave-boson approach to the Anderson Hamil-
tonian provides a fair description of a many-foldsNd of
strongly correlated states localized on the atom site.10 In this
work we will solve this Hamiltonian using the equation of
motion sEOMd method for the time-dependent Green func-

tions introduced by Keldysh11 and defined in the boson-
electron mixed space. We will show that a solution of the
equations of motion up to a strict second order in the atom-
surface coupling gives a very good approximate method to
solve either the stationary or the dynamical interaction pro-
cess. The EOM has been previously used in the stationary
case and in the limit of large values ofU, by considering a
pure fermion description and only the spin momentum pro-
jection sN=2d,12–15 but a consistent second-order solution
has not been found in these works. Other very used method
is the one based on the noncrossing approximation
sNCAd,10,16 that has been also generalized to the time-
dependent nonequilibrium situation a while ago.4–7 The for-
malism developed in this work accounts for the same rate
equations obtained by the NCA, and also for the exact time
evolution in theN=1 case. The augmented power of the
EOM method when applied to time-dependent processes can
be shown through the comparison with the exact results
available in the case of a four-level system.17 This discrete
model system has been used in a previous work to study a
perturbative calculation up to a second order of the on-site
electronic correlation term within a dynamical evolution.18 In
that case it was found an excellent agreement with the exact
results within a range of values of the correlation term com-
parable to those of the one-electron hopping, for which the
second order treatment cannot be justified in the stationary
case. A similar analysis is performed in this work by com-
paring our approach to the infinite-U limit with the exact
results. The usual approximation for strong intra-atomic
Coulomb repulsion based on the use of only one active state
localized on the atom sitesthe spinless modeld and the NCA
results for this four-level system are also analyzed.

II. MODEL AND THEORETICAL ANALYSIS

A. Model

In this work we consider the case of an atomic level«m
interacting with a metal surface defined by thek states of
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energiesek. We are interested in the case of a high intra-
atomic Coulomb interactionU, which can be described by
means of the following slave-boson Hamiltonian:10

Hstd = o
km

eknkm+ o
m

«mdm
+dm + o

km

fVkckm
+ sb+dmd

+ Vk
*sdm

+bdckmg, s1d

where an auxiliary boson field,b andb+, is introduced; and it
is considered aN-fold fermion state withm denoting the
angular momentum projections j ,mj =md. The constraint re-
lation

b+b + o
m

dm
+dm = Q = 1 s2d

is imposed to guarantee that no more than 1 electron occu-
pies the atomicd level.

We are going to analyze the time-dependent solution of
Eq. s1d using the Green function technique. The Keldysh-
Green functions11 appropriate for the physical operators
b+stddmstd anddm

+ stdbstd of this problem are

Gmmst,t8d = ikF0uhdm
+ st8dbst8d,b+stddmstdjuF0lQst8 − td,

s3d

Fmmst,t8d = ikF0ufdm
+ st8dbst8d,b+stddmstdguF0l. s4d

h j andf g being the anticonmutator and the conmutator of the
corresponding operators respectively; and the initial state
uF0l= u0;Q=1l is the direct product of the unperturbed
Fermi sea by the state with one boson and none fermionsor
none holed in the localizedd state. It is important to notice
that

Gmmst → t8,t8d = iknm + nbl, s5d

Fmmst = t8,t8d = iknm − nb + 2nmnbl = iknm − nbl, s6d

where we have used thatknmnbl=0 according with the
infinite-U limit and knbl=1−om8knm8l.

B. The equations of motion for theGmm„t ,t8…

By using Eq. s1d we obtain the following equation of
motion for the advanced Green functionGmmst ,t8d:

idGmmst,t8d/dt = zmdst − t8d + «mGmmst,t8d + o
k

VkstdGmsckmd

+ o
k,m8Þm

VkstdGmsdm8
+ dmckm8d

− o
k,m8Þm

VkstdGmsnm8ckmd, s7d

wherezm=knm+nbl, and the following notation is used:

GmsAd = ikF0uhdm
+ st8dbst8d,AstdjuF0lQst8 − td.

whereA=ckm, dm8
+ dmckm8, nm8ckm in the different terms of Eq.

s7d. The equations of motion of these new Green functions
are.

idGmsckmd/dt = ekGmsckmd + VkGmm, s8d

idGmsdm8
+ dmckm8d/dt

= − kdm8
+ bckm8lt8dst − t8d + s«m − «m8 + ekdGmsdm8

+ dmckm8d

− VkstdGmsnm8dmb+d + o
K

VKstdGmscKm8
+ ckm8b

+dmd

− o
K

VKstdGmsdm8
+ ckm8bcKmd, s9d

idGmsnm8ckmd/dt = ekGmsnm8ckmd + VkstdGmsnm8dmb+d

+ o
K

VKstdfGmsdm8
+ bcKm8ckmd

− GmscKm8
+ dm8b

+ckmdg. s10d

TheGmsnm8dmb+d is zero identically because it is not pos-
sible to have at the same time one electron inm and another
in m8Þm. Here we have to remark the differences with a
previous work19 where an incorrectknm8lGmm approximation
to this function is assumed and the equal time value of the
Gmsdm8

+ dmckm8d function is neglected. Instead of calculating
the new Green functions that appear in Eqs.s9d ands10d, one
can follow the approach proposed by Lacroix14 for the static
case and make the following mean-field-like decouplings:

GmscKm8
+ ckm8b

+dmd = kcKm8
+ ckm8ltGmmst,t8d, s11d

Gmsdm8
+ ckm8bcKmd = kdm8

+ bckm8ltGmscKmd. s12d

However, one of the goals of this work is to show that a
strict solution to orderV2 of Eqs.s9d ands10d provides a fair
better solution. This implies the following approximations:

GmscKm8
+ ckm8b

+dmd = knkm8l0Gmmst,t8ddKk + OsV2d, s13d

Gmsdm8
+ ckm8bcKmd = OsV2d, s14d

whereknkml0 is thekm-state occupation forVk=0, that in the
case of a metal surface is given by the Fermi distributionsEF
denotes the Fermi energy,kB the Boltzman constant andT
the absolute temperatured:

knkml0 = nkm=
1

1 + expfsekm− EFd/kBTg
.

In the following and for the sake of simplicity, we write
down the equations of motion for the Green’s functions to
orderV2, but another set of equations of motion can be easily
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derived with the mean-field decoupling of Eqs.s11d ands12d
in an analogous way. Results with both kind of approxima-
tions will be presented in the next section, however. After
some algebra, the final equation fordGmmst ,t8d /dt is

idGmmst,t8d/dt = zmdst − t8d + «mGmmst,t8d

− i o
k,m8Þm

Vkstdkdm8
+ bckm8lt8e

−is«m−«m8+ekdst−t8d

+E
t

t8
dtfJAst,td + Jm

Aast,tdgGmmst,t8d,

s15d

where

JAst,td = iQst − tdo
k

VkstdVkstdeiekst−td, s16d

Jm
Aast,td = Jm

Aast,td

= iQst − td o
k,m8Þm

VkstdVkstdnkm8e
−is«m−«m8+ekdst−td.

s17d

C. The equations of motion for theFmm„t ,t8…

In the case ofFmmst ,t8d, the equation of motion is

idFmmst,t8d/dt = «mFmmst,t8d + o
k

VkstdFmsckmd

+ o
k,m8Þm

VkstdFmsdm8
+ dmckm8d

− o
k,m8Þm

VkstdFmsnm8ckmd.

The following notation is now introduced:

FmsAd = ikF0ufdm
+ st8dbst8d,AstdguF0l.

The equations of motion for theFmsAd are calculated by a
complete similar procedure to that for theG functions. The
main differences arise from the boundary conditions at the
initial time t0. It can be shown that the following relations are
satisfied:

Fmfckmst0dg = f2nkm− 1gGmfckmst0dg,

Fmfdm8
+ dmckm8st0dg = f2nkm8 − 1gGmfdm8

+ dmckm8st0dg,

Fmfnm8ckmst0dg = f2nkm− 1gGmfnm8ckmst0dg.

These kind of relations make necessary to know theGmm
functions for calculating theFmm ones. Finally, theV2 order
solution to the equation of motion results

idFmmst,t8d/dt = «mFmmst,t8d − i o
k,m8Þm

s2nkm8 − 1dVkstd

3kdm8
+ bckm8lt8e

−is«m−«m8+ekdst−t8d

+E
t0

t

dtfJRst,td + Jm
Rast,tdgFmmst,t8d

+E
t0

t8
dtfVst,td + Vm

ast,tdgGmmst,t8d,

s18d

where it has been defined as

Vst,td = io
k

s2nkm− 1dVkstdVkstdeiekst−td, s19d

Vm
ast,td = i o

k,m8Þm

s2nkm8 − 1dVkstdVkstdnkm8e
−is«m−«m8+ekdst−td

s20d

and the retarded self-energiesJR are related to the advanced
onesJA by the equations

JRst,td = fJAst,tdg * ,

Jm
Rast,td = fJm

Aast,tdg * .

D. Analysis of the numerical solution to the integrodifferential
equations

For time-dependent processes where the initial time value
t0 corresponds to the noninteracting situationsVk=0d, the
following quantities are well defined:

knmst0dl = 0,

kdm
+bckmlt0

= 0,

kcKm
+ ckmlt0

= nkmdKk.

To solve the integrodifferential equationss15d and s18d
for the Gmmst ,t8d and Fmmst ,t8d respectively, implies to
evolve along the two time values:t8 that varies fromt0 to
tmaxs→`d, and t from t0 to t8, for each t8 value. But
Gmmst ,t8d andFmmst ,t8d depend on the correlation functions
knmstdl and kdm

+bckmlt that have to be calculated self consis-
tently. Notice thatkdm

+bckmlt is given by the following equa-
tion

kdm
+bckmlt+dt = Fmsckmd/s2 * id

= − s1/2dSE
t0

t+dt

dtVkstdFmmst,t + dtd

3eiekst−t−dtd − s2nkm− 1dE
t0

t+dt

dtVkstd

3Gmmst,t + dtdeiekst−t−dtdD s21d
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Then, an initial guess forkdm
+bckmlt is introduced in Eqs.

s15d and s18d by using the following equation obtained by
making the same approximationsfOsV2dg leading to the
equations of motion for theG andF:

idkdm
+bckmlt/dt = sek − «mdkdm

+bckmlt − zmVknkm+ Vkknml.

s22d

In this form kdm
+bckml is calculated at timet+dt from the

values determined at the preceding timet; and the atomic
state occupation at the same time is obtained by using the
exact equation

dknmstdl/dt = 2 Im o
k

Vkstdkdm
+bckmlt. s23d

Once the Green functionsFmmst ,t+dtd and Gmmst ,t+dtd
with t0atø t+dt are calculated, the correlation function
kdm

+bckml is obtained again at the time valuet+dt by using
the integral expressions21d now, while knmst+dtdl is recal-
culated from

knmst + dtdl = fGmmst → t + dt,t + dtd

+ Fmmst + dt,t + dtdg/s2id. s24d

Notice that the approximate equations22d does not yield
the appropriate solution even for the case of a spinless
HamiltoniansN=1d. Therefore it is only used for providing
an initial guess, being then the correct value calculated by
using the accurate expressions21d in terms of the time evo-
lution of theG andF functions.

The interdependence of the occupation of a localized state
with angular momentum projectionm with the occupation of
the other m8 states, and also with the crossed terms
kdm8

+ bckm8l, is due to the strong intra-atomic correlation ef-
fects. In the particular case ofN=1, our resultsfEqs. s15d
and s18dg recover the exact expressions for the spinless
Hamiltonian, where only one active state is assumed in the
atom site. The validity of this formalism for any value ofN
marks a difference with the NCA that is only well justified
from a large-N expansion.16

III. RESULTS AND DISCUSSION

A. Semiclassical and static limit situations in the case of a
N-fold degenerated state

In this case«m=«d, knml=n, and oknml=Npn=nd. The
nkm are also independent ofm, nkm=nk.

1. Semiclassical limit

By using Eqs.s21d and s23d we have that

dn/dt = − ReFE
t0

t

dtJRst,tdFmmst,td

−E
t0

t

dtVst,tdGmmst,tdG . s25d

Notice thatdn/dt in the infinite-U limit is determined only

by the crossed termssEq. s23dd as in the noncorrelated case,
with the only difference of the boson operator that keeps
memory of the infiniteU-limit situation. This fact causes
different time behaviors of theF and G functions in each
case. The semiclassical approximationsSCAd to Eq. s25d is
obtained by assumingVkstd=Vustd, and a constant density of
statesr for the metal. Then, the self-energies within this
wide band-width approximation are

SRst,td = − iQst − td2Dstddst − td,

Vst,td = − i2Dstddst − td

+ i2sD0/pdustdustdE
−`

`

de
expf− iest − tdg

1 + expfbse − EFdg
,

whereb=1/kBT, D0=prV2, andDstd=D0u
2std. By introduc-

ing these expressions for the self-energies in Eq.s25d and
considering Fmmst ,td= fmmst ,tdexpf−i«dst− tdg, Gmmst ,td
=gmmst ,tdexpf−i«dst− tdg, the following result is obtained:

dn/dt = ImS− Dstdffmmst,td + gmmst,tdg

+ 2sD0/pdustdE
−`

` d«

1 + expfbse − EFdg

3 E
t0

t

dtustdexpf− ise − «ddst − tdggmmst,tdD .

s26d

The SCA assumes thatgmmst ,td is a slowly varying func-
tion of t and can be taken out of the integral in Eq.s26d; this
leads to4

dn/dt = Imh− Dstdffmmst,td + gmmst,tdg + 2Dstdfas«ddgmmst,tdj

with fas«dd=1/h1+expfbs«d−EFdgj. Finally, the SCA is
only related with the state occupations

Fmmst,td + Gmmst,td = 2in,

Gmmst,td → iknbstd + nstdl.

The only difference introduced in the rate equation by the
infinite U limit is the appropriate equal time behavior of the
advanced physical Green function that also contemplates the
N=1 case. The SCA result can be written as

dn/dt = 2Dstdh− nstd + knbstd + nstdlfas«ddj s27d

that is the same expression already obtained by Langreth
et al.4 within the NCA.

2. Static solution

The static limit is easily calculated assuming all the dif-
ferent self-energies to depend onst−td. This allows us to
Fourier transform Eq.s15d to

Gsvd =
zd − sN − 1dIsvd

v − «d − S0svd − sN − 1dSa
, s28d

where:
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S0svd = o
k

Vk
2

v − ek − ih
, s29d

Isvd = o
k

Vkkd+bckl
v − ek − ih

, s30d

Sasvd = o
k

Vk
2nk

v − ek − ih
. s31d

The kd+bckl and knl correlation functions are given by

kd+bckl = s1/pdE
−D

D

dv8fasv8dIm
VkGsv8d

v8 − ek − ih
, s32d

knl =
1

p
E

−D

D

dv8fasv8dIm Gsv8d, s33d

whereD is the half-bandwidth andfasv8d is the Fermi dis-
tribution at temperatureT.

AssumingVk independent onk and D→`, the spectral
density of statesrsvd=Im Gsvd /p is found to be

rsvd

=
D0/p

fv − «d − sN − 1dReSasvdg2 + D0
2f1 + sN2 − 1dfasvdg

.

s34d

The use of the decoupling terms given by Eqs.s11d and
s12d leads to the proposal of Lacroix14 for the spectral den-
sity of states, where also a self-consistent calculation with
the correlation functionkcK

+ckl has to be performed.
Meir et al.,12,13 by working within a pure fermionic de-

scription, neglected in the EOM the equal time boundary
condition of Green functions such asiQst8− td
3khds

+st8d ,d−s
+ stdck−sstddsstdjl that are the equivalent ones to

the Gmsdm8
+ dmckm8d in the slave-boson approach, see Eq.s9d.

Even though this might be a reasonable approximation at
high temperatures, it is found that a poor description of the
state occupations is obtained when neglecting the self-
consistency with the crossed terms such askd−s

+ stdck−sstdl at
T=0 K.

Figures 1–3 show the spectral densityrsvd derived from
Eq. s34d for N=2 and T=0 K, using D0=0.01D, and the
following values for «d=−0.04D, 0.0, and 0.02D, respec-
tively. In this form the three relevant regimes, Kondo, mixed-
valence, and empty orbital, are covered. In the same figures
we show the density of states obtained by using the Lacroix
approximation.14 Both solutions are very similar, except near
the Fermi level where the Kondo resonance appears. While
our approximations34d yields zero density of states at the
Fermi level and a too narrow Kondo peak, the Lacroix solu-
tion produces a finite value of the density of states at
EF—even though the Fried el-sum rule is far from being
satisfiedfrs0d=sin2spnd/2d /pD0g—and a very much dimin-
ished Kondo peak. When comparing with the NCA, we no-
tice that the NCA presents a pathological cusp at the Fermi
level. On the other hand, we found that the method presented

FIG. 1. Spectral density forN=2 and ed=−0.04D. The solid
curve corresponds to the calculation derived from expressions34d,
and the dashed curve to the one from Lacroix approximation.

FIG. 2. The same as Fig. 1 fored=0. T0 is the low energy scale
deduced from the density of states.
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in this work yields very accurate values for the atomic state
occupation. The values fornd by using Eq.s33d are 0.879,
0.306, and 0.182, which are very near to the exact ones ob-
tained by using the NRG calculation 0.874, 0.314, and
0.172,20 while the Lacroix approximation yields the follow-
ing values: 0.88, 0.36, and 0.206. We will see below that this
is also reflected in a better performance of our solution for
dynamical cases.

Figures 4 and 5 shownd as a function ofsp«d
* /ND0d,

where «d
* =«d+fsN−1dD0/pglnspD /ND0d, for N=2 and N

=6, respectively. The results of our approximation are com-
pared with the ones from Lacroix approximation, with the
exact results and those obtained from the leading order cal-
culation of as1/Nd expansion.21 From these figures it is pos-
sible to appreciate the excellent occupation values that are
obtained for a wide range of parameters when using theV2

order calculation presented in this work.

B. Dynamical processes: Comparison with exact results

Our model system consists of a chain of four atoms, one
representing the scattered particle and the other three the
solid substrate, with a total number of electrons equal to 4.
The three-atom substrate accounts for an incipient solid band
formation and allows for an exact treatment of the dynamical
charge exchange between the projectile and the discrete sur-
face states. The exact solutions are obtained by solving the
time-dependent Anderson Hamiltonian within the subspace
of 36 many-electron configurations with a total spin compo-
nentSz=0.17,22 For the three-atom linear substrate the atom-
atom hopping interaction isb=−2 eV, and the site energy is
«0=0.0 eV. The energies of the band states are then
e1=−Î2* ubu, e2=0.0, e3=Î2* ubu. The time-dependent
projectile-substrate hopping term is given byVkstd

FIG. 3. The same as Fig. 1 fored=0.02D.

FIG. 4. The occupationnd as a function ofp«d
* /ND0, with «d

*

defined in the text, forN=2. The full curve gives the exact results,
and the dashed curve the leading order in a 1/N expansionsJ. W.
Rasul and A. C. Hewson, 1984d. Full circles corresponds to the
calculation ofnd derived from expressions33d, and the full triangles
to the one from Lacroix approximation.

FIG. 5. The same as in Fig. 4, forN=6.
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=bkV0 exps−2vutud, where v is the atom velocity,
V0=−1.0 eV, andbk is the weight of the projectile first
neighbor in thek-band statesbk=0.5, 1./Î2, 0.5, for k
=1,2,3 respectivelyd. In the infinite-U limit approximation
this model system corresponds to anN-fold degenerate state
with N=2 sthe spin-up and spin-down statesd. In all the cases
we compare the exact results withsid our approximation
fEqs. s15d and s18dg, sii d dynamical solution equivalent to
Lacroix static approximation,siii d a spinless solution where
N=1 sthis approach is often used to analyze the case of a
very high electron-electron interactiond. We also compare
with the NCA results obtained by implementing Eqs.
s20d–s23d of the work of Shaoet al..5 for this four-level
system.

Initially empty projectile spin states. In this case the four
electrons occupy initiallyst= t0d the lowest energy band
statessek=e1,e2d, that meansnk=1 for k=1,2 andnk=0 for
k=3. The values ofed are chosen as representative of the
different regimes in strong correlated systems interacting
with a continuum band-state substrate:ed=−1.0 eV sKondo
regimed, ed=0.0 eV smixed-valence regimed and ed=1.0 eV
sempty-orbital regimed. TheU values used in the case of the
exact calculation vary from 6.0 to 50.0 eV, depending on the
atom velocity range. Figure 6sed=−1.0 eVd and Fig. 8sed

=1.0 eVd show that for low velocitiessv/0.02 a.u.d the ex-
act calculation reaches the infinite-U limit sn↑=n↓, kn↑n↓l

.0 and no dependence onU valued for values ofU around
50.0 eV. While in the case ofed=0.0 eV, Fig. 7, this limit is
accomplished byU.6.0 eV in the whole velocity range. In
this very discrete level system as the solid target, fored=
−1.0 eV anded=1.0 eV a nearly adiabatic regime is being
reached foruv /edu!1 sin a.u.d, and the requirementU /V
@1 becomes more restrictive to reproduce the infinite limit
situation than in the well defined non adiabatic evolution.
The probability of having one electron in the projectile site is
given by P0=n↑+n↓=nd in the infinite-U limit, while in the
case of the spinless approximation this probability is given
by the occupationn of the only one projectile state consid-
ered. In Figs. 6–8 the exact results ofnd as a function of the
projectile velocity sin a velocity range from
0.01 a.u. to 0.055 a.u.d are compared with the results ob-
tained by using the calculations i, ii, and iii and the NCA, for
the three values ofed s−1.0 0.0, and 1.0 eVd, respectively.
From Figs. 6–8 it is concluded that in all the cases our cal-
culationsid is the best approximation to the exact results, not
only with respect to the values ofnd, but also with respect to
the velocity dependent behavior. The striking case is theed
=0.0 eV one. The typical oscillatory behavior for a very dis-
crete system within a resonant condition is obtained. Only
the infinite-U limit approximation where the self-energies are
calculated up to aV2 order, is able to reproduce the marked
oscillations of the exact results along the whole velocity
range. When compared to the usual spinless approximation,
the infinite-U limit calculation represents clearly an improve-
ment, and it evidences the nonstraightforward predictable
correlation effects in a dynamical process. Figures 6–8 also
show the results obtained by using the NCA. We observe that
for velocitiesv'0.03 a.u. the NCA reproduces the exact val-

FIG. 6. The occupationnd vs ion velocity fored=−1 eV. Empty
and full squares correspond to the exact calculation usingU
=10.0 eV. andU=50.0 eV, respectively. Full circles correspond to
our calculationsid using Eqs.s15d and s18d, full triangles to the
calculation sii d based on Lacroix approximation, and empty dia-
monds to the spin-less calculationsiii d. The crosses correspond to
the NCA results.

FIG. 7. The same as in Fig. 4 fored=0.
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ues. In the low velocity range and fored=−1.0 eV sFig. 6d
this calculation underestimates thend values, but the most
striking situation occurs fored=1.0 eV sFig. 8d, where the
NCA gives an unphysical growth ofnd for low velocities.

The average occupation for each spin-sate is shown as a
function of time in Fig. 9, for theed=0.0 eV case and a

velocity value equal to 0.02 a.u. The results obtained by us-
ing sid coincides practically with those from the exact calcu-
lation along the whole projectile trajectory, while the calcu-
lation sii d gives a final average occupation slightly less than 0
in this case. In Fig. 10 the average occupations of the band
states per spinknksstdl are shown. These ones are calculated
by using the exact relation

dknksstdl/dt = − 2 ImfVkstdkds
+bcksltg.

We find that the calculationsii d yieldsknksstdls1 in some
cases, reflecting a problem with the conservation of the num-
ber of total electronsntot=ndstd+okmknkmstdl, shown in Fig.
11; while our solutionsid presents a good behavior for the
knksstdl, very close to the exact ones. This fact suggests
strongly a lack of consistency when higher order terms with
respect to the orderV2 criteria used to close the equation of
motions are conserved in the self-energies.

We can also treat in a similar way the case in which the
initial projectile charge configuration corresponds to a nega-
tive ion. In this case two electrons occupy the lowest energy
band statesek=e1d, and the other two occupy the projectile
state. The infinite-U limit calculation requires to think in
term of holes, and in this form we have again thatkn↑n↓l
>0. The calculation is performed by assuming initially the
following hole-state occupationsnk=0 for k=1, nk=1, for
k=2,3 andn↑=n↓=0. The neutral charge state probability
sP0d is given bynd=n↑+n↓ in the infinite-U limit, while in

FIG. 9. Occupation per spin as a function of time forv
=0.02 a.u. anded=0. The same symbols as in Fig. 6 are used for the
different calculations: i, ii, and exact.

FIG. 8. The same as in Fig. 4 fored=1 eV.
FIG. 10. Band-state occupations per spin as a function of time

sv=0.02 a.u.,ed=0.0 eVd. Square symbols correspond to the exact
calculation, circles to our calculationsid and triangles to the calcu-
lation sii d. Empty symbols correspond toknksl with k=2 and full
ones toknksl with k=1 in the case of the exact and our calculation,
while the opposite is valid for calculationsii d.
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the spinless calculationP0=n, where n is in this case the
occupation of the only one hole-state considered. The energy
ed corresponds now to the energy level for the second elec-
tron, that ised=ed

* +U, whereed
* andU are, respectively, the

atom energy level and the Coulomb repulsion parameter used

in the exact calculation. Due to the symmetries of the prob-
lem, the same neutral charge probabilities are obtained for
the incoming negative ion withed=−1.0 eV and the incom-
ing positive ion withed=1.0 eVsFig. 8d; the incoming nega-
tive ion with ed=1.0 eV and the incoming positive ion with
ed=−1.0 eV sFig. 6d; and finally the incoming negative ion
and the incoming positive ion withed=0.0 eV sFig. 7d.

IV. CONCLUSIONS

A solution for the infinite-U limit is found by using the
physical Green functions of the slave-boson approach to the
Anderson Hamiltonian and solving the equations of motion
up to aV2 order. We obtain in this form accurate results for
static and dynamical situations shown by the comparison
with exact calculations. The integro-differential equations for
the Green functions are solved in a consistent way with the
correlation functions related with the atom state occupation
and the atom-surface crossed terms, thus leading to the very
accurate results obtained. While we find a lack of consis-
tency when higher order terms are not introduced appropri-
ately. Our calculation allows to treat aN-fold of localized
states on the atom site for any value ofN, reproducing the
exact result for theN=1 case.
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