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Discord and information deficit in the XX chain
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We examine the quantum correlations of spin pairs in the cyclic XX spin-1/2 chain in a transverse field
through the analysis of the quantum discord, the geometric discord, and the information deficit. It is shown
that while these quantities provide the same qualitative information, being nonzero for all temperatures and
separations and exhibiting the same type of asymptotic behavior for large temperatures or separations, important
differences arise in the minimizing local measurement that defines them. Whereas the quantum discord prefers
a spin measurement perpendicular to the transverse field, the geometric discord and information deficit exhibit a
perpendicular-to-parallel transition as the field increases, which subsists at all temperatures and for all separations.
Moreover, it is shown that such transition signals the change from a Bell state to an aligned separable state of
the dominant eigenstate of the reduced density matrix of the pair. Full exact results for both the thermodynamic
limit and the finite chain are provided through the Jordan-Wigner fermionization.
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I. INTRODUCTION

The investigation of quantum correlations in mixed states is
presently attracting strong attention [1]. While in bipartite pure
states such correlations can be identified with entanglement,
it was recently recognized that separable (nonentangled)
bipartite mixed states, defined as states which can be created
by local operations and classical communication, and which
are therefore convex mixtures of product states [2], may
still exhibit useful quantum correlations, stemming from the
noncommutativity of the different products. The mixed-state-
based quantum algorithm introduced by Knill and Laflamme
(KL) [3] has shown that an exponential speedup over classical
algorithms can in fact be achieved without entanglement [4],
in contrast with the case of pure states [5].

This has turned the attention to alternative measures of
quantum correlations for mixed states, such as the quantum
discord [1,6–8], which are able to capture the quantumness
of such mixed states, vanishing just for states diagonal in a
product basis and coinciding with entanglement in the pure
state limit. A finite discord between the control qubit and the
remaining maximally mixed qubits was in fact found in the KL
algorithm [9], renewing the interest on this measure [10–14].
Other measures with similar properties include the closely
related one-way information deficit [1,15,16], the geometric
discord [17], which allows an easier evaluation, and the
generalized entropic measures of Ref. [18], which include
the previous ones as particular cases. Various applications
and operational interpretations of the quantum discord and
related measures were recently provided [1,10,16,19–24]. We
remark that all these measures require a minimization over
local measurements in one of the constituents (which can
be viewed as the determination of the least disturbing local
measurement [25]), which makes their evaluation difficult in
systems with high dimensionality.

Spin chains provide an interesting scenario for studying
these measures and their relation with criticality [1,26–36].
In particular, the state of a spin pair in an entangled ground
state (GS) is in general a mixed state, entailing that differences
between the entanglement and the quantum discord of a spin
pair will arise already at zero temperature [26,28,30]. These

differences become significant in the exact ground states of
finite XY chains for transverse fields lower than the critical
field Bc [30], with the quantum discord reaching full range in
this region.

The aim of this work is to analyze in detail the behavior of
the quantum discord, the geometric discord, and the one-way
information deficit of spin pairs in chains with XX-type
first-neighbor couplings in a transverse field, at both zero and
finite temperatures. Such a model is particularly interesting
for both quantum information and condensed matter physics,
exhibiting distinct features such as eigenstates with definite
magnetization along the field axis and a special critical behav-
ior [37]. It is first shown that in contrast with entanglement
[38–40], discord-type measures exhibit common features such
as a nonzero value for all separations L at all temperatures
T > 0. Exact asymptotic expressions for the decay with L and
T will be provided on the basis of the exact treatment based
on the Jordan-Wigner fermionization [39–42]. Nonetheless,
we will also show that important differences between the
quantum discord on the one side and the geometric discord and
information deficit on the other side do arise in the minimizing
local spin measurement. While in the quantum discord the
latter is always orthogonal to the transverse field (even at strong
fields if T > 0), in the geometric discord and information
deficit it exhibits a perpendicular-to-parallel transition as the
field increases, at a field lower than the T = 0 critical field Bc.
Such transition in the minimizing measurement is present at
all temperatures and separations, and, as will be shown, is
a signature of the transition from a Bell state to a separable
aligned state of the dominant eigenstate of the reduced density
matrix of the pair. This difference indicates a distinct response
of the minimizing measurement in these quantities to the onset
of quantum correlations.

In Sec. II, we summarize the main features of the previous
measures, including the equations that determine the stationary
local measurements. The application to the spin-1/2 XX
chain is made in Sec. III, where we first discuss some
general properties of these measures in this model and show
that spin measurements parallel and perpendicular to the
field are always stationary. We then consider in detail the
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thermodynamic limit and the finite case. Details of the exact
calculation are provided in the Appendix. Conclusions are
finally given in Sec. IV.

II. DISCORD AND GENERALIZED
INFORMATION DEFICIT

Let us consider a bipartite quantum system A + B initially
in a state ρAB . A local complete projective measurement MB

on system B is defined by a set of orthogonal projectors
�B

j = IA ⊗ �j , where �j = |jB〉〈jB | are one-dimensional
projectors satisfying

∑
j �j = IB , �j�k = δjk�k . The state

of the total system after an unread measurement of this type
becomes

ρ ′
AB =

∑
j

�B
j ρAB�B

j . (1)

In [18,25] we considered the minimum generalized informa-
tion loss by such measurement,

IB
f = Min

MB

Sf (ρ ′
AB) − Sf (ρAB), (2)

where Sf (ρ) = Tr f (ρ) denotes a general entropic form, with
f a smooth strictly concave function for p ∈ [0,1], satisfying
f (0) = f (1) = 0 [43]. Equation (2) satisfies IB

f � 0 for any
such f , becoming the generalized entanglement entropy
Sf (ρB) = Sf (ρA) in the case of pure states (ρ2

AB = ρAB).
However, it can be nonzero in separable mixed states, vanishing
just for states which are already of the form (1) [18], i.e.,
states which remain unchanged after the local measurement
MB and are hence diagonal in a product basis {|ij A

〉 ⊗ |jB〉}.
The positivity of IB

f ∀Sf follows from the majorization relation
ρ ′

AB ≺ ρAB satisfied by (1) [18,25,44].
If f (ρ) = −ρ log2 ρ, Sf (ρ) becomes the von Neumann

entropy S(ρ) and Eq. (2) becomes the one-way information
deficit [1,15,16], which we will denote as IB

1 . It can be
rewritten in terms of the relative entropy [44,45] S(ρ ‖ ρ ′) =
−Tr ρ(log2 ρ ′ − log2 ρ) as [18]

IB
1 = Min

MB

S(ρ ′
AB) − S(ρAB) = Min

MB

S(ρAB ‖ ρ ′
AB). (3)

For a pure state, IB
1 becomes the standard entanglement

entropy S(ρA) = S(ρB).
If f (ρ) = 2ρ(1 − ρ), Sf (ρ) becomes the so-called linear

entropy S2(ρ) = 2(1 − Tr ρ2) and Eq. (2) becomes

IB
2 = 2 Min

MB

Tr
(
ρ2

AB − ρ ′ 2
AB

) = 2 Min
ρ ′

AB

||ρAB − ρ ′
AB ||2, (4)

where ||O||2 = Tr O†O and the last minimization can be
extended to any state of the general form (1). It is then seen
that (4) is proportional to the geometric discord introduced
in [17], defined as the square of the minimum Hilbert-Schmidt
distance from ρAB to a classically correlated state with respect
to B. For pure states, IB

2 becomes the squared concurrence
C2

AB [46], which for such states is just the linear entropy of
any of the subsystems [47].

Both measures (3) and (4) can then be regarded as particular
cases of the generalized information deficit (2). We may
similarly define [25] IB

q = Sq(ρ ′
AB) − Sq(ρAB) for entropies

Sq(ρ) associated to f (ρ) = (ρ − ρq)/(1 − 21−q ), q > 0 [48].
IB
q reduces to (4) for q = 2 and to (3) for q → 1 [Sq(ρ) →

S(ρ) in this limit]. Normalization of f (ρ) was chosen such
that IB

f = 1 ∀ Sf for a two-qubit Bell state.
On the other hand, the quantum discord [6,7] for a

measurement in B can be written as

DB = Min
MB

S(A|MB) − S(A|B)

= Min
MB

[
I

MB

1 (ρAB) − I
MB

1 (ρB)
]
, (5)

where S(A|MB) denotes the conditional von Neumann entropy
of A given a measurement MB in B, S(A|B) = S(ρAB) −
S(ρB ) is the quantum conditional entropy, and the last expres-
sion (5) is the result for a complete projective measurement
MB , which is the case we will here consider. DB is just the
minimum decrease of the mutual information S(A) − S(A|B)
after an unread measurement in B [6,7]. We then have
DB � IB

1 , with DB = IB
1 when the minimizing measurements

for DB and IB
1 coincide and ρ ′

B = ρB . Nonetheless, like IB
1 ,

DB � 0, vanishing just for the classically correlated states (1)
and reducing to the entanglement entropy S(ρA) = S(ρB) for
pure states ρAB .

However, important differences between IB
1 (or in general

IB
f ) and DB may arise in the minimizing measurement. While

for a general classically correlated state of the form (1)
the minimum (0) for both DB and all IB

f is attained for a
measurement in the local basis defined by the projectors �B

j

(i.e., the pointer basis [6,7]), in the particular case of product
states ρA ⊗ ρB , DB (but not IB

f ) becomes the same for any
MB , as for such states S(A|MB) = S(A) ∀ MB . The same
holds for pure states ρAB , where DB is again the same for
any MB , as here S(A|MB) = 0 ∀MB of the present form,
whereas the minimum IB

f is obtained, for any Sf , for a
measurement MB in the local part of the Schmidt basis [18],
i.e., again in the basis of eigenstates of the reduced state ρB .
These differences will have important consequences for the
results of the next section, leading to a quite different response
of the minimizing measurement to the onset of quantum
correlations. They reflect the fact that while in IB

f one is
looking for the least disturbing local measurement, such that
ρ ′

AB is as close as possible to ρAB , in DB the search is for
the measurement in B which makes the ensuing conditional
entropy smallest, i.e., by which one can learn the most
about A.

We also remark that the determination of the minimizing
measurement MB is in general a difficult problem. Complete
projective measurements at B are determined by d2

B − dB real
parameters if B has a Hilbert space of dimension dB , growing
then exponentially with the number of components of B. For
IB
f , the minimizing measurement should fulfill the stationary

condition [25,49]

TrA[f ′(ρ ′
AB),ρAB] = 0, (6)

which leads to dB(dB − 1) real equations [25]. In the quantum
discord (5), an additional term −[f ′(ρ ′

B),ρB] is to be added
in (6), with f (ρ) = −ρ log2 ρ [25] (see also [50,51]).

Nevertheless, in the case of the geometric discord I2, the
final equations can be simplified considerably. In particular,
for a general mixed state of two qubits

ρAB = 1
4

(
I + rA · σA + rB · σB + σ t

AJσB

)
, (7)
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where σ = 2s are the Pauli matrices, σA = σ ⊗ I , σB = I ⊗
σ , rA,B = 〈σA,B〉 and J = 〈σAσ t

B〉, it can be shown that [17]

IB
2 = 1

2 (tr M2 − λ1), (8)

where λ1 is the largest eigenvalue of the positive-semidefinite
3 × 3 matrix M2 = rB r t

B + J tJ . The minimizing MB is a spin
measurement along the direction of the associated eigenvector
k1 of M2. A closed expression for IB

3 can also be obtained for
this case [25].

III. APPLICATION TO THE XX MODEL

We now consider a chain of N spins si with first-neighbor
XX couplings in a uniform transverse magnetic field. The
Hamiltonian reads as

H =
∑

i

Bsiz − J (sixsi+1,x + siysi+1,y), (9)

and is obviously invariant under rotations around the z axis,
satisfying [H,Sz] = 0, with Sz = ∑

i siz the z component of
total spin. Its eigenstates can then be characterized by the total
magnetization M along z. The sign of the field B and the
coupling strength J can be changed by local rotations eiπsjz

at all and even spins j , respectively (assuming N even in the
cyclic case N + 1 ≡ 1), so that we will set in what follows
B � 0, J � 0.

We will examine the spin-1/2 case, where exact results
for finite N as well as the thermodynamic limit N → ∞
can be obtained via the Jordan-Wigner fermionization (see
Appendix). We will focus on the cyclic case N + 1 ≡ 1, where
pair correlations between spins i and j in the ground state or
in the thermal state ρ ∝ exp[−βH ] will depend just on the
separation L = |i − j |.

For any global state ρ satisfying [ρ,Sz] = 0, the reduced
state ρij = Trij ρ of any pair i �= j will commute with siz +
sjz. In the cyclic case, ρL ≡ ρij will then have the form

ρL =

⎛
⎜⎝

p+
L 0 0 0
0 pL αL 0
0 αL pL 0
0 0 0 p−

L

⎞
⎟⎠ (10)

= p+
L |↑↑〉〈↑↑| + p−

L |↓↓〉〈↓↓|
+ (pL + αL)|	+〉〈	+| + (pL − αL)|	−〉〈	−|, (11)

where (10) is the representation in the standard basis and (11)
the eigenvector expansion, with |	±〉 = |↑↓〉±|↓↑〉√

2
Bell states.

Here, p+
L + p−

L + 2pL = 1, with

p±
L = 1

4 ± 〈sz〉 + 〈sizsjz〉, (12)

αL = 〈sixsjx + siysjy〉, (13)

and 〈sz〉 = 〈Sz〉/N the intensive average magnetization along
z. It corresponds to rA = rB = (0,0,2〈sz〉) and Jμν = δμνJμ

in (7), with 2〈sz〉 = p+
L − p−

L , Jx = Jy = 2αL, Jz = 1 − 4pL.
The eigenvectors of ρL in the ground or thermal state will

not depend then on the field or separation. For B � 0 and

J � 0 in (9), p−
L � p+

L and αL � 0. The largest eigenvalue of
ρL will then correspond to the Bell state |	+〉 if

αL > αc
L = p−

L − pL, (14)

and to the aligned separable state |↓↓〉 if αL < αc
L. Hence,

in the ground state we may expect as the field decreases a
transition from |↓↓〉 to |	+〉 in the dominant eigenstate of
ρL, at a certain field BL

c � Bc, where Bc = J denotes the
T = 0 critical field [such that the ground state is fully aligned
(M = −N/2) for B > Bc]. We will see such crossing reflected
in the transition exhibited by the geometric discord and the
information deficit (but not the quantum discord). We will
also find the same effect at finite temperatures.

A. Parallel and perpendicular geometric discord and
information deficit

We first discuss the general properties of the discord and
information deficit of the states (10). Due to the permutation
symmetry of ρij , we will omit in what follows the superscript
B (i.e., j ) in If and D, as IB

f = IA
f , DB = DA. For αL = 0,

ρL is diagonal in the standard basis and will then have
zero entanglement and discord: E = D = If = 0 ∀ Sf . It
will be, however, classically correlated, being a product state
ρi ⊗ ρj only when pL = √

p+
L p−

L (in which case ρi = ρj =√
p+

L |↑〉〈↑| + √
p−

L |↓〉〈↓|).
Quantum correlations will then be driven solely by αL, and

will lead to a finite value of D and If ∀ αL �= 0. The geometric
discord (4) for such state can be evaluated immediately with
Eq. (8) [here (M2)μν = δμνλμ, with λx = λy = J 2

x , λz = J 2
z +

|rB |2] and reads as

I2 =
{

I z
2 = 4α2

L, |αL| � αt
L

I⊥
2 = 2

(
α2

L + αt
L

2)
, |αL| � αt

L

(15)

where αt
L =

√
λz

2 =
√

(p−
L −pL)2+(pL−p+

L )2

2 and the superscript in
I2 indicates the direction of the minimizing local spin measure-
ment (along z if |αL| < αt

L and along any orthogonal direction
k if |αL| > αt

L). Hence, I2 increases first quadratically with
αL and exhibits then a parallel → perpendicular transition at
αL = αt

L, corresponding to a transition field BL
t . For p−

L > pL

such transition correlates with that exhibited by the dominant
eigenstate of ρL [Eq. (14)]. In fact, if |p+

L − pL| = |p−
L − pL|

and p−
L > pL, αt

L = αc
L.

Equation (15) is to be contrasted with the concurrence of
ρL, which requires a finite threshold value of αL:

C = 2 Max[|αL| −
√

p+
L p−

L ,0]. (16)

Hence, discord-type quantum correlations with zero entangle-
ment will arise for 0 < |αL| �

√
p+

L p−
L .

The behavior of the generalized information deficit (2)
is similar to that of the geometric discord. For a spin
measurement along a vector k forming an angle γ with the
z axis, the eigenvalues of the post-measurement state ρ ′

L are,
setting δ = 〈sz〉 = (p+

L − p−
L )/2 and μ,ν = ±1,

p′ν
μ =

1 + 2νδ cos γ + μ

√
[(1 − 4pL) cos γ + 2νδ]2 + 4α2

L sin2 γ

4
.
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It is then verified that ∂I
γ

f /∂γ = 0 at γ = 0 and π/2: Both
parallel (γ = 0) and perpendicular (γ = π/2) measurements
are always stationary, in agreement with the general consid-
erations of [25]. Intermediate minima may also arise for a
general Sf , but the essential competition is between I z

f ≡ I 0
f

and I⊥
f ≡ I

π/2
f .

For small αL and δ �= 0, the minimum I
γ

f for any Sf will
be obtained for γ = 0, with

I z
f = 2f (pL) − f (pL + αL) − f (pL − αL) ≈ kf α2

L, (17)

where kf = |f ′′(pL)| (we assumed here pL �= 0). Hence, as
αL increases from 0, all If will exhibit an initial quadratic
increase with αL, like the geometric discord.

On the other hand, if δ = 0 (p+
L = p−

L ), as in the case of
zero field in the ground or thermal state, the minimum I

γ

f for
any Sf is attained for γ = 0 if |αL| < αt

L and for γ = π/2 if
|αL| > αt

L, where αt
L = | 1

2 − 2pL| = |p−
L − pL| as in Eq. (15).

Hence, all If ’s will in this case exhibit, like the geometric
discord, a parallel → perpendicular transition at the same
value of αL. Moreover, for p−

L > pL, αt
L coincides in this

case exactly with αc
L, i.e, with the value where the dominant

eigenstate of ρL becomes a Bell state.
The same behavior occurs when p±

L = 1
4 ± δ (implying

pL = 1
4 ) with αL, δ small, a typical situation to be encountered

at high temperatures or large separations. A series expansion
of I

γ

f leads to I
γ

f ≈ kf [α2
L − 1

2 sin2 γ (α2
L − δ2)], where kf =

|f ′′(1/4)|, implying again

If =
{

I z
f ≈ kf α2

L, |αL| < |δ|
I⊥
f ≈ kf

(
α2

L + δ2
)/

2, |αL| > |δ| (18)

with αt
L = |δ| = αc

L if p−
L > pL. Hence, we obtain in this case

a universal parallel → transverse transition at |αL| = |δ| ∀ Sf

and L. In other words, all If behave like the geometric discord
in this limit.

In contrast, the minimizing projective spin measurement
of the quantum discord D will not exhibit such transition
for the present Hamiltonian. We obtain, setting now f (p) =
−p log2 p,

Dγ = I
γ

1 −
∑
ν=±

[
f

(
1

2
+ νδ cos γ

)
− f

(
1

2
+ νδ

)]
. (19)

Hence, Dz ≡ D0 = I z
1 , but Dγ < I

γ

1 if | cos γ | < 1 and δ �= 0
(however, at zero field, δ = 0 and Dγ = I

γ

1 ∀ γ , implying D =
I1). While both γ = 0 and π/2 are again always stationary,
the minimum Dγ will be always obtained for γ = π/2 (D =
D⊥) for the actual reduced states derived from the ground
or thermal state determined by H , directly reflecting the
spin-spin coupling in (9) (which involves the spin components
perpendicular to the field axis). This will also occur for small
αL since in this limit the actual values of p±

L will correspond
to a product state, entailing no preferred direction in Dγ for
αL = 0. In fact, for small αL and γ = π/2, Eq. (19) leads, for
pL = √

p+
L p−

L > 0, to

D⊥ ≈ 1

ln 2

(
1

pL

− arctanh 2δ

δ

)
α2

L, (20)

which is always smaller than Dz = I z
f ≈ α2

L

pL ln 2 . Nonetheless,
a quadratic increase with αL is also present.

B. Thermodynamic limit

We will first examine the previous quantities in the ground
and thermal states of (9) in the large-N limit, where we
may express all elements of ρL in terms of the integrals (see
Appendix)

gL = 1

π

∫ π

0

cos(Lω)

1 + eβ(B−J cos ω)
dω, (21)

where β = 1/kBT and L = 0,1, . . ., with g0 = 1/2 + 〈sz〉 the
intensive magnetization. We then obtain

p±
L = (

g0 − 1
2 ± 1

2

)2 − g2
L, pL = g0 − g2

0 + g2
L, (22)

αL = 1
2 Det(AL), Aij = 2gi−j+1 − δi,j−1, (23)

with AL the first L × L block of the matrix of elements Aij

(i,j = 1, . . . ,L). Thus, α1 = g1, α2 = g2(1 − 2g0) + 2g2
1, etc.

Ground-state results. At T = 0, all correlations vanish for
|B| > J , where the ground state is fully aligned along z (αL =
0, p+

L = 1∀ L). For |B| < J , we obtain instead

gL = sin(ωL)

Lπ
, ω = arccos(B/J ), (24)

with g0 = ω/π .
Results for I2, I1, D and the eigenvalues of ρL are shown

in Figs. 1 and 2 for L = 1 and 3. It is first verified that while
the minimum quantum discord corresponds to D⊥ ∀ |B| < J ,
the minimum geometric discord I2 exhibits, for decreasing
B, the expected sharp I z

2 → I⊥
2 transition. Moreover, for

L = 1, this transition takes place exactly at the point where
the Bell state |	+〉 becomes dominant in ρL, i.e., BL

c = BL
t .

Remarkably, for L = 1 this exact coincidence occurs at
both zero and finite temperatures, as follows from Eqs. (22)
and (23): In this case α1 = g1 and the crossing condition (14),
α1 = p−

1 − p1, implies

g1 = 1
2 − g0 (25)

at this point. In such a case p1 − p+
1 = p−

1 − p1 = α1, so that
αc

1 = αt
1 [Eq. (15)] and hence BL

t = BL
c for L = 1. At T = 0

we have, explicitly,

α1 = sin ω

π
=

√
1 − B2/J 2

π
, (26)

and this transition occurs at Bt ≈ 0.67J , i.e., sin ω =
π/2 − ω, corresponding to an intensive magnetization 〈sz〉 ≈
−0.235. It is also seen that I2 � C2 ∀ B, i.e., the geometric
discord remains larger than the corresponding entanglement
monotone.

The behavior of the information deficit I1 is similar, except
that the previous transition is smoothed through a small
crossover region 0.55 � B/J � 0.67 where an intermediate
measurement (0 < γ < π/2) provides the actual minimum:
As B decreases, the minimizing angle γ increases smoothly
from 0 to π/2 in this interval.

For higher separations, the behavior is similar except that
values of If and D are lower and the transition field BL

t is
shifted towards lower fields, in agreement with the decrease of
the field BL

c where |	+〉 becomes dominant, as seen in Fig. 2
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FIG. 1. (Color online) Results for the geometric discord I2 (top left), the information deficit I1 (top right), the quantum discord D (bottom
right), and the eigenvalues of the reduced density matrix ρL (bottom left) for a pair of contiguous spins (L = 1) in the ground state of the XX
chain in the thermodynamic limit, as a function of the scaled transverse field. Superscripts z and ⊥ denote the results for spin measurements
parallel and perpendicular to the field. In the top right panel, the intermediate minimum I

γ

1 in the small crossover region is also shown. The
dashed line in the top left panel depicts the square of the concurrence C. The minimum Iν (ν = 1,2) corresponds to I⊥

ν essentially in the region
where the dominant eigenvector of ρL is the Bell state |	+〉.

for L = 3. BL
t remains close to BL

c but the agreement is not
exact. The quantum discord continues to be minimized by a
perpendicular measurement ∀ |B| < J . Notice that in this case
the concurrence is very small and nonzero just in the vicinity
of B = J , whereas all If and D remain nonzero ∀ |B| < J ,
∀ L.

Results for large separations L � 3 can be fully understood
with the small αL,δ expressions (17), (18), and (20). For large
L, we may neglect gL in p±

L and pL, in which case pL ≈√
p+

L p−
L = ω

π
(1 − ω

π
), while

αL = ηL/
√

L, (27)

0

0.5

1.0

I 2 L 3 I2

I2
z C2

0 0.5 1.0
B J B J

0

0.5

p L 3

0

0.5

1.0

I 1 L 3

I1

I1
z

I1
γ

0 0.5 1.0
0

0.5

D L 3

D

Dz

FIG. 2. (Color online) The same quantities of Fig. 1 for third neighbors (L = 3).
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1.0

2.0

T/
J

L 1
23

5

Bt
L

Bc
L

FIG. 3. (Color online) Left: The T = 0 transition field BL
t where the measurement minimizing the geometric discord I2 changes from

perpendicular to parallel, as a function of the separation L (solid line), together with the T = 0 field BL
c where the dominant eigenvector of ρL

changes from a Bell state to an aligned state (dashed line). Both fields coincide for L = 1 and L → ∞. The asymptotic result (30) for large L is
also depicted (dotted line). Right: The transition fields BL

t (T ) of the geometric discord at finite temperatures, for L = 1, 2, 3, and 5, such that
I2 = I⊥

2 (I z
2 ) for B < BL

t (T ) [>BL
t (T )]. Dashed lines depict again the fields BL

c (T ) below which the Bell state is the dominant eigenvector of
ρL. For L = 1, both fields coincide exactly ∀ T , approaching J/2 for high T , whereas for L � 2 they merge for high T , vanishing as (J/T )L−1

[Eq. (35)].

with ηL approaching a finite value as L increases (ηL → 0.294
at B = 0, decreasing with increasing B). For sufficiently large
L, Eq. (17) then leads to

If = I z
f ≈ kf η2

L

/
L , |B| > BL

t , (28)

with kf = |f ′′(pL)| (kf = 4 in I2 and 1
pL ln 2 in I1). Hence, all

If ’s decrease as L−1 for increasing separations L.
For large L, the transition field BL

t becomes small, so that
for |B| < BL

t we may employ the lower row of Eq. (18), with
δ ≈ −B/(πJ ), since (24) implies here ω ≈ π/2 − B/J and
hence p±

L ≈ 1
4 ∓ B/(πJ ):

If = I⊥
f ≈ 1

2kf

[
η2

L

/
L + B2/(πJ )2

]
, |B| < Bt (29)

where kf = |f ′′(1/4)| and

BL
t ≈ πηLJ/

√
L, (30)

as determined from the condition I⊥
f = I z

f [ηL ≈ 0.294 in
Eqs. (29) and (30)]. This last equation coincides for large
L with the condition αL = p−

L − pL [Eq. (14)], so that in
this limit BL

t = BL
c , as seen in the left panel of Fig. 3: The

field (30) also determines the onset as B decreases of |	+〉
as the dominant eigenstate of ρL. This field decreases then as
L−1/2.

On the other hand, the quantum discord exhibits no
transition: it is verified that D = D⊥ ∀ B, L. Its expression
for large L can be obtained directly from Eq. (20) and implies
D ∝ L−1 for large L, like If :

D = D⊥ ≈ kD η2
L

/
L, (31)

where kD = 1
ln 2 ( 1

pL
− arctanh 2δ

δ
) with δ = ω/π − 1/2. For

B → 0, δ → 0 while pL → 1/4, and D⊥ → I⊥
1 .

We finally notice that for B → J , Eq. (24) leads to
ω ≈ √

2(1 − B/J ), and hence αL ≈ gL ≈ ω/π ∀ L at leading
order. We then obtain the common L-independent limits

I2 ≈ 8(1 − B/J )/π2 , I1 ≈
√

I2 (B → J ) (32)

with D ≈ I1 at leading order. The independence of separation
for B → J is verified and easily understood in the finite case
(see next section).

Finite temperatures. As T increases, αL decreases for fields
|B| < J (actually |B| < J − εL, with εL small), implying
the decrease of all quantum correlations in this region.
Nonetheless, while the concurrence (and hence entanglement)
terminates at a finite T [39], the quantum discord and all If ’s
vanish only asymptotically for high T . In addition, for T > 0
a small but finite value of D and If will also arise for B > J

(Fig. 4), as correlated excited states become accessible.
Setting kB = 1, at high temperatures T � Max[J,B],

Eqs. (22) and (23) lead to

g0 ≈ 1

2
− B

4T
, g1 ≈ J

8T
,

with gL = O(T −3) or higher for L � 2. Hence, in this limit
we obtain, at leading nonzero order,

p±
L ≈ 1

4 (1 ∓ B/T ), pL ≈ 1
4 , αL ≈ 1

2 (J/4T )L, (33)

implying that we may directly apply Eqs. (18) and (20).
Therefore, If and D will vanish exponentially with increasing
L, i.e., If ,D ∝ (T/J )−2L. Nonetheless, for all If ’s there is
still a transition field BL

t ∀ T such that I⊥
f < Iz

f for |B| < BL
t ,

with BL
t decreasing with increasing T and approaching the

field BL
c for the onset of |	+〉 as the dominant eigenstate of

ρL. The final result for high T derived from Eq. (18) is

If =
⎧⎨
⎩

I z
f ≈ kf

4

(
J

4T

)2L
, |B| > BL

t

I⊥
f ≈ kf

2

( 1
4

(
J

4T

)2L + B2

(4T )2

)
, |B| < BL

t

(34)

where kf = |f ′′(pL)| ≈ |f ′′(1/4)| and

BL
t ≈ J

2

(
J

4T

)L−1

, (35)

as determined from the condition I⊥
f = I z

f , which coincides in
this limit with that derived from the crossing condition (14).
Hence, for first neighbors (L = 1) BL

t approaches for high
T the finite limit J/2, whereas for L � 2 it decreases as
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FIG. 4. (Color online) The geometric discord I2 vs temperature at fixed field, for first and third neighbors. At fields B < Bc = J (left
panel), I2 decreases with increasing T and a transition I⊥

2 → I z
2 can take place, as seen here for L = 3. For B > Bc, I2 = I z

2 first increases at
low T , although this revival becomes very small as L increases, as seen in the inset for L = 3. For high T , I2 ∝ (T/J )−2L [Eq. (34)].

(J/T )L−1, as verified in the right panel of Fig. 3 for I2. In this
limit, the transition fields BL

t approach BL
c ∀ If . For lower T ,

they remain quite close. It is also seen in Fig. 3 that in the case
of I2, BL

t = BL
c ∀ T for L = 1, as previously demonstrated.

In contrast, D = D⊥ ∀ B,T , with [Eq. (20)]

D⊥ ≈ kD

4

(
J

4T

)2L

(36)

for high T , where kD ≈ 2
ln 2 . Again, D⊥ ≈ I⊥

1 for B → 0.
We finally notice that for T > 0 and strong fields B � J,T ,

we have

gL ≈ e−βB

π

∫ π

0
eβJ cos ω cos(Lω)dω = e−βBIL(βJ ),

where IL(x) denotes the modified Bessel function of the
first kind [IL(x) ≈ ex/

√
2πx for x → ∞ while IL(x) ≈

(x/2)L/L! for x → 0]. Hence, in this limit, gL decreases
exponentially with the field, with pL ≈ g0 and αL ≈ gL. The
geometric discord then becomes

I2 ≈ 4e−2B/T I 2
L(J/T ), (37)

decreasing as e−2B/T for strong fields and also quite fast with
separation if B � T � J [IL(J/T ) ≈ (J/2T )L/L!]. On the
other hand, I1 and D will decrease for strong fields as αL

(∝e−B/T ).

C. Finite case

In a finite chain, the exact ground state has a definite discrete
magnetization M . Therefore, it will exhibit N transitions M →
M + 1 as the field decreases from above Bc = J , starting at
M = −N/2 for B > Bc. In the cyclic case, the critical fields
are given by [39]

Bk = J
cos[π (k − 1/2)/N ]

cos[π/(2N )]
, k = 1, . . . ,N (38)

such that M = k − N/2 for Bk+1 < B < Bk , with B1 = J ,
BN = −J . For N → ∞, Eq. (38) reduces to Eq. (24) (B =
J cos ω, with ω/π = k/N = 1/2 + M/N). Details of the
exact calculation for the finite case at 0 and finite T are given
in the Appendix.

Accordingly, all measures If and D will exhibit at T = 0
a stepwise behavior, starting from 0 for B > Bc, which can be

appreciated in Fig. 5 and which is centered around the result
for the thermodynamic limit (also depicted for L = 1,2,3 and
N/2) for L � N/4. Just for large L � N/4, the finite result
becomes larger. In contrast, the concurrence is nonzero for
large L just in the immediate vicinity of Bc = J .

Actually, as shown in the insets of Fig. 5, all measures
If , D, and C acquire a common value for all separations
L for B → J , i.e., in the first interval B2 < B < B1, where
M = −N/2 + 1 and the ground state is the W state

|	0〉 = 1√
N

(|↑↓↓ · · · 〉 + · · · + | · · · ↓↓↑〉).

This state leads to an L-independent rank-2 reduced state ρL,
with p+

L = 0, p−
L = 1 − 2/N , and pL = αL = 1/N in (10).

For such state we obtain, if N � 4,

I2 = I z
2 = 4

N2
= C2, I1 = I z

1 =
√

I2, (39)

in agreement with the thermodynamic limit result (32) [for
large N , the second critical field is B2 ≈ J (1 − π2

N2 ) and hence,
8
π2 (1 − B

J
) ≈ 4

N2 if B = B1+B2
2 ]. Note that for this state, αL �

αc = p−
L − pL ∀ N � 4 (just for N = 3, where αL > αc, a

perpendicular measurement is preferred in both I2 and I1). In
contrast, D is minimized by a perpendicular measurement ∀N ,
with

D⊥ ≈ 2

N
− 1

N2
log2(N/e), (40)

for large N (although D⊥ ≈ Dz = I z
1 at leading order).

For lower fields, it is seen that for small L � 2, I2 is
maximum at the parallel-to-perpendicular transition. Such
maximum becomes flattened in I1 and is absent in the quantum
discord D since the latter is minimized by a perpendicular
measurement ∀ B < J and L. For L > 1, its maximum is
attained in the vicinity of Bc = J .

The minimizing angles for I2 and D in the finite case of
Fig. 5 are depicted in Fig. 6. For I2, it exhibits the sharp
transition from γ = 0 (z phase) to γ = π/2 (⊥ phase) as B

decreases, which now occurs at one of transition fields (38)
(BL

t = Bk for some L-dependent k). For L = 1, the mea-
surement transition signals exactly that ground-state transition
M → M + 1 where ρL changes its dominant eigenstate, as
clearly depicted in the top right panel of Fig. 6 [where
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FIG. 5. (Color online) The minimum geometric discord I2 (top left), information deficit I1 (top right), and quantum discord D (bottom
right) for spin pairs with separation L = 1, . . . ,N/2 in the ground state of a finite cyclic chain of N = 40 spins as a function of the scaled
transverse magnetic field. For reference, the concurrence (bottom left) is also depicted. The dotted lines depict the thermodynamic limit for
separations L = 1, 2, 3 and N/2. In each panel, the inset depicts the vicinity of the critical field Bc = J , where all curves reach a common
value for all separations L [Eqs. (39) and (40)].
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FIG. 6. (Color online) Top: Left: The minimizing angle for the geometric discord I2 as a function of the magnetic field for spin pairs with
separations L = 1, . . . ,N/2, in the finite chain of Fig. 5. Dotted lines indicate the sharp ⊥→ z transitions for different L. No transition occurs
in the quantum discord D (dashed line), where γ = π/2 ∀ B and L. Right: Results for the geometric discord I⊥

2 and I z
2 (solid lines) for N = 40

and L = 1, together with the two dominant eigenvalues of ρ1 (dotted lines). Both cross at the same step. Bottom: Left: Exact transition fields
BL

t delimiting the ⊥ and z phases of I2 at T = 0 for N = 40, 100, and the thermodynamic limit. Right: The geometric discord “phase” diagram
in the finite chain of N = 40 spins, for all separations L = 1, . . . ,N/2 (solid lines). The z (⊥) phase lies to the right (left) of these curves.
Dashed lines depict the fields BL

c (T ) for L � 4, below which the Bell state becomes dominant in ρL.
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it corresponds to k = 11 in (38)], while for larger L both
transitions are very close. As seen in the left panels of Fig. 6,
as L increases the transition fields for different L begin to
merge, coinciding for large L � N/4, while as N increases
they approach the thermodynamic limit result for L � N/4,
becoming then constant. A similar picture is obtained for the
minimizing angle of I1, although in this case the measurement
transition can occur in two or three “steps,” reminiscent of the
smoothed transition of the thermodynamic limit.

The bottom right panel in Fig. 6 depicts the finite-
temperature geometric discord “phase” diagram according to
the minimizing measurement for N = 40 spins (fields BL

t ),
together with the fields BL

c where the dominant eigenstate
changes from the Bell state to an aligned state, for all separa-
tions L = 1, . . . ,N/2. For L = 1, there is again almost exact
coincidence between both fields for all T since the deviation
from the thermodynamic limit condition (25) is small. For
larger L, the agreement is not exact for low T , but they become
again coincident for high temperatures ∀L, where deviations
from the thermodynamic limit results become small.

IV. CONCLUSIONS

We have examined the behavior of discord-type measures
of quantum correlations for the case of spin pairs in the cyclic
XX chain. Their behavior is substantially different from that of
the pair entanglement, acquiring at T = 0 nonzero values for
all pair separations L if B < Bc and decaying only as L−1 for
large L. Moreover, they remain nonzero for all temperatures,
decaying as T −2L for sufficiently high T . Thus, they all
exhibit the same “universal” asymptotics, independently of the
particular choice of entropic function in If . It can then be most
easily accessed through the geometric discord, which offers the
simplest evaluation. The ensuing picture is, consequently, quite
different from that exhibited by the pair entanglement [39],
which, although reaching full range in the immediate vicinity
of Bc, is appreciable just for the first few neighbors, as seen in
Fig. 5, and strictly vanishes beyond a low-limit temperature.
Hence, critical systems such as the XX chain seem to offer vast
possibilities for discord-type quantum correlations between
close or distant pairs.

The second important result is that in spite of the similar
behavior, these measures exhibit substantial differences in
the minimizing local spin measurement that defines them.
The quantum discord, which minimizes a conditional entropy,
always prefers here measurements along a direction orthogonal
to the transverse field, even if correlations are weak (i.e., large
L, high T , or strong fields B if T > 0). The information-
deficit-type measures, which evaluate the minimum global
information loss due to such measurement and include the
geometric discord and the one-way information deficit, exhibit
instead a transition in the optimum measurement, from
perpendicular to parallel to the field as the latter increases,
present for all pair separations and at all temperatures. Such
difference was previously observed in certain two-qubit and
two-qutrit states [25,49].

In the present model, such behavior is a signature of
the transition exhibited by the dominant eigenstate of the
reduced state of the pair, which changes from a maximally
entangled state to a separable state in the immediate vicinity

of the measurement transition. Hence, the latter reveals an
actual relevant change in the structure of the reduced state.
Moreover, for contiguous pairs and in the case of the geometric
discord, both transitions occur exactly at the same field, at
all temperatures. For general separations, there is also exact
agreement between both fields at high T , for all measures
If . In the finite chain, the T = 0 measurement transition
coincides of course with one of the ground-state magnetization
transitions M → M + 1. These results indicate that the “least
disturbing” local measurement optimizing these quantities can
be significantly different from that minimizing the quantum
discord, even though they coincide exactly in some regimes,
being essentially affected by the main component of the
reduced state. Its changes can then be used to characterize
different quantum regimes, even when entanglement is absent.
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APPENDIX: EXACT SOLUTION OF THE CYCLIC CHAIN

We give here a brief summary of the method employed for
obtaining the exact solution of the cyclic XX chain for both
finite N and the thermodynamic limit, at both 0 and finite T

[39]. Through the Jordan-Wigner transformation [41], and for
each value σ = ±1 of the Sz parity Pz = exp[iπ (Sz + N/2)],
the XX Hamiltonian can be mapped exactly to the fermionic
Hamiltonian

Hσ =
N∑

j=1

B

(
c
†
j cj − 1

2

)

− 1

2
J (1 − δjNδσ1)

(
c
†
j cj+1 + c

†
j+1cj

)
, (A1)

where N + 1 ≡ 1 and cj ,c
†
j denote fermion annihilation and

creation operators. Equation (A1) can be solved exactly
through a discrete Fourier transform c

†
j = 1√

N

∑
k∈Kσ

eiωkj c
′†
k

to fermion operators c′
k , where ωk = 2πk/N and k is

half-integer (integer) for σ = 1 (−1), i.e., Kσ = {−[N
2 ] +

δσ , . . . ,[N−1
2 ] + δσ } with [· · · ] the integer part and δ1 = 1

2 ,
δ−1 = 0. We then obtain

Hσ =
∑
k∈Kσ

λk

(
c
′†
k c′

k − 1

2

)
, λk = b − v cos ωk. (A2)

The 2N energies are then
∑

k∈Kσ
λk(Nk − 1/2), where Nk =

0,1 and σ = (−1)
∑

k Nk . The single-fermion energies λk de-
pend on the global parity σ and are degenerate (λk = λ−k) for
|k| �= 0,N/2. A careful comparison of the ensuing levels leads
to the critical fields (38).

The exact partition function Z of the spin system corre-
sponds to the full grand-canonical ensemble of the fermionic
representation. However, due to the parity dependence of
the latter, this requires a (fermion) number parity projected
statistics [39]. Z can then be written as a sum of partition
functions for each parity,

Z = Tr
∑

σ=±1

Pσe−βHσ = 1

2

∑
σ=±1

(
Zσ

0 + σZσ
1

)
, (A3)

012119-9



L. CILIBERTI, N. CANOSA, AND R. ROSSIGNOLI PHYSICAL REVIEW A 88, 012119 (2013)

where Pσ = 1
2 (1 + σPz) is the projector onto parity σ and

Zσ
ν = eβBN/2 ∏

k∈Kσ
[1 + (−1)νe−βλk ] for ν = 0,1. The ther-

mal average of an operator O can then be written as

〈O〉 = 1

2
Z−1

∑
σ=±1

(
Zσ

0 〈O〉σ0 + σZσ
1 〈O〉σ1

)
, (A4)

where 〈O〉σν = (Zσ
ν )−1Tr [P ν

z e−βHσ O]. For many-body
fermion operators O, the thermal version of Wick’s theorem
can not be applied in the final average (A4), but it can be
applied for evaluating the partial averages 〈O〉σν , in terms of
the basic contractions (L = |i − j |)

gL ≡ 〈c†i cj 〉σν = N−1
∑
k∈Kσ

〈c′†
k c′

k〉σν cos(Lωk), (A5)

where 〈c′†
kc

′
k〉σν = [1 + (−1)νeβλk ]−1. As siz = c

†
i ci − 1

2 , this
leads to 〈siz〉νσ = g0 − 1

2 and〈(
siz + 1

2

)(
sjz + 1

2

)〉σ
ν

= g2
0 − g2

L, 〈si+sj−〉σν = 1
2 Det(AL),

where sj± = sjx ± isjy and AL is the L × L matrix of
elements (AL)ij = 2gi−j+1 − δi,j−1. All elements in (10) can
then be analytically evaluated.

For N → ∞ and finite separations L, we can ignore parity
effects and directly employ Wick’s theorem in terms of the
final averages gL = 〈c†i cj 〉, with sums over k replaced by
integrals over ω ≡ ωk . This leads to Eqs. (21)–(23). When
the ground state is nondegenerate, Eqs. (22) and (23) can
also be applied for finite N in the T → 0 limit, using
the exact contractions gL ≡ 〈c†i cj 〉0 = 1

N

∑
k∈Kσ

Nk cos(Lωk),
with Nk = 0,1 the occupation of level k.
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