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Abstract—In this paper we address the problem of sparse signal
reconstruction. We propose a new algorithm that determines the
signal support applying statistical thresholding to accept the active
components of the model. This adaptive decision test is integrated
into the sparse Bayesian learning method, improving its accuracy
and reducing convergence time. Moreover, we extend the formula-
tion to accept multiple measurement sequences of signal contam-
inated by structured noise in addition to white noise. We also de-
velop analytical expressions to evaluate the algorithm estimation
error as a function of the problem sparsity and indeterminacy. By
simulations, we compare the performance of the proposed algo-
rithm with respect to other existing methods. We show a practical
application processing real data of a polarimetric radar to separate
the target signal from the clutter.

Index Terms—Bayesian estimation, constant false alarm rate
(CFAR), probabilistic framework, radar, radar detection, sparse
model, sparse signal reconstruction, statistical thresholding.

I. INTRODUCTION

I N recent years, many techniques for solving the sparse
inverse problem have been proposed. The sudden growth

of this topic came about because sparse models can be used in
several areas of signal processing, including image processing,
bioengineering, communications, and remote sensing. To name
but a few interesting problems, sparse signal reconstruction
has been successfully applied to signal denoising [1], [2];
DNA micro-arrays [3]; EEG/MEG source imaging [4], [5];
sub-Nyquist sampling [6]–[8]; channel estimation [9], [10];
source localization with sensor arrays [11]; radar detection
and estimation [12]–[14]; MIMO radar [15], [16]; and radar
imaging [17], [18]. In this paper, we present a new technique
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to reconstruct sparse signals by applying statistical signal
processing tools.
The canonical form of the sparse representation is a linear

regression model. The observed signal accepts a representation
over a dictionary, which is a collection of known waveforms
(atoms) [19]. The regression coefficients provide instruction on
how to combine the atoms linearly. The representation is sparse
if only a few coefficients are significant. The same problem can
be alternatively discussed in the context of component analysis
for source separation [20]. Frequently, the number of available
observations is smaller than the number of atoms in the dictio-
nary. Then, this linear problem becomes under-determined and
it cannot be solved by conventional means. Nevertheless, when
the vector of regression coefficients is sparse, it is still possible
to solve the inverse problem, even if its support is unknown [21],
[22]. In theory, it is possible to recover the sparsest vector of co-
efficients by proving all possible sparse supports and retaining
the solution that minimizes sparsity and the error between the
model and the observations. This constrained minimization of
the norm is a combinatorial optimization problem, which is
unfeasible even for vectors of reduced size [21].
Fortunately, several tractable methods have been proposed

for retrieving signal representations in over-complete dictio-
naries. One popular approach is greedy pursuit. A greedy al-
gorithm approximates the solution iteratively. At each stage, it
computes the residual between the observations and the former
solution; then, it updates the support, searching for the dictio-
nary atom that correlates best with the residual. Examples of
methods from this group are matching pursuit (MP) [23] and or-
thogonal matching pursuit (OMP) [24], which can produce fast
results with moderate accuracy. Variants that can improve the
accuracy by proper tuning are stagewise orthogonal matching
pursuit (StOMP) [25] and compressive sampling matching pur-
suit (CoSaMP) [26]. A different strategy to solve the problem is
to relax the cost function of the minimization by replacing the
norm with norms for some . An example is the focal
underdetermined system solver (FOCUSS)[27], which applies
iterative re-weighted least squares (IRLS) to solve the norm.
When the norm is applied, it results in a convex optimiza-
tion problem with a unique global solution. The new solution
can be achieved by linear programming but with considerable
computational burden. For instance, basis pursuit (BP) solves
the noise-free problem [19]. To account for measurement noise,
other relaxation methods are available, such as basis pursuit de-
noising (BPDN) [19] (also known as LASSO [28]) and Dantzig
selector (DS) [29]. The methods called sparse reconstruction by
separable approximation (SpaRSA) [30] and Nesterov’s algo-
rithm (NESTA) [31] are efficient approaches for solving the op-
timization problem, suitable for large sparse problems.
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In this work, we are interested in techniques developed under
the probabilistic framework. Most of the probabilistic methods
for sparse signal reconstruction are Bayesian and exploit priors
on the regression coefficients for regularizing the under-deter-
mined problem [32]. These techniques outperform other ap-
proaches when the probabilistic model is a reasonable represen-
tation of the physical process that generates the observations.
Furthermore, the Bayesian formulation provides more informa-
tion by estimating the posterior distribution of the coefficients
instead of their point estimate.
One method that has attractive properties is sparse Bayesian

learning (SBL). It was developed for the relevance vector ma-
chine (RVM) [33] and adapted for basis selection from over-
complete dictionaries [34]. Later, it was applied to the inver-
sion of compressive measurements and renamed Bayesian com-
pressive sensing (BCS) [35]. The SBL algorithm assumes that
the regression coefficients are independent random variables
with zero-mean Gaussian distribution. The variance of the co-
efficients is treated as a hyper-parameter that is learned from
the observations by maximizing the likelihood function, usu-
ally using the expectation-maximization (EM) algorithm. The-
oretical analysis demonstrated that the likelihood function of
the SBL hyper-parameters achieves a global maximum at the
sparsest solution and that the local maxima are also sparse [34].
The shrinking procedure that brings to zero irrelevant hyper-
parameters has substantial complexity and is time demanding.
The BCS method reduces the computation time by adopting a
fast RVM algorithm [36] but at the expense of some loss of
performance.
Nevertheless, there exist other probabilistic algorithms that

propose different formulations. For instance, automatic double
overrelaxation (ADORE) employs model selection for deter-
mining the signal sparsity and then applies hard thresholding
to ensure that the signal meets the estimated sparsity [37]. On
the other hand, the fast Bayesian matching pursuit algorithm
(FBMP) applies model averaging instead of model selection,
considering a Gaussian mixture as the prior of the unknown co-
efficients [38], similar to the work in [32]. Additionally, several
greedy and relaxation algorithms have a Bayesian interpretation
in which the prior on the regression coefficients is a distribution
promoting sparsity [39], [40].
A generalization of the former sparse problem arises when

several measurements are available and it is assumed that they
can be represented by the same atoms of the dictionary, sharing
a common sparsity profile. This formulation is a realistic repre-
sentation of multiple snapshots of a signal corrupted by noise.
This new problem is known as sparse representation of mul-
tiple measurement vectors (MMV) [41] or simultaneous sparse
approximation (SSA) [42]. Several methods for the single mea-
surement case have been extended to solve the MMV problem.
For instance, MMP and MOMP are extensions of the standard
greedy pursuit algorithms [43], [44]. Among the convex relax-
ation class, it is found the MFOCUSS algorithm [43], as well
as the Rx-Penalty and Rx-Error approaches [45]. The MBSL
method is the multiple response counterpart of sparse Bayesian
learning [46]. Additionally, these six algorithms were extended
for complex-valued measurements, dictionaries, and weights
[43]–[46].

Most of the algorithms for sparse signal reconstruction con-
sider the observed data as a linear signal contaminated by ad-
ditive noise. However, in many situations it is more realistic to
introduce a third term in the model to account for interfering
signals [47]. This term is known as structured noise because it
presents a structure dependent on the system mapping the inter-
ference into themeasurements [48]. Nevertheless, it is given dif-
ferent names for specific applications. The interference is gen-
erally called clutter in radar, reverberation in active sonar, and
multipath in wireless communications. Any conventional sparse
method could address this kind of problem by merging the inter-
ference and the additive (unstructured) noise. The performance
of the algorithms could be improved if it were possible to incor-
porate the information of the interference structure. Applying
a stochastic representation under the probabilistic framework
seems to be the proper approach for this purpose.
In this paper, we develop a new algorithm for recoveringmul-

tiple sparse signals from corrupted measurements based on the
SBL method. Our contribution herein is two-fold. First, we pro-
pose a more general probabilistic model to account for data cor-
responding to signal plus interference plus noise. Therefore, the
algorithm gains knowledge on the interference structure, im-
proving its capability to discriminate the signal from the con-
tamination sources. Second, we introduce a pruning procedure
during the optimization of the likelihood function. The param-
eter space is reduced progressively, accelerating the learning
process and decreasing the estimation error. For this sparsifica-
tion of the model, we design a statistical decision test that dif-
ferentiates active from idle atoms of the dictionary. The statistic
derived from the test has a well-known distribution that de-
pends neither on the power of the signal, the interference, nor
the noise. Then, the sparsification test has a constant false alarm
rate (CFAR), which makes it robust against possible changes in
the operating conditions. Moreover, exploiting the probability
of detection and false alarm of the atoms, it is possible to fairly
predict the estimation error induced by the proposed algorithm.
Other Bayesian approaches also apply pruning to improve

their convergence rate. In [33], [46], the model components
are removed when their weights fall below a fixed threshold.
In [37], only the largest components are held to reach a cer-
tain sparsity level. The choice of the threshold has a significant
effect on the estimation error (see [49]); then, these methods
require fine tuning of the threshold value. The pruning proce-
dures in [36] and [50] which retain components above a spe-
cific signal-to-noise ratio seem to be more robust; however, no
detailed analysis was elaborated regarding this issue.
The paper is organized as follows. In Section II, we present a

description of the sparse problem and summarize the proposed
solution. Readers interested in the specifics of the algorithm
should refer to Sections III and IV. In Section V, we develop
analytical expressions to evaluate the estimation error. The algo-
rithm performance is also numerically compared to other tech-
niques in Section VI. In Section VII, we assess the algorithm’s
capabilities in a real polarimetric radar problem, detecting and
estimating a small target in the presence of sea clutter. Finally,
we provide concluding remarks in Section VIII.
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Notation

We adopt the following notation. A scalar variable is denoted
, a vector is and a matrix is . The vectors and repre-
sent the column and row of matrix , respectively. The
scalar is the entry of matrix , and is the ele-
ment of vector . The identity matrix of size is . The conju-
gate transpose of a complex vector and matrix is and .
The trace of a square matrix is and the block trace is

, as defined in Appendix A. The operator denotes the
Kronecker product.
The random scalar has chi-squared distribution with
degrees of freedom. The random vector is a

circularly symmetric complex Gaussian vector of dimension
with mean and covariance .

II. PROBLEM DESCRIPTION

A. Data Model

In order to represent measurements that correspond to signal
plus interference plus noise, we consider the class of linear
mixed models with independent random factors,

(1)

where and are the matrices of regressors, is the mea-
surement vector of dimension , and is a vector of fixed ef-
fects of dimension , to be estimated. The component of
the random effects is the vector . The vector
of residuals is . The observed data can be
represented in a more compact form,

(2)

by stacking the random effects in a single vector
and concatenating the corre-

sponding matrices in . Now, considering
that a sequence of independent measurement vectors are
available, the data model becomes

(3)

where matrices , , , and are built using the re-
spective vectors from (2) as their columns; for instance

. All matrices in (3) are complex.

B. Sparse Formulation

In the problem depicted by expressions (2) and (3), matrix
is a known dictionary featuring a number of atoms (columns)
significantly larger than the dimension of the observed signal.
We assume that only a few columns of the over-complete dic-
tionary are needed to recreate the uncorrupted signal. Then, the
vectors are sparse, given that most of their entries are
zero. We consider it is likely that the observations of the se-
quence follow the same behavior. Then, these vectors share the
same support, although the weight values can change from one
observation to the other. Hence, matrix has a small number of
nonzero rows. The goal is to estimate the columns of under
the condition of common sparsity profile.

In the term corresponding to the interference, matrices are
also known, which is a common assumption in communications
and remote sensing.We also consider that these matrices are full
column rank. This implies that . However, the covari-
ance of the interference sources is unknown. The variance
of the noise is likewise unknown. These two quantities are con-
sidered nuisance parameters, and they will be estimated from
the observed data.

C. Proposed Solution

In order to solve the former inverse problem, herein we adapt
the SBL formulation to accommodate the model for signal plus
interference plus noise. In addition, we introduce an adaptive
sparsification procedure that helps to speed up the convergence
and to improve the estimation of the weighting coefficients.
Following the SBL framework [34], [46], we treat the

columns of as vectors with zero-mean Gaussian distribution

(4)

for , where and
is the vector of hyper-parameters controlling which compo-
nents of the dictionary are active. Additionally, the rows of
are . Then, the prior distribution
of matrix is

(5)

If the set of parameters is known, by Lemma
2 in Appendix A the posterior density of the weights given the
measurements is

(6)

where the posterior covariance and mean are, respectively,

(7)

(8)

with . The latter
Bayesian mean provides a point estimate of the weights. Nev-
ertheless, since these parameters are unknown a priori, the SBL
formulation suggests they should be estimated by themaximiza-
tion of the likelihood function [33], [34]:

(9)

where matrix is

(10)

Since there is no closed form solution for the values of that
maximize (9), we apply the expectation-maximization (EM) al-
gorithm to solve the estimation problem numerically.
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Fig. 1. Pseudo-code of the proposed algorithm.

Throughout the estimation, many elements of the vector
are driven near to zero. In [33], [46], the hyper-parameters
are set to zero when they reach the machine precision, or some
arbitrary small value, to guarantee the sparsity of the posterior
mean in (8). The pruning also avoids ill-conditioned situations
and accelerates the estimation. Motivated by this result, we de-
vised a sparsification procedure that adaptively decides which
columns of the dictionary are active or idle based on the sta-
tistical features of the data, instead of using an arbitrary fixed
threshold. This detection test is embedded in the EM algorithm,
accelerating the convergence of the learning process. The pro-
posed algorithm is summarized in Fig. 1. We provide details of
the EM and Update Steps in Section III and the Pruning Step in
Section IV.
We remark that the proposed formulation can be applied to

solve more specific problems. If prior knowledge indicates that
there are no interference signals or their effects can be dis-
regarded, the matrix should be set equal zero. This action
forces the model in (3) to represent the more common problem
of signals corrupted by additive noise without disrupting the
functioning of the code listed in Fig. 1. Similarly, no change is
needed in the algorithm code for processing a single measure-
ment vector. Although the problem is defined in the complex do-
main, it is possible to solve real-valued problems by removing
the factor two of the pruning step. This factor is related to the

degree of freedom of the probability distribution used to clas-
sify the signal components. This issue will become clearer after
Section IV.

III. PARAMETER ESTIMATION

The EM algorithm is a numerical method to determine the
maximum likelihood estimator (MLE). This algorithm exploits
the fact that the observed (incomplete) data are related to the
artificial data , called complete data, which simplify the com-
putation of the MLE. The algorithm is iterative, with each it-
eration computing the following expectation and maximization
steps1:

(11)

(12)

To solve the E-step, we formulate the columns of to be
. Applying Bayes’ theorem, the density of

each column is

(13)

Then, since the observations are assumed independent, the log-
arithmic likelihood of the complete data is

(14)

where the first term in the last line of (14) results from using
the density (5). The expression (14) shows that the computation
of one parameter is dissociated from the others. Therefore, the
function becomes

(15)

The expectation terms on the right-hand side are explicitly

(16)

1The classical notation for the EM algorithm explicitly defines as a function
of the parameter and the parameter evaluated at the iteration. To shorten
the notation, we redefine this function as .
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where , , and are the second-order moment
conditioned to the incomplete data . Applying Lemma 2 in
Appendix A, the second-order moment of is

(17)

where, to shorten the expression, we defined the matrix
, with the covariance of the in-

complete data built using the parameter estimates available
at the iteration. Similarly, the second-order moments of
and are, respectively,

(18)

where .
For the M-step, we maximize expression (15) with respect

to the unknown parameters. Because each term of this expres-
sion depends only on , , or , the maximization is sepa-
rated into three decoupled optimization problems with closed-
form solution. The maximization of and is
a simple, straightforward procedure solved by equating their
derivatives to zero, and for the maximization of , we
apply Lemma 1 stated in Appendix A. These results correspond
to the EM Step and the Update Step of the proposed algorithm
summarized in Fig. 1.
The maximization of the likelihood function using the EM

algorithm requires to update and invert the covariance of the
incomplete data at each iteration. Because the inversion of
this matrix involves operations, this procedure becomes
computationally expensive for large-scale problems. More effi-
cient variations of the SBL algorithm have been proposed, for
example, applying the belief propagation algorithm [51]. Ex-
tending our method to manage problems for large values of the
dimensions and is beyond the scope of the present paper.
However, it will be the subject of future research.
This algorithm is recursive and requires initial values of the

unknown parameters to begin the estimation. We initiate the
hyper-parameters using a non-negative value larger than the
contribution of the interference and noise to the measurements.
For the interference and noise, a first guess of their statistical
parameters is useful to start the algorithm. In many communi-
cations problems, such as radar, it is reasonable to assume that
there are available signal-free data from which the interference
and noise parameters can be estimated using, for example, the
stochastic MLE [52].

IV. SPARSIFICATION PROCESS

The former EM algorithm aims to produce an estimate of the
row-sparse matrix by generating a few significant hyper-pa-
rameters and several small ones. Therefore, we devise a rule

to decide which hyper-parameters are negligible. The detection
problem is to choose between these two hypotheses

(19)

for . Under , the posterior probability (6) sat-
isfies , ensuring that the posterior mean
of row is zero [34], [46]. Therefore, choosing as the true
hypothesis is equivalent to pruning column from the model.
At the iteration of the EM algorithm, we have the estimate
of the unknown parameters. Then, to compare the two hy-

potheses, we propose a test based on the logarithmic likelihood
ratio of the complete data:

(20)

where and are the model parameters under each re-
spective hypothesis. The second line in (20) results from (14)
and the fact tha under we remove from the model the compo-
nent corresponding to the hyper-parameter . Taking a mono-
tonically increasing function of the former expression generates
an equivalent test.We apply the expectation over the conditional
distribution of the complete data given the incomplete data
with parameter ,

(21)

where this result is a consequence of theM-step, defined in (12),
evaluated for the first equation in (16). Using (17) and keeping
only the term that depends on the observed data, the test statistic
becomes

(22)

where . To make a decision about the model
hypotheses, we have to establish a threshold for comparing the
test evaluated at the data . This threshold is fixed to achieve
a specific performance, such as the probability of false alarm

.

A. Test Performance

To determine the performance of the test defined in (22), we
note that it is a quadratic form in which follows a chi-squared
distribution. Using Theorem 1 in Appendix A, the normalized
test is

(23)

(24)
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where and are the covariance of the data under the
respective hypotheses, which are related by

(25)

Additionally, the denominator in (24) is

(26)

Combining (25) and (26), the denominator in (23) is

(27)

The matrices and are positive definite since they are
covariance matrices. Then, the scalars , , and

are also positive. Therefore, the scalar factor in
(27) satisfies

(28)

According to these remarks, we decide that is true if the
test statistic (23) falls below the threshold . The threshold is
set for the test to meet a fixed probability of false alarm:

(29)

where represents the cumulative function of the distribution
. Hence, the threshold follows from the inverse

(30)

Then, the probability of detecting an active component is

(31)

Applying (27),

(32)

The decision test that allows the detection of idle components
and their removal from the model is under the Pruning Step of
the proposed algorithm in Fig. 1. We note that the expression of
the detection threshold in (30) does not depend on the interfer-
ence covariance and the variance noise , nor on matrices
and . Therefore, this decision test has the constant false-alarm
rate (CFAR) property. The implication of this property is that
once the threshold is set for a required probability of false
alarm , the detection test is completely set and needs no
further adjustment even if the power of the noise or interference
changes. In radar community, detectors supporting this attribute
are termed adaptive.
It is worth to mention that the probability of false alarm

behaves as a tuning parameter of our algorithm. Similarly to
the regularization parameter in FOCUSS and the trade-off pa-

rameter in LASSO, it balances the model residual and the so-
lution sparsity. Setting close to one lowers the threshold
and loosens the pruning. We remark that SBL tends to track

the noise by selecting spurious atoms of the dictionary. On the
other hand, a low promotes sparser solutions. Nevertheless,
the advantage of using the probability of false alarm is twofold.
First, the parameter is clearly related to the performance
of the test, whereas the counterpart parameter in FOCUSS and
LASSO lacks such an intuitive insight. quantifies the confi-
dence in the test. Second, it is more robust because of the CFAR
property. This last statement will be validated by simulations in
Section VI.
Interestingly, other versions of the SBL method devised

pruning rules similar to the expression (23), but starting from
different approaches. In [36] the authors solve the maximization
of the marginal likelihood function by sequential optimization
of the individual model hyper-parameters. This procedure
results in a pruning condition which can be reinterpreted as
removing those components whose squared weights are below
the noise power. In [50], the former work is generalized using
the variational approach to solve the SBL problem. The authors
briefly mention that their pruning condition follows a distri-
bution when the actual weight is zero, but it is a noncentral
distribution when the weight is not zero. Unfortunately, deeper
analysis of this test was not developed.

B. Implementation Issues

The test statistic presented in (22) depends on the model pa-
rameters that are being estimated. Since the EM algorithm im-
proves the estimates sequentially, the results of the first itera-
tions may not constitute an accurate approximation to the true
parameters. By trial and error, we learned that at least ten it-
erations of the EM algorithm must be run before engaging the
pruning step of the proposed algorithm.

V. PERFORMANCE ANALYSIS

When developing our algorithm, we have found relatively
compact expressions for both the estimation and sparsification
steps. Nevertheless, they are not simple enough to provide in-
sight about the algorithm’s behavior under different conditions.
In this section, we look for closed-form expressions of the al-
gorithm’s performance in terms of the signal power as well as
model sparsity and indeterminacy. To cover much of the pre-
vious work on sparse models, we specialize the problem as-
suming that the entries of matrix are ,
independently distributed. At first, we avoid the interference to
simplify the problem; at the end of this section, we reintroduce
this term and generalize the results.

A. Component Detection

To analyze the probability of detecting an active component,
we consider that the hyper-parameters in the support of the
columns of have the same value . Then, the inverse of the
data covariance is

(33)



5436 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 21, NOVEMBER 1, 2013

where is a sub-matrix of formed by the columns that
correspond to the support of , denoted by .
Note that . The second line in the former expression
results from using the inverse matrix identity. Applying Lemma
3 in Appendix A to solve the product , the inverse of the
covariance is, asymptotically for large,

(34)

Replacing (34) in (32) and again using the same lemma, the
probability of detecting the component whose index is
becomes

(35)

We define the signal power , the noise power
, and the signal-to-noise ratio . Then,

the detection probability is

(36)

where is a normalized measure of indeterminacy
and is a normalized measure of sparsity [53]. We
observe that the probability of detecting an active component
increases with the signal-to-noise ratio and the indeterminacy,
but it decreases with the value of the sparsity .

B. The Oracle Estimator

The oracle estimator assumes that the support of the columns
of and the statistical parameters of the model are known. Al-
though it would produce the best result, this estimator is unfea-
sible. In this case, it is a common practice to consider the oracle
as a reference of performance to compare against.
Under the former assumptions, the problem becomes the

Bayesian linear model described by Lemma 2 in Appendix A.
Then, the mean-squared error produced by the oracle in the
estimation of is

(37)

where, different from (7), the posterior covariance corre-
sponds only to the components in its support. Using first (A.4)
and then Lemma 3, the posterior covariance of the oracle esti-
mator is given by

(38)

Replacing (38) in (37), the mean-squared error becomes

(39)

We note that, similar to the detection probability, the oracle per-
formance improves with the signal-to-noise ratio and the inde-
terminacy, and it worsens with the value of the sparsity .

C. Performance of the Proposed Algorithm

The oracle and our proposed algorithm have in common the
Bayesian framework for the estimation of the unknown matrix
. If the proposed sparsification step detects the correct ac-

tive components, it will produce an estimate of the support of
the columns of . Once the support is known, our algorithm
will perform similar to the oracle. Nevertheless, a faulty esti-
mation of the support degrades the estimation of . Therefore,
we can develop an analytical expression for the performance of
our method by introducing the error induced by the estimation
of the support.
In the presence of contaminated data, the sparsification step

can fail in the following twoways. First, active components may
not be detected and then pruned from the support. Second, idle
components may be improperly classified as active. Thus, we
can sort the components of the estimated support into three dis-
joint groups: represents the set of active components prop-
erly detected, is the set of active components not detected,
and is the set of idle components falsely detected. Note that

and . We still consider that the hyper-pa-
rameters corresponding to the components in have the same
value , and we also assume that those in have the value .
Based on this partition, we compute the mean-squared error as
the contribution of three terms:

(40)

The first term represents the error produced by our algorithm
when estimating the weights of the detected components. It
is computed similarly to the oracle performance:

(41)

where we approximate the ratio by the detection prob-
ability calculated in (36). The second term in (40) considers
the missed components for which our algorithm assigns a null
weight:

(42)



HURTADO et al.: ENHANCED SPARSE BAYESIAN LEARNING 5437

The former expression results from first using (A.5) to solve the
conditional second-order moment and then replacing the matrix
by its expected value . The last term in (40) represents the

error of estimating the weights of the idle components:

(43)

This expression is the consequence of using (A.3) and again
replacing by . Then, applying (34) and Lemma 3, we find

, because is a null vector for
. Finally, we replace . In order to

compute , we still have to find the value of that deceives
the hypothesis test (19), causing the algorithm to accept an idle
component. To calculate this value, we first replace by in
(23) and use (27) to get the following relation for :

(44)

Then, we solve for :

(45)

Using (45) in (43), the last term of the mean-squared error be-
comes

(46)

where, for convenience, we write in terms of the signal-to-
noise ratio and the signal power.

D. Interference Effect

Until now, we have considered only the effect of the noise.
To introduce the interference, we consider the particular case
in which the entries of matrix are also ,
independently distributed. Additionally, we consider a single
factor of interference ( ). We represent the interference
covariance through an equivalent diagonal matrix with the same
power: , where . The interference
plus noise is , whose covariance is

. Then, the power of the interference plus noise is

(47)

where we get by Lemma 3. We also define
the interference-to-noise ratio . Then, the signal-to-
interference-plus-noise ratio (SINR) is

(48)

This expression shows how the signal-to-noise ratio is de-
creased due to the existence of the interference. Therefore, we
can take into account the interference effect by replacing SNR
by SINR in previous expressions of this section.
This procedure is not valid for multiple interference factors

, because our algorithm exploits the structure in the
interference covariance to produce a better estimate
of , which in turn improves the rejection of the interfer-
ence sources. Unfortunately, we have not yet been able to find
a simple analytical expression as a function of that can rep-
resent this behavior of the algorithm.

VI. SIMULATION RESULTS

In this section, we propose a set of different cases to study
the performance of our algorithm, which we will call Enhanced
Sparse Bayesian Learning or ESBL for short. The reported re-
sults correspond to the average of 1000 independent realiza-
tions. For each realization, we randomly generated matrices
and as described in the former section. We also randomly
chose the covariance and the support and weights of matrix
in each realization. The number of rows of was fixed to

. We set the probability of false alarm to
for the pruning step of our algorithm. We have included the
MATLAB code needed to reproduce the presented results. This
material will be available at http://ieeexplore.ieee.org.
First, we compare the performance of ESBL with respect to

the oracle estimator, using both the averaged empirical results
and the analytical expression presented in Section V. For this
experiment, we considered that the number of available mea-
surements is , and there exists a single interference factor

of size and the interference-to-noise ratio is
. We changed the length of the measurement

vector and the length of the support of to generate different
operating conditions. Fig. 2 shows the mean-squared error as a
function of the signal-to-interference-plus-noise ratio. We ob-
serve that when the SINR is high, our algorithm matches the
performance of the oracle because it is able to detect the true
support of with high probability, as stated by expression (36).
However, when SINR decreases, our algorithm starts failing to
estimate the support. This shortcoming is translated into a larger
estimation error with respect to the oracle, due to an increase of
missed components and those falsely detected. This behavior is
fairly well predicted by expressions (42) and (46).
Additionally, we compare the performance of our method to

the following algorithms: MOMP [43], regularized MFOCUSS
(for ) [43], Rx-Penalty [45], Rx-Error [45], and MBSL
[46]. As it is mentioned in the Introduction, these five algorithm
were devised to processmultiplemeasurement vectors and com-
plex-value data. Some of the algorithms we want to evaluate
have parameters to be tuned: MFOCUSS and Rx-Penalty have a
trade-off parameter; Rx-Error requires a residual constraint; and
ESBL depends on the probability of false alarm. We propose to
adjust those parameters to minimize the mean squared error of
each algorithm. For the new experiment, we set the length of the
measurement vector to , the cardinality of the solution
to , the number of measurement vectors to , the
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Fig. 2. Mean-squared error of the ESBL algorithm as a function of the
signal-to-interference-plus-noise ratio for different cases of sparsity and
indeterminacy.

Fig. 3. Performance of ESBL,MFOCUSS, Rx-Penalty, and Rx-Error as a func-
tion of their tuning parameter for different SINR conditions.

number of interference factors to , the dimension of each
interference factor to , and the interference-to-noise ratio
to . Fig. 3 shows examples of the tuning procedure
for different scenarios.We observe that MFOCUSS, Rx-Penalty
and Rx-Error are very sensitive to the choice of their parame-
ters; and their optimal values vary with the power of the noise
and the interference. On the other hand, ESBL performance de-
picts a wide valley which becomes flatter as the SINR increases.
Therefore, for proper comparison of these algorithms, we cali-
brated MFOCUSS, Rx-Penalty and Rx-Error for each value of
SINR, but for ESBL we fixed the probability of false alarm to

.
After the tuning process, we were able to run simulations

in order to compare the different algorithms. Fig. 4 plots the
mean-squared error as a function of the SINR. This figure shows
that MSBL, MFOCUSS, Rx-Penalty and Rx-Error have similar
performance; but MOMP is slightly worse.We also observe that
ESBL gains at least 7dB in the signal power with respect to the
other methods. ESBL outperforms the other methods because
it exploits the knowledge of the interference structure incorpo-

Fig. 4. Mean-squared error when processing multiple measurement vectors
corrupted by interference plus noise.

Fig. 5. Mean-squared error when processing multiple measurement vectors
corrupted only by additive noise.

rated in the modeling. Then, the magnitude of the improvement
depends on the parameters , , and INR.
We also studied the case in which the interference contribu-

tion was neglected and the multiple measurement
vectors were corrupted only by noise. The parameters , ,
and remained as in the former experiment. To handle this
particular problem with the ESBL algorithm, we set the matrix
equal zero forcing our formulation to avoid the interference

component. Under this configuration all the algorithms share the
same model, but they differ in the approach to solve the inverse
sparse problem. Fig. 5 plots the performance results for this sce-
nario. Now the gap between ESBL and the other methods is re-
duced. However, ESBL is still better than the others; and MFO-
CUSS results the second-best. By contrasting ESBL andMSBL,
we observe the enhancement that results from the pruning step
embedded in the EM algorithm.
Moreover, there exist algorithms that can process complex-

valued data but they were not extended for multiple measure-
ment vectors. Examples of these methods are DS [29], SpaRSA
[30], NESTA [31], and FBMP [38]. In this experiment, wemain-
tained the scenario free of interference and reduced
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Fig. 6. Mean-squared error when processing a single measurement vector cor-
rupted only by additive noise.

the number of measurement vectors to . The parameters
and remained as before. Beside these four algorithms, we

also used SBL for complex data. For ESBL, we set again thema-
trix to zero and the probability of false alarm to .
For DS, we constrained the residual to . The al-
gorithms SpaRSA, NESTA, and FBMP have tuning parameters
which we optimized by trial and error as in the former experi-
ments. Fig. 6 plots the new results. The simulation shows that
DS, SpaRSA, NESTA, and SBL have similar performance. We
also note that ESBL and FBMP are close, although FBMP is
slightly better for moderate SNR. These two algorithms gain ap-
proximately 10dB in the signal power with respect to the other
methods.
For further characterization of the algorithms, we recorded

and averaged the time required to solve the former experiments.
We emphasize that an accurate comparison is not possible be-
cause the algorithms applied to solve the experiments are based
on different approaches and do not use the same stopping con-
dition. Nevertheless, their run-time, depicted in Fig. 7, provides
the order of magnitude of their computational complexity. We
observe that ESBL runs somewhere in-between the slow relax-
ation methods and the fast, but inaccurate, greedy pursuit. We
also point out the efficiency of FBMP.
Finally, we compute the phase transition diagram to analyze

the capabilities of our proposed method. This type of diagram
plots the breakdown of an algorithm as a function of indeter-
minacy and sparsity. The phase above the curve in the dia-
gram indicates failure and the phase below the line is success.
Hence, an algorithm performs better than the others if the line
of its phase diagram is higher. We estimated the empirical phase
transition following the procedure described in [53, SectionIV].
For these simulations, we considered again the scenario free
of interference . We set the signal-to-noise ratio to

to ensure that the failure of the algorithms would
be related to the problem complexity and not because of a weak
signal. The upper plot of Fig. 8 shows the diagrams for the al-
gorithms solving the problem of multiple measurement vectors

Fig. 7. Elapsed time for solving the simulations: multiple measurement vectors
corrupted by interference plus noise (upper plot) and single measurement vector
corrupted only by additive noise (lower plot).

Fig. 8. Empirical phase transitions: algorithms for multiple measurement vec-
tors (upper plot) and for a single measurement vector (lower plot).

, and the lower plot shows the results for the algo-
rithms processing a single measurement vector . We
observe that ESBL has the best performance, followed closely
by MSBL.
In summary, we learned from these simulation examples that

ESBL outperforms other algorithms when solving the sparse
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Fig. 9. Radar images: (a) Raw data from different polarimetric channels. (b) PST-GLR algorithm. (c) ESBL algorithm. (d) MFOCUSS algorithm.

inverse problem for multiple measurement vectors corrupted
by interference plus noise. This result was fairly expected since
ESBL was devised for that specific purpose. However, we
showed that ESBL is also highly competitive when there are
no interference signals, for the case of multiple measurement
vectors as well as for a single measurement vector.

VII. REAL RADAR DATA

The true motivation for developing our algorithm is the de-
tection and estimation of radar targets in the presence of clutter.
In radar, clutter denotes the reflections produced by the nearby
environment of the target. Radar signal processing in the pres-
ence of clutter becomes a challenging problem because it can
mask the target reflections and trigger false alarms. Neverthe-
less, proper accounting of the clutter effects improves target
detection. Therefore, in this section we evaluate our algorithm
with real polarimetric radar data by representing the clutter as
the structured noise in the proposed formulation. Additionally,
we briefly overview related work of sparse modeling for radar.
Assuming that the targets are scarce and not densely located

in the scene, sparse models and techniques become an inter-

esting alternative to address the radar problem. Most of the pre-
vious work involves the development of the dictionary that can
be used to represent the radar data as a sparse signal. The usual
goal is to improve the system resolution that would lead to better
target estimation [12], [15], [16] and radar imaging [17], [18].
Moreover, radar sparse models can be combined with compres-
sive sensing techniques to reduce the amount of data to be pro-
cessed and stored without significant loss of performance. Once
the formulation is defined, authors have applied different con-
ventional techniques to solve the sparse inverse problem. For
instance, BP was used to implement a high resolution radar [12],
estimate target parameters with a MIMO radar [16], and focus
SAR data [17]; DS was also applied to MIMO radar [15]; and
OMP was used to reconstruct under-sampled SAR images [18].
Depending on the scenario, clutter can be merely ignored, see
for example [15]. When the clutter power is substantial, in [13]
it is suggested to pre-process the radar data by using a projec-
tion into a clutter-free subspace. This procedure would succeed
only if the clutter is known a priori, and its features are sta-
tionary and spatially homogeneous. To the best of our knowl-
edge, no previous technique includes the clutter in the sparse
inverse problem for reconstructing the target signal.
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To test our algorithm, we used data collected with the IPIX
polarimetric radar which belongs to McMaster University [54].
We processed the dataset stare0 recorded on Nov. 11 of 1993
at Dartmouth, Nova Scotia, Canada. The data correspond to a
beachball wrapped with aluminum foil floating on the sea sur-
face in mild weather (wave height was 0.67m and wind speed
was 21km/h).
For the sparse modeling of the radar data, we generated the

overcomplete dictionary by allowing the presence of a target in
each range cell that forms the radar footprint. A potential target
was represented using Krogager’s decomposition of the scat-
tering matrix. We considered nine components: a sphere, left
and right helices, and six diplanes with different orientations. In
[55], we provided more details about the design of matrices
and . We used these two matrices and the radar data to feed
our EBSL algorithm. For comparison, we also applied the reg-
ularized MFOCUSS algorithm [43] to solve the same problem.
As a reference for the sparse approach, we also processed the

data using the polarization-space-time generalized likelihood
ratio (PST-GLR) algorithm [56]. This is a well-known radar al-
gorithm for polarimetric data processing. It was derived under
the assumption of homogeneous Gaussian clutter, and it em-
ploys secondary data to estimate the clutter covariance.
Fig. 9(a) shows different polarimetric channels of the raw

data. Note that the VH channel was processed but not displayed
here because of its similarity to the HV channel. We remark
that the target is located at approximately 2.7km and that there
is strong contribution from maritime clutter, especially in the
VV channel. Fig. 9(b) plots the result when applying PST-GLR
with . This algorithm recovers the target signature.
However, it suffers from a significantly large number of false de-
tections because the sea clutter deviates from the homogeneous
Gaussian model. Setting a lower probability of false alarm re-
duces the number of false detection but also eliminates the target
signal. Fig. 9(c) shows the output of ESBL with
in the pruning step. We note that the target signal is recovered
with only a few false detections generated by the strong clutter.
However, the magnitude of the false detections is 20dB weaker
than the target. Finally, in Fig. 9(d) we observe that MFOCUSS
is also able to reconstruct the target signal. It cannot reject as
much clutter as ESBL because its model is missing the infor-
mation of the interference structure.

VIII. CONCLUSIONS

In this paper, we proposed a novel algorithm devised from the
combination of the SBLmethod and statistical thresholding. We
adopted the Bayesian framework to incorporate structured noise
into the model, extending the scope of sparse signal reconstruc-
tion to problems of signals corrupted by interference plus noise.
In our algorithm, we integrated an adaptive pruning step into the
iterative estimation procedure of the regular SBL algorithm, cre-
ating a more precise and faster method. In comparison to other
existing techniques for sparse signals, our algorithm shows very
good tradeoff between accuracy and time efficiency. The com-
puted phase diagrams also demonstrated that, similarly to SBL,
our algorithm can assess problems with larger values of spar-
sity and indeterminacy . Moreover, we presented analytical

expressions for the algorithm’s estimation error, which we de-
veloped from the probability of correctly detecting the signal
support.
To demonstrate a practical application of the proposed al-

gorithm, we processed real polarimetric radar data that corre-
spond to a target in the presence of strong sea clutter. The re-
sults proved that our algorithm effectively rejects the clutter,
producing a clean image of the target response.
Further research will include a formal analysis of the con-

vergence of the algorithm. In addition, we will employ our al-
gorithm in the design of adaptive compressive sensing systems
that can reduce the number of measurements but also filter out
undesired interference signals.

APPENDIX
MATHEMATICAL AND STATISTICAL TOOLS

Definition: Let be a matrix whose
blocks are denoted , for ; then the block trace
operation is [57]

(A.1)

Notice that is a matrix, not a scalar.
Lemma 1: Let be a positive definite matrix. Then

the following inequality holds for any positive definite matrix
:

(A.2)

The equality is achieved when .
Proof: See [52].
Lemma 2: Let the observed data be modeled as a Bayesian

general linear model: , where is a known matrix
of size , and are
independent random vectors. Then, is complex Gaussian with
zero mean and covariance . The posterior
distribution of is also complex Gaussian with the following
mean and covariance:

(A.3)

(A.4)

The posterior second-order moment is

(A.5)

Proof: It follows from Theorem 10.3 in [58].
Lemma 3: Let be a matrix whose elements

are , independently distributed, and
be a sub-matrix of formed by the set of its columns.

Then, satisfies and, asymptotically,
for large.
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Proof: The first identity follows from computing the ex-
pectation of the entries of the matrix ,

(A.6)

where . Additionally, note that each row of is
and the sample covariance is .

Then, the second identity is met when is large.
Theorem 1: Let , for , be a random sample

from the distribution and denote matrix , de-
fined in (10), as the estimate of the covariance . Then, the
following quadratic form in has a chi-squared distribution,

(A.7)

where .
Proof: First, consider the quadratic form in ,

(A.8)

where . Then, define the complex
Gaussian random variable,

(A.9)

By definition of circular symmetry, its real and imaginary parts
are . Then, , because it is the
sum of two squared independent standard Gaussian variables.
Finally, the distribution of (A.7) is the result of the summation
of independent random variables with distribution .
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