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We present a detailed analysis of the polarized and the unpolarized deep-inelastic scattering structure
functions of the proton, gp1 and Fp

2 respectively, in the context of a holographic dual description based on
type-IIB superstring theory. We compare this description with experimental data and quantum chromo-
dynamics estimates computed at leading, next-to-leading and next-to-next-to-leading order in perturbation.
We confront the predictions of a holographic dual model and those of perturbative QCD for gp1 at the
kinematics that will be probed by the forthcoming electron-ion collider. We find that the extrapolation of gp1
to very small values the Bjorken variable computed with a holographic Pomeron model based on actual
data at higher-momentum fractions is always positive and differs significantly with standard projections
based on perturbative QCD.
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I. INTRODUCTION

Over the last fifty years our knowledge of the proton
structure has deepened relentlessly. Deep inelastic scatter-
ing (DIS) experiments at SLAC [1,2] started showing hints
of the scaling behavior that emerges from the asymptotic
freedom of quarks in the late 1960s, triggering the concept
of partons and the development of quantum chromody-
namics (QCD) [3], while HERA [4] began testing, with
exquisite precision, the departures from scaling allowing
the data with the predictions of perturbative QCD to be
examined, in particular in the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) framework [5–7]. These esti-
mates were laboriously developed and tested over decades,
in parallel with the experimental efforts, and today the aim
is to check the proton structure beyond the next-to-next-to-
leading order (NNLO) accuracy [8].

The remarkable success of the DGLAP approach in
reproducing the behavior of the data in a wide kinematic
range certainly dazzled the community, perhaps veiling its
provisional character as an approximation that at some
point necessarily becomes inadequate. The forthcoming
electron-ion collider (EIC) [9] will dramatically extend our
kinematic access and enhance the precision of the DIS
measurements, thus driving us in that direction. Thus, it is
of great interest to prepare ourselves for that contingency,
for instance, by producing well-motivated predictions that
depart from the DGLAP scenario to complement impact
studies and projections based mostly on the assumption of
the validity of the DGLAP approximation.
In this respect, the Brower-Polchinski-Strassler-Tan

(BPST) Pomeron approach provides a framework that
reproduces, with remarkable accuracy, actual spin-
independent structure function Fp

2 data with a deep and
clear motivation together with a surprising economy of
parameters. The BPST Pomeron was derived from type-IIB
superstring theory in curved spacetime, in the context of the
gauge/string theory duality [10]. This Pomeron is a Regge
trajectory of the graviton which carries the vacuum quan-
tum numbers and is exchanged in the scattering process of
four closed strings in the Regge limit. It allows us to
describe, in a unified way, both the perturbative Balitsky-
Fadin-Kuraev-Lipatov (BFKL) or hard Pomeron (for neg-
ative values of the t-channel Mandelstam variable) and the
soft Pomeron (for t > 0). These situations occur in the

*iborsa@df.uba.ar
†jorrin@fisica.unlp.edu.ar
‡sassot@df.uba.ar
§martin@fisica.unlp.edu.ar

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 056024 (2023)

2470-0010=2023=108(5)=056024(18) 056024-1 Published by the American Physical Society

https://orcid.org/0000-0002-3053-8149
https://orcid.org/0000-0003-0512-8356
https://orcid.org/0000-0002-5417-3164
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.056024&domain=pdf&date_stamp=2023-09-28
https://doi.org/10.1103/PhysRevD.108.056024
https://doi.org/10.1103/PhysRevD.108.056024
https://doi.org/10.1103/PhysRevD.108.056024
https://doi.org/10.1103/PhysRevD.108.056024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


jtj ≪ s limit, where
ffiffiffi
s

p
is the total energy of the system in

the center-of-mass frame.
The BPST Pomeron approach was used to calculate the

proton structure function Fp
2 and to fit HERA [4] data with

remarkable accuracy using only four free parameters [11].
Later, it was slightly modified to include also that of the
H1-ZEUS [12], BCDMS [13], NMC [14], E665 [15], and
SLAC [16] Collaborations within the ranges 0.1 GeV2 <
Q2 ≤ 400 GeV2 and 2.43 × 10−6 ≤ x < 0.01 [17]. The
BPST Pomeron framework extrapolates F2 in a way that
deviates from current DGLAP-based fits to data, especially
for very small and very large values of the photon virtuality
Q2, and for very small values of x. Of course, in the case
of the estimates coming from DGLAP-based global fits to
data, the low-x extrapolation comes just from an
assumption on the behavior of the parton distribution
functions (PDFs) loosely motivated on the quark charge
and momentum conservation and the simplest functional
form required to fit the data at much larger x, whereas for
the BPST Pomeron it is fixed by the model itself. In fact, in
the formal derivation of the BPST Pomeron it is assumed
that it holds for x smaller than 1=expðλ1=2’t HooftÞ, where
λ’t Hooft ≫ 1 is the ’t Hooft coupling.
Furthermore, in the case of spin-dependent observables

there is another construction also based on the gauge/string
theory duality, that we call the holographic-A Pomeron [18].
This construction allows us to parametrize the spin-
dependent structure function gp1 in terms of three of the
parameters fixed by Fp

2 data plus a single additional
parameter which can be constrained by existing measure-
ments of gp1 [17,18]. In the following the holographic-A
Pomeron specifically refers to the exchange of a Regge
trajectory of a gauge field which in type-IIB superstring
theory is a linear combination of a graviphoton and a
fluctuation of the Ramond-Ramond four-form field A4,
first proposed and developed in [18]. This object is different
from the BPST Pomeron which exchanges the Reggeized
graviton [10], and from the Odderon which exchanges
the Reggeized Kalb-Ramond field [19] of type-IIB super-
string theory.
The holographic-A Pomeron reproduces gp1 data in the

ranges0.0036≤x<0.01 and0.062GeV2<Q2<2.41GeV2

from SMC [20], E143 [21], COMPASS [22–24], and
HERMES [25] Collaborations, with great precision [17].
The extrapolation provides a prediction for gp1 at small x
in clear disagreement with DGLAP solutions that never-
theless reproduce the data that is used to constrain the
holographic-A Pomeron.
Taking into account realistic error estimates for the

projected measurements of gp1 at the EIC [26] and the
holographic-A Pomeron extrapolation to the small-x
regime, it is then possible to assess if the EIC will be able
to favor scenarios motivated by DGLAP dynamics, the
holographic-A Pomeron, or some other underlying

physics. The history of the proton spin has always favored
the unexpected [27].
In the next section we very briefly examine the path from

string theory to DIS structure functions, introducing in a
rather pedagogical manner what we mean by a dual-
holographic model and the role of the Pomeron. We defer
a more detailed discussion for the interested reader to
Appendix A. Next, we revisit the phenomenology of the
BPST Pomeron description of the unpolarized DIS struc-
ture function and show how it compares with the standard
DGLAP picture. Finally, in the last section we examine the
holographic-A Pomeron expectation for the spin-dependent
structure function gp1 at the kinematics of the forthcoming
electron-ion collider, discuss how it compares with the
projected errors and the most standard DGLAP projections.

II. STRING THEORY DUAL DESCRIPTION
OF DIS AT LOW x

The BPST Pomeron and the holographic-A Pomeron
are both derived within the framework of the gauge/string
theory duality. This duality relates a non-Abelian gauge
theory defined on a flat four-dimensional spacetime
and superstring theory compactified on a certain ten-
dimensional curved background [28–30]. The paradigmatic
example is represented by the large Nc limit of N ¼ 4
supersymmetric Yang-Mills (SYM) theory with gauge
group SUðNcÞ which, by the mechanisms of this duality,
is related in a very specific way to type-IIB supergravity
on the AdS5 × S5 background, which is an exact solution
of the equations of motion of this supergravity. The radius
of the five-dimensional sphere S5 and the scale of the
anti–de Sitter (AdS) spacetime is a length given by
R ¼ ð4πλ’t Hooftα02Þ1=4. The ’t Hooft coupling is defined
as λ’t Hooft ≡ g2YMNc, being gYM the coupling constant of
N ¼ 4 SYM theory, and α0 is the square of the fundamental
string length. Recall that for gauge theory one usually
defines αstrong ≡ g2YM=4π.
The duality can be extended in many directions; for

instance, one may consider the 1=N2
c expansion of the

gauge theory in terms of the genus expansion of the closed-
string world sheet, where the genus counts the number of
holes (or handles) that a two-dimensional closed surface
contains. Thus, in the large Nc limit there are no holes,
then the corresponding world-sheet is a two-dimensional
sphere. Also, in the example presented above it is assumed
that the gauge theory is strongly coupled, 1 ≪ λ’t Hooft. This
means that one must consider the low-energy limit of
type-IIB superstring theory, namely type-IIB supergravity.
Furthermore, one can go to finite coupling in the gauge
field theory by considering an expansion in powers of α0

(dual to the strong coupling expansion in powers of λ−1=2’t Hooft
on the gauge-theory side), which implies that string-theory
states become dominant for the dynamics of the system.
The duality bears a crucial property called the strong/weak
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coupling duality, which means that when the gauge
theory is strongly coupled the associated dual string
theory is weakly coupled, and reciprocally. Such a
property allows for a consistent description of a strongly
coupled gauge theory in terms of a weakly coupled string-
theory dual model. This permits us to use it to investigate
field-theory processes for which nonperturbative dynam-
ics becomes essential.
There is another key property inherent to the curved

superstring theory background, and particularly when it
includes the AdS spacetime. This comes from the so-called
warp factor multiplying the “flat” four-dimensional piece
of the metric, which induces a red-shift [31] as explained
below. Let us consider the metric of the AdS5 × S5

solution of type-IIB superstring theory written in the
following form:

ds2 ¼ r2

R2
ημνdxμdxν þ

R2

r2
dr2 þ R2dΩ2

5; ð2:1Þ

with the radial coordinate r, which increases in the UV of
the dual gauge theory. In the previous equation the last term
(R2dΩ2

5) gives the piece of the metric corresponding to the
five-sphere S5, while the first two terms correspond to the
AdS5 space. It is usual to introduce an arbitrary IR cutoff at
r0 in the metric above, which induces color confinement in
the dual gauge theory at the energy scale Λ≡ r0=R2.1

In addition, the AdS5 space has a boundary which is a
four-dimensional Minkowski spacetime, whose indices
are μ; ν; � � � ¼ 0;…; 3. The conserved four-momentum
pμ
4d ¼ −i∂=∂xμ is related to the ten-momentum P̃μ

10d in
local inertial coordinates at a certain point r of the AdS5
space as follows:

pμ
4d ¼

r
R
P̃μ
10d: ð2:2Þ

Therefore, a string-theory scattering process localized at
position r within the AdS5 × S5 spacetime corresponds to a
particle-scattering process with four-momentum pμ

4d from
the gauge theory perspective. Thus, as r decreases in the
bulk of the AdS space it corresponds to a process in the IR
of the gauge theory. These ideas were applied to hard
scattering in [31] and to deep inelastic scattering of glue-
balls and fermions in [32]. In particular, for low values of
the Bjorken variable Brower, Polchinski, Strassler, and
Tan [10] developed the BPST Pomeron, which is the gauge/
string theory dual object which unifies the (soft) Regge
and the (hard) BFKL Pomerons. The BPST Pomeron
describes very well the structure function Fp

2 of the proton
at low x [11]. On the other hand, there is the holographic-A
Pomeron [18] which describes very well the existing

experimental data of the proton helicity structure function
gp1 at low x [17].
Before introducing the BPST and the holographic-A

Pomerons, we very briefly recall what the soft and hard
Pomerons are. The idea is to make connections between
the previous S-matrix and gauge theory approaches and the
more recent gauge/string theory duality perspective. A
more detailed description is presented in Appendix A.
Almost a decade before the introduction of the QCD

Lagrangian, the extraordinarily challenging problem of
describing strong interactions was investigated using the
S-matrix framework. This led to the so-called Regge theory,
which was used to study the cross sections of hadron-
hadron and photon-hadron scattering processes at high
energy [33], borrowing concepts from potential scattering
in quantum mechanics but enforcing Lorentz invariance,
unitarity and analyticity [34,35]. Let us consider a two-to-
two particle scattering process, with incoming particles i1
and i2 and the outgoing particles f3 and f4. The incoming
four-momenta are pμ

1 and pμ
2 and the outgoing four-

momenta are pμ
3 and pμ

4, while their masses are mj

(j ¼ 1;…; 4), respectively. This process can be described
in terms of the Mandelstam variables,

s¼ðp1þp2Þ2; t¼ðp1−p3Þ2; u¼ðp1−p4Þ2; ð2:3Þ

with t being the square of the four-momentum exchanged
between particles i1 and f3; there is also the kinematic
relation sþ tþ u ¼ P

4
j¼1 m

2
j . Therefore, the transition

amplitude for the process i1 þ i2 → f3 þ f4 is a function
of only two-independent Mandelstam variables, Aðs; tÞ.
The study of this scattering amplitude suggests that there is
the exchange of an object carrying angular momentum
which is a function of the Mandelstam variable t [say
j ¼ αðtÞ], called Reggeon, which is not a single particle.
Therefore, this scattering amplitude can be interpreted as
the superposition of amplitudes corresponding to the
exchanges of all possible particles in the t-channel, which
leads to a Regge trajectory. Moreover, for positive values
of the Mandelstam variable t, experimental data shows
that the scattering amplitude must be dominated by the
exchange of a Reggeon with zero isospin, which has to be
even under charge conjugation. This particular Reggeon is
called the soft Pomeron. The connection with the sym-
metric structure functions F1 and F2 comes from the fact
that DIS cross section can be written in terms of the γ� þ p
scattering process by using the optical theorem, where γ�
represents a virtual photon, with squared four-momentum
q2 ¼ −Q2. At low x the behavior of the total cross section
of a virtual photon-proton scattering is dominated by the
exchange of a Pomeron, leading to F2ðx;Q2Þ ∝ x−0.08 as
the Bjorken variable goes to zero.
There is another Pomeron, called the hard or BFKL

Pomeron, which was derived from QCD in perturbation
theory. The lowest-order Feynman diagram from QCD1We work in natural units c ¼ ℏ ¼ 1.
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which perturbatively can simulate a Pomeron exchange like
this is given by a two-gluon exchange. This Pomeron is
derived from the BFKL equation [36–39]. The problem is
still how to calculate the proton-impact factor, for which
one may try different models. On the other hand, there is an
issue due to the next-order correction in QCD to the BFKL
Pomeron is large and has an opposite sign with respect to
the single BFKL Pomeron itself [40,41].
As described in the introduction, for certain hadron-

scattering processes at high energy (s ≫ jtj ≫ Λ2
QCD,

where ΛQCD is the IR scale of QCD) and small scattering
angle the Regge theory suggests the exchange of a soft
Pomeron (Reggeon) for positive t values, and a single
BFKL-Pomeron exchange at leading order in αstrong log s at
weakly coupled QCD for t ≤ 0. The soft Pomeron is
understood as an exchange of a single glueball, which in
the string-theory dual language corresponds to a closed
string. On the other hand, the BFKL framework entails the

exchange of a color-singlet object composed by
Reggeized gluons, which is the BFKL Pomeron. Many
aspects of QCD simplify when one considers the large Nc
limit, where Nc is the rank of the gauge group SUðNcÞ. In
the present context the large-Nc limit implies that the
dominant contribution to the scattering amplitude comes
from a single Pomeron exchange. From the type-IIB
superstring theory perspective the dual exchanged object
is a Reggeized graviton, leading to the BPST Pomeron
[10]. The BPST Pomeron has a very important property;
namely, at strong coupling of the gauge theory it unifies
the soft and hard Pomerons, something which technically
is not possible in QCD. In this context, Brower, Djuric,
Sarcevic, and Tan [11] obtained the structure function F2

derived from the BPST Pomeron. This function has four
free parameters; namely, g20, ρ, z0 and Q0, which are
obtained by fitting it to experimental data as shown later,
and it is given by

FBPSTHW
2 ðx;Q2Þ ¼ g20ρ

3=2Q

32π5=2τ1=2b Q0 e
ð1−ρÞτb

�
e−

log2ðQ=Q0Þ
ρτb þ F ðx;Q;Q0Þe−

log2ðQQ0z2
0
Þ

ρτb

�
: ð2:4Þ

The definition of the function F ðx;Q;Q0Þ as well as the
physical meaning of the four parameters entering the above
equation are given in Appendix A.
Now, we turn the attention to the g1 helicity function.

Although, QCD and N ¼ 4 SYM are different theories,
one should keep in mind the fact that within the parametric
regimes of the momentum transfer and the Bjorken variable
that we investigate here, the main contribution in both
theories to the DIS process comes from the gluonic sector,
which is similar in both theories. In this sense the behavior
of the holographic Pomerons, both the BPST and the
holographic-A Pomerons, is universal. In both situations
the model dependence is related to the IR deformation and
the hadron impact factor.
In the work [18] it has been obtained the helicity

structure function g1 given by the following expression:

gA4PomeronHW
1 ðx;Q2Þ

¼ Cρ−1=2eð1−
ρ
4
Þτb

τ1=2b

�
e−

log2ðQ=Q0Þ
ρτb þ F ðx;Q;Q0Þe−

log2ðQQ0z2
0
Þ

ρτb

�
:

ð2:5Þ

Notice that the parameters ρ, Q0, and z0 should be fixed by
the fitting of FBPSTHW

2 ðx;Q2Þ to experimental data, since the
physical meaning of them is the same in both structure
functions. Then, there is only one free parameter to fit to gp1
experimental data, the overall constant C. Details are
explained in Appendix A.

III. FP
2 STRUCTURE FUNCTION

Before discussing the polarized structure function, in
this section we revisit the unpolarized structure function
Fp
2 to recall how good the agreement of the BPST

Pomeron picture with data is and to show how it
compares to DGLAP-based estimates. As was mentioned
above and discussed in detail in [17], three of the four
parameters that determine the behavior gp1 in the holo-
graphic-A Pomeron approach are associated with the
BPST Pomeron model for Fp

2 , so it is also a cornerstone
for the spin-dependent results.
In Fig. 1 we show the unpolarized structure function Fp

2

both as a function of the Bjorken variable x (left-hand side
plot) and the photon virtuality Q2 (right-hand side plot),
respectively. The curves result from fitting the four BPST
Pomeron parameters to 280 data points from DIS experi-
ments with a resulting χ2d:o:f: of 1.086, that reflects the quite
remarkable agreement. The values of the parameters are

ρ¼ 0.7729� 0.0014; g20 ¼ 103.73� 0.757;

z0 ¼ 4.894� 0.061 GeV−1; Q0 ¼ 0.4715� 0.0093 GeV:

ð3:1Þ

In this case it has been used a sieving method which
excludes “outliers” with a Δχ2max ¼ 4 [17]. Although, in
principle, the fit covers 2.43 × 10−6 ≤ x < 0.01 and
0.1 GeV2 < Q2 ≤ 400 GeV2, it is clear from the plot that,
as usual with DIS data, the data at lower x correspond to
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extremely low-Q2 data, while higher Q2 data points
correspond to a rather limited range in the high values
of x. The left-hand side plot in Fig. 1 emphasizes how well
the BPST Pomeron picture reproduces the low-Q2 behavior
of the structure function, even for values well below
1 GeV2, while the scale dependence at lower x is not
constrained by data at that region. This raises the question
on how well the model behaves at low x but higherQ2—the
upper-left corner of Fig. 1—a question that will certainly be
answered by the EIC. In the meantime, it is instructive to
compare these BPST Pomeron expectations with the
estimates for Fp

2 derived from parton distribution functions
obtained in global QCD fits to data based on DGLAP
dynamics.
More specifically, in the DGLAP approximation the

structure function Fp
2 is written as a convolution between

coefficient functions CðnÞ
i ðx;Q2Þ that can be computed to a

given order n in perturbation theory for each parton type i,

and nonperturbative but universal PDFs fðnÞi ðx;Q2Þ for the
different parton types i, that are extracted from the

experiment within a perturbative approximation n [7].
Schematically,

Fp
2 ðx;Q2Þ ¼

X
i

Z
1

x

dy
y
CðnÞ
i

�
x
y
;Q2

�
fðnÞi ðy;Q2Þ: ð3:2Þ

Even though the x dependence of the PDFs cannot be
computed from first principles in perturbation theory their
Q2 dependence is driven by the DGLAP equations, whose

kernels PðnÞ
ij ðxÞ can also be computed at a given order in

perturbation

dfðnÞi ðx;Q2Þ
d logQ2

¼ αsðQ2Þ
2π

X
j

Z
1

x

dy
y
PðnÞ
ij

�
x
y

�
fðnÞj ðy;Q2Þ:

ð3:3Þ

PDFs global analyses are not only based on DIS data, but
are also constrained and refined with information obtained
from proton-proton collisions cross sections for a variety of

FIG. 1. The proton Fp
2 structure function using a single BPST Pomeron exchange against data from H1-ZEUS, BCDMS, NMC, E665,

and SLAC Collaborations within the ranges 0.1 GeV2 < Q2 ≤ 400 GeV2 and 2.43 × 10−6 ≤ x < 0.01. The number of data points
depicted has been limited for a better visualization. Error bands are included in both figures. Due to the logarithmic vertical scale in the
right-hand side plot, though the error bands are present, they are very narrow and cannot be distinguished from their central values.
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final states [42,43]. Since PDFs are in turn an essential
ingredient to analyze and interpret the results from collider
data in the validation of the Standard Model and the
searches of physics beyond it, a significant effort has been
put in the last three decades to improve and refine them.
Any physical observable, and in particular the DIS structure
functions, can be computed from PDFs assuming factori-
zation and universality in the leading twist and the leading-
order (LO) logarithmic approximation, as well as in the two
following orders; next-to-leading logarithmic order (NLO)
and next-to-next-to-leading order (NNLO) in perturbation.
These have been checked to be a very good approximations
for inclusive DIS cross sections at intermediate values of x
and for increasing photon virtualities, starting at a few
GeV2. Below that limit, these approximations are expected
to breakdown, and for this reason PDF global analyses are
unable to exploit or predict DIS data there. Roughly
speaking, the data points below the dashed purple line in
the left-hand side of Fig. 1, are beyond the reach of the
DGLAP approximations, but are nicely reproduced by the

BPST-Pomeron approach. Conversely, the DGLAP
approach is expected to evolve faithfully to higher-scale
PDFs that are known at a lower one, precisely where the
BPST Pomeron estimate becomes uncertain. A similar
discussion is inferred from the behavior of Fp

2 as a function
of Q2 for different values of x shown in the right-hand side
plot of Fig. 1.
In Fig. 2 we show the ratios between the LO, NLO, and

NNLO DGLAP-based estimates for Fp
2 and the BPST-

Pomeron parametrization mentioned above [17] and used
in Fig. 1. On the left-hand side the plot shows the ratios as
function of x for fixed values of Q2, and as function
of Q2 for fixed x on the right. The DGLAP structure
functions are computed using the NNPDF4.0 set of spin-
independent PDFs from Ref. [43]. Similar results are
obtained with other modern PDF sets provided
Q2 > 3 GeV2. Beyond the LO approximation, modern
sets of PDFs typically agree to a percent level in most of
the kinematic range covered by the plots [42].
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FIG. 2. The ratios between the LO, NLO, and NNLO DGLAP-based estimates for Fp
2 and the BPST-Pomeron parametrization.
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The bands around the curves in Fig. 2 represent the
estimated errors in the structure functions propagated from
those of the PDFs for the DGLAP estimates, relative to the
BPST estimate, whereas the central (almost invisible) gray
band is the relative error of the BPST-Pomeron estimate
propagated from that of their parameters. The bands reflect
in part the uncertainty of the data used to extract the PDFs
in the different kinematics, and also the error introduced by
the different perturbative approximations used in the PDFs
extraction. Notice that the different perturbative approx-
imations assume different x andQ2 dependence through the
coefficient functions and evolution equations; therefore the
lowest-order approximations presumably will be less able
to accommodate data from different observables at different
scales and momentum fractions, thus resulting in larger
uncertainties as shown in the plots.
Starting with the bottom of the plot in the right-hand side

of Fig. 2, we see that the BPST-Pomeron and the three
DGLAP estimates agree nicely for x ¼ 0.01 when Q2 >
10 GeV2 as one would expect, since we are well within the
perturbative regime and the PDFs are strongly constrained
by data. Of course, the three perturbative estimates assume
a slightly different scale dependence which become appar-
ent at lower Q2. The NNLO estimate (red line) is the one
that remains closer to the BPST Pomeron for decreasing
values of the scale, even down to Q2 ∼ 2 GeV2. On the
other hand, the NLO estimate (green line) shows slightly
poorer agreement, and the LO estimate in light blue shows
the largest difference. The low-Q2 region is where the
BPST Pomeron can be considered the most faithful
estimate, since as we have already seen in Fig. 1, it
reproduces data down to a fraction of a GeV. On the other
hand, PDFs are poorly constrained below a couple of
GeV2, and in fact at these low-Q2 values one can find large
discrepancies between the results of different groups even
in the NNLO approximation.
Going up in the right-hand side plot of Fig. 2, we

reduce the value of the momentum fraction x, and we see
that in addition to an increasing discrepancy between the
three perturbative estimates at low Q2, the LO differs also
at higher values of Q2 with the other estimates. Most
likely this happens because the LO PDFs try to com-
pensate for the deficiencies in the x and Q2 dependencies
of the coefficients mimicking the data with the strongest
constraining power that typically correspond to larger x,
at the expense of the less-precise data at smaller x.
The NLO and NNLO approximations have much more
success connecting lower and higher x data. It is
interesting to notice that the perturbative convergence,
roughly represented by the distance between the curves,
is rather good beyond the NLO but decreases with
decreasing x as well as decreasing Q2.
A crucial feature for our discussion in the next section on

the helicity-dependent structure function is the remarkable
agreement between the NNLO approximation and the

BPST-Pomeron estimate at Q2 ∼ 10 GeV2 and x ∼ 10−5,
as shown in the top of the right-hand side plot of Fig. 2.
From the point of view of the BPST-Pomeron approach, the
estimate in this kinematic regime is essentially extrapola-
tion, since there is no data on Fp

2 validating the model, as
shown in Fig. 1. Nevertheless, the BPST-Pomeron estimate
agrees remarkably well with the best perturbative estimate,
even up to values ofQ2 ∼ 20 GeV2. The importance of this
feature lays in the fact that we will use this framework, and
specifically three parameters of the BPST Pomeron Fp

2 in
order to fix three of the four parameters of the holographic-
A Pomeron, to make predictions for the EIC for gp1 in these
kinematics. For larger values of Q2 the agreement clearly
deteriorates; there, one expects the BPST-Pomeron
approach to be even less constrained while DGLAP is in
good standing.
The plot on the left-hand side of Fig. 2 shows the same as

that on right but now as a function of x, and emphasizing
complementary aspects. The best overall agreement here
takes place at an intermediate value of Q2 ∼ 10 GeV2

between the NNLO and the BPST-Pomeron estimate for
almost all the range in x. At the largest values of x
(x ∼ 0.01) where the PDFs are best constrained but the
BPST Pomeron is not expected to be a good approximation,
predictably the agreement deteriorates. Towards smaller x
the lower-order approximations become increasingly inac-
curate. Moving up in the plot towards lower Q2, the
perturbative predictions lose consistency between them-
selves, while in the opposite direction at increasing values
of Q2, the disagreement remains at small x. At the highest
value of Q2 in the bottom of the plot there is a sizable
disagreement between the BPST-Pomeron estimate and the
NNLO in almost all the range of values of x.
We have explored the alternative of feeding the BPST-

Pomeron parameter determination with pseudodata on Fp
2

generated from the DGLAP projections to complement
the DIS actual data set beyond the kinematical range
accessible at present. However, the quality of the fits
deteriorates significantly as more pseudodata at higher
Q2 is incorporated.

IV. gp1 HELICITY-DEPENDENT STRUCTURE
FUNCTION

In this section we focus on the helicity-dependent
structure function of the proton gp1 whose measurements
have received a great deal of attention since the EMC
Collaboration at CERN reported results at the end of the
1980s consistent with a picture where very little of the
proton spin came from the spin of the quarks, in contra-
diction with the naive-quarks model [44]. The EMC results
were later confirmed by other DIS experiments, and more
recently by measurements of final-state jets and hadrons in
polarized proton-proton collisions at the relativistic heavy-
ion collider (RHIC) [27]. The latter specifically showed
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that a sizable contribution to the proton spin came from
the polarization of gluons [45,46]. The gluon polarization
contributes to gp1 structure function albeit through terms
suppressed by a power αstrong relative to those of the quark
contributions, and also indirectly through the scale depend-
ence of the quark contributions, which are coupled to the
gluons by the spin-dependent DGLAP equations.
As in the unpolarized case, the helicity-dependent

structure function gp1 can be written as a convolution
between the appropriate perturbative spin-dependent coef-

ficient functions ΔCðnÞ
i ðx;Q2Þ and spin-dependent or hel-

icity PDFs ΔfðnÞi ðx;Q2Þ [7],

gp1 ðx;Q2Þ ¼
X
i

Z
1

x

dy
y
ΔCðnÞ

i

�
x
y
;Q2

�
ΔfðnÞi ðy;Q2Þ;

ð4:1Þ
where the latter are defined as the difference between the
PDFs of partons with spin orientation parallel and anti-
parallel to that of the proton, i.e.,

Δfiðx;Q2Þ≡ f↑i ðx;Q2Þ − f↓i ðx;Q2Þ; ð4:2Þ
and that also obey the evolution equations,

dΔfðnÞi ðx;Q2Þ
d logQ2

¼αstrongðQ2Þ
2π

X
j

Z
1

x

dy
y
ΔPðnÞ

ij

�
x
y

�
ΔfðnÞj ðy;Q2Þ: ð4:3Þ

Unlike the data on the unpolarized structure function Fp
2 ,

the data on gp1 are much less precise and comparatively
scarce, specially at low-momentum fractions. Helicity-
dependent PDFs obtained from DGLAP global analyses
in turn inherit these shortcomings, redoubled by the fact
there are no charge or momentum conservation for helicity
distributions as in the unpolarized case, and that for
the moment they only reach NLO precision. Therefore,
the helicity distributions below x ∼ 10−3 are essentially
extrapolations and their uncertainties, as well as, those for
the spin-dependent structure functions in that regime are
almost unbound.
Again, precisely where the estimates for the structure

function coming from DGLAP global analyses are more
uncertain is where the string-theory dual description is
best constrained. Recall that the holographic-A Pomeron
fits 56 data points on gp1 in the range 0.0036 ≤ x ≤ 0.009
and 0.062 GeV2 < Q2 < 2.41 GeV2, adding just one free
parameter to those already constrained by Fp

2 [see Eqs. (2.4)
and (3.1)] with remarkable accuracy (χ2d:o:f: ¼ 1.14). The
referred parameter is the overall constant in Eq. (2.5),

C ¼ 0.145� 0.0015: ð4:4Þ

Notice that we have not used any sieving for the
experimental data of gp1 , thus it includes all available
data for the helicity-structure function of the proton. It
seems natural to extrapolate this result to lower values of x
and moderate values of Q2 for which we showed in the
previous section that the BPST-Pomeron picture repro-
duces the unpolarized structure function data in a very
good approximation. One should emphasize that all the
parameters for both the BPST Pomeron and for the
holographic-A Pomeron are, in principle, independent
on the Bjorken variable and the photon virtuality.
Interestingly, the extrapolation to low x of the gp1

estimate coming from the holographic-A Pomeron differs
dramatically with those coming from most DGLAP helicity
fits, like DSSV14 [45] shown in Fig. 3. While the DSSV14
low-x extrapolation for gp1 (in red) is increasingly negative,
the holographic-A Pomeron result (green) goes in the
opposite direction. The light-blue band represents the
estimated uncertainty for the DSSV result, derived from
the errors of the DSSV14 NLODGLAP helicity PDFs [47],
while the light-green one is the one propagated from the
holographic-A Pomeron and using three of the BPST-
Pomeron parameters. It is worthwhile noticing that in both
approaches, the data on gp1 analyzed start at x ≥ 0.0036 and
consequently the uncertainty bands start growing there very
fast towards smaller x. In the case of the DGLAP approach,
in principle gp1 could become positive at smaller values of x,
however global analyses using simple functional forms for
the helicity distributions prefer the negative solution. For
the holographic-A Pomeron is it not possible to produce a
negative gp1 compatible with the parameters z0, ρ, and Q0

obtained from fitting Fp
2 to experimental data. This comes

from the fact that the Holographic-A Pomeron kernel has

FIG. 3. g1 structure function using a single holographic-A
Pomeron exchange to fit experimental data within the range
0.0036 ≤ x ≤ 0.009 at Q2 ¼ 10 GeV2 against the one obtained
in DSSV14 DGLAP NLO analysis.
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the same structure and signature as the BPST Pomeron as it
can be seen by comparing Eqs. (2.4) and (2.5).
In Ref. [26] it has been argued that in a scenario where

the contributions from the gluon polarization to gp1 domi-
nate over those of quarks, a negative ∂gp1=∂ lnQ

2 corre-
sponds to a positive gluon polarization that tends to
compensate the smallness of the quark contribution to
the spin of the proton. Conversely, a positive ∂gp1=∂ lnQ

2

represents negative gluon polarization that aggravates the
deficit in the spin budget and favors more significant
contributions from the angular momentum, for example.
In this respect, the holographic-A Pomeron solution clearly
favors the latter as it can be seen in Fig. 10 of Ref. [17].
Interestingly, in Ref. [48] it has been shown that within the
Kovchegov, Pitoniak, and Sievert framework for the
small-x evolution [49–51] a similar conclusion is reached.
The electron-ion collider [9] will measure gp1 in the

region of 10−5 < x < 10−2 with unprecedented precision,
exploring for the first time the behavior of gp1 and that of the
gluon polarization in the small-x regime. In Fig. 3 we show
realistic pseudodata generated assuming a DSSV14 behav-
ior but smeared according the expected experimental
uncertainties for an accumulated integrated luminosity of
10 fb−1 for center-of-mass system energies of 45 GeV and
140 GeV (open circles) [26]. On the other hand, we also
show pseudodata produced from the holographic-A
Pomeron prediction at the same energies (solid circles)
assuming the experimental errors will be those computed
in [26] for the corresponding kinematics. The pseudodata
points are only those corresponding to a photon virtuality of
10 GeV2 for which the curves are computed. It is clear that
the EIC measurements will be able to discriminate between
the two scenarios. For completeness, we have computed the
impact of the future EIC measurements in both cases and
we show it as new bands in darker blue and green for the
DSSV and the holographic-A Pomeron scenarios, respec-
tively. In the case of the holographic-A Pomeron it includes
the original 56 experimental data plus 50 pseudodata
points. The dark-green error band is very narrow and
cannot be discriminated from the corresponding central
value since now the constant C has the same central value
as in Eq. (4.4) but its error becomes 7.64 × 10−6, which
means that the error is 200 times smaller than in (4.4)
where only the 56 experimental points were included. This
behavior is due to the extremely high precision of the
expected EIC measurements.

V. CONCLUSIONS

The string-theory dual description of DIS and perturba-
tive QCD offer complementary insights into phenomena
that already are, or will be in the foreseeable future, probed
by experiments with remarkable precision. In this paper we
have confronted their respective predictions and the cor-
responding data to assess to which extent they overlap with

good descriptions of the data, and where they complement
each other. We have found an impressive agreement
between the BPST-Pomeron estimate for the unpolarized
structure function Fp

2 and those coming from DGLAP-
based fits in a significant portion of the relevant kinemati-
cal range. This happens not only in the region covered by
DIS data, where both approaches should agree by design,
but also at low values of the parton-momentum fraction x
and intermediate values of the photon virtuality Q2, for
which there is no data constraining the BPST-Pomeron
parameters. However, large discrepancies can be seen at
higher Q2 values where one expects the BPST-Pomeron
approach to be poorly constrained while DGLAP is in
good standing. On the other hand, DGLAP estimates fail to
agree between themselves and with the BPST Pomeron
towards lower values of Q2 where the BPST Pomeron
best reproduce the unpolarized DIS data. Of course, at low
Q2 the convergence of the DGLAP-perturbative series is
weaker. This emphasizes the complementarity between
both perspectives and gives a quantitative assessment of
their respective limitations.
In the case of the helicity-dependent structure function

gp1 the available data is not as comprehensive as in the
unpolarized case, but is enough to constrain the holo-
graphic-A Pomeron proposed in [18], and make a predic-
tion for the forthcoming EIC experiment, that differs with
the most standard DGLAP motivated predictions and
suggest a significant role of the angular momentum in
proton-spin budget.
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APPENDIX: A ROAD MAP OF SOFT, BFKL,
BPST, AND HOLOGRAPHIC-A POMERONS

FOR THE UNINITIATED

In the following, we discuss with more detail what are
the soft and hard Pomerons, and how these concepts
developed in the context of the S-matrix and the gauge
theory approaches, connect to the more recent gauge/string
theory duality leading to the holographic dual description
of the Pomeron physics at strong coupling.

1. The soft Pomeron and the BFKL Pomeron

The dominant contribution to DIS at low x comes
from the gluon dynamics and the quark-antiquark sea.

PROTON HELICITY STRUCTURE FUNCTION gp1 FROM A … PHYS. REV. D 108, 056024 (2023)

056024-9



The standard DGLAP description at NLO in QCD should
fail to describe the low-x region since subleading terms in
lnðQ2=μ2Þ (where μ is an energy scale) involve powers of
αstrong lnð1=xÞ, which become large (order 1) as x → 0 [33].
For example, let us suppose that the virtuality is Q2 ∼
10 GeV2 and x ∼ 10−2, thus αstrong is approximately 0.2,
then αstrong lnð1=xÞ ≈ 0.4.
During the 1960s, strong interactions were investigated

within the S-matrix formalism, leading to the Regge theory,
used to calculate hadron-hadron and photon-hadron
cross sections at high energy [33]. The S-matrix elements
between two asymptotic states, one in the remote past
and another in the remote future, are given by
Sif ¼ hfjŜjii ¼ hfoutjiini. There are three very important
postulates about the S matrix; namely, Lorentz invariance,
unitarity, and analyticity [34,35].
Let us consider a two-to-two particle scattering, with

incoming particles i1 and i2 and the outgoing ones f3 and
f4. The incoming four-momenta are pμ

1 and pμ
2 and the

outgoing four-momenta are pμ
3 and pμ

4, while their masses
are mj (j ¼ 1;…; 4), respectively. This process can be
described in terms of the Mandelstam variables defined in
Eqs. (2.3). Recall that t is the square of the four-momentum
exchanged between particles i1 and f3, and there is also the
kinematic relation among them, which obviously implies
that the transition amplitude for the process i1 þ i2 →
f3 þ f4 is a function of only two independent Mandelstam
variables, Aðs; tÞ.
Unitarity of the S matrix, ŜŜ† ¼ Ŝ†Ŝ ¼ I, implies that

the probability for the transition between incoming and
outgoing states when all possible final states are added is
one. Thus,

Sif ¼ δif þ ið2πÞ4δð4Þ
�X

i

pi −
X
f

pf

�
Aif ¼ δif þ iTif:

ðA1Þ

For a two-to-two particle scattering, being jai a two-
particle state, using Eq. (A1) and the unitarity condition,
it leads to the optical theorem,

2ImAaa¼ð2πÞ4
X
X

δð4Þ
�X

a

pa−
X
f

pf

�
jAa→Xj2∝σTotal;

ðA2Þ

where X represents intermediate states. σTotal is the total
cross section for the scattering. When the center-of-mass
energy is much larger that the masses of the incoming
particles it leads to ImAaa ∼ sσTotal.
In addition, analyticity implies that the S matrix is an

analytic function of the Lorentz invariants, and it only
has the singularities allowed by unitarity. Also, analyticity
implies crossing symmetry: Aðs; tÞ ¼ Aðt; sÞ. From

analyticity and unitarity one can extract the s-plane
singularity structure. In particular, considering the
t-channel and the high-energy limit jtj ≪ s, the amplitude
can be expanded in terms of Legendre polynomials
Plðcos θÞ, where θ is the scattering angle in the center-
of-mass frame, which can be written as cos θ ¼ 1þ 2t=s.
It leads to the partial wave expansion, which after using the
crossing symmetry (s ↔ t), becomes

Aðs; tÞ ¼
X∞
l¼0

ð2lþ 1ÞalðtÞPlð1þ 2s=tÞ; ðA3Þ

with the partial wave amplitudes alðtÞ.
At this point it is instructive to recall what happens if a

single resonance with massMJ and spin J gives the leading
contribution to the t-channel process. In this case the high-
energy behavior of the corresponding amplitude is

Aðs; tÞ ∼ C
t −M2

J

�
2s
t

�
J
; ðA4Þ

which obviously becomes very large in the high-energy
limit s ≫ jtj, in fact unbound, which indicates that a single
resonance exchange in the t-channel cannot be the leading
contribution. On the other hand, the amplitude (A3) can be
rewritten in terms of a contour integral in the complex plane
of the angular momentum l [34]

Aðs; tÞ ¼ 1

2i

I
C
dlð2lþ 1Þ aðl; tÞ

sinðπlÞPðl; 1þ 2s=tÞ; ðA5Þ

where the contourC surrounds the positive real axis. Notice
that aðl; tÞ is an analytic continuation of alðtÞ in (A3).
In order to be more precise, the analytic structure of the
function aðl; tÞ requires two analytic continuations corre-
sponding to the even and odd partial-wave amplitudes
aðηsignÞðl; tÞ, with ηsign ¼ �1. Next, one has to deform the
contour C to another contour parallel to the imaginary axis
located at Rel ¼ −1=2, and encircling any poles or cuts that
the functions aðηsignÞðl; tÞmay have at l ¼ αηsignðtÞ, which are
the Regge poles. Then, in the jtj ≪ s limit the scattering
amplitude becomes

Aðs; tÞ →
�
ηsign þ exp½−iπαðtÞ�

2

�
βðtÞsαðtÞ; ðA6Þ

where αðtÞ represents the leading Regge trajectory,
while the function βðtÞ contains the residues of the poles
of the complex angular momentum integral multiplied by
other factors.
The comparison of amplitudes (A6) and (A4) suggests

that the former can be understood as the one generated by
the exchange of an object carrying angular momentum
αðtÞ, called Reggeon, which is not a single particle.
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Therefore, the amplitude (A6) can be interpreted as the
superposition of amplitudes corresponding to the exchanges
of all possible particles in the t-channel, which leads
to a Regge trajectory. For t > 0 it is expected to have the
poles corresponding to the exchange of particles of spin
J ¼ αðM2

JÞ and massMJ. Chew-Fraustchi plot suggests that
there is a linear Regge trajectory

αðtÞ ¼ α1tþ α0; ðA7Þ

where α1 is the Regge slope and αð0Þ ¼ α0 is the intercept.
From the high-energy limit of the total cross section

σTotal → sαð0Þ−1; ðA8Þ

it can be extracted the leading Regge trajectory.
Experimental data show that σTotal increases slowly
with s. Assuming that this increase is induced by the
exchange of a Reggeon, its intercept must be larger than
one. Moreover, the amplitude must be dominated by the
exchange of a Reggeon with zero isospin and it has to be
even under charge conjugation. This particular Reggeon is
called the soft Pomeron (recall that this is for positive
values of t), and it is postulated to be a bound state of
gluons referred as glueball. The Pomeron intercept has
been obtained from the fit of Eq. (A8) to the proton-proton
cross section experimental data, obtaining to αPð0Þ ¼
1.0808 [52].
The relation to the symmetric structure functions F1 and

F2 comes from the fact that DIS can be written in terms of
the γ�p scattering process, where γ� represents a virtual
photon, with squared four-momentum q2 ¼ −Q2,

σγ
�p
TotalðW2; Q2Þ ¼ σT þ σL ≈

4π2αem
Q2

F2ðx;Q2Þ; ðA9Þ

where αem is the fine-structure constant and (for W2 much
larger than the square of the proton mass) it leads to
W2 ¼ Q2ð1=x − 1Þ, which at low x becomes W2 ≈Q2=x,
whereW is the center-of-mass energy of the γ� þ p system.
The low-x behavior of σγ

�p
TotalðW2; Q2Þ in Eq. (A9) is

dominated by the exchange of a single Pomeron, leading
to F2ðx;Q2Þ ∝ x−0.08 as x becomes very small.
There is another Pomeron, called the hard or BFKL

Pomeron, and in the rest of this subsection we briefly
describe it. In the context of Regge theory a given particle
of mass M and spin J is said to Reggeize if the scattering
amplitude corresponding to a process, that in its t-channel
exchanges the quantum numbers of that particle, goes like
Aðs; tÞ ∝ sαðtÞ. We identify the Regge trajectory αðtÞ while
the spin and mass follow the relation αðM2

JÞ ¼ J, being the
particle on Regge trajectory. The lowest-order Feynman
diagram from QCD which perturbatively can simulate a
Pomeron exchange like this is given by a two-gluon
exchange. In fact the Pomeron in QCD is constructed

from ladder diagrams whose vertical lines are Reggeized
gluons. The ladders are completed with rungs connected to
the vertical Reggeized gluons through effective vertices. In
this context the behavior of this Pomeron is derived from
the BFKL equation [36–39]. Notice that there is an infinite
sum of the described ladder Feynman diagrams with
different number of rungs, and there is no color exchange
through the vertical lines. A diagram with n rungs con-
tributes with a factor ðαs log sÞn. In this appendix we use the
traditional notation for the QCD coupling αs instead of
αstrong that we use in the main text.
Let us consider the most general Feyman diagram

consisting in the exchange of two Reggeized gluons
(vertical ladders) between two quarks (horizontal lines at
the top and the bottom of the diagram). This type of
diagram corresponds to a quark-quark scattering, and it
would be related to the DIS diagram with the exchange of a
BFKL Pomeron. The BFKL amplitude f̂ðω; k1; k2; qÞ,
where k1 and k2 are the transverse momenta with which
the quark in the top line and the quark in the bottom
horizontal line are probed by the BFKL Pomeron, respec-
tively, while q is the momentum transfer. The color
singlet (S) quark-quark (no color exchange in the t channel)
scattering amplitude is given by

ÃS
qqðω; tÞ ¼

Z
∞

1

dzz−ω−1
AS

qqðs; tÞ
s

¼ 4iα2sGS

Z
d2k1d2k2
k22ðk1 − qÞ2 f̂ðω; k1; k2; qÞ; ðA10Þ

where ÃS
qqðω; tÞ is the Mellin transform, while z ¼ s=k2

with k2 being a scale factor related to the external transverse
momenta. GS projects out the color singlet term. The total
cross section needs only the forward amplitude, namely
AS

qqðs; t ¼ 0Þ, therefore one needs only f̂ðω; k1; k2; q ¼ 0Þ.
It is convenient to consider the inverse Mellin transform of
f̂ðω; k1; k2; q ¼ 0Þ that we call Fðs; k1; k2Þ. By considering
only the leading (n ¼ 0) term, the function Fðs; k1; k2Þ is
given by the following integral in the complex plane γ

Fðs; k1; k2Þ ¼
Z

dγ
2πi

�
s
k2

�
ᾱsχ 1

πk21

�
k21
k22

�
γ

; ðA11Þ

where ᾱs ¼ 3αs=π and the contour runs parallel to the
imaginary γ axis. The function χðγÞ is given by χðγÞ ¼
2ψð1Þ − ψðγÞ − ψð1 − γÞ, with ψðxÞ ¼ d logðΓðxÞÞ=dx,
with the usual gamma function. The leading-s behavior
leads to

Fðs; k1; k2Þ

¼ 1

πk1k2
ð2πᾱsjχ00ð1=2Þj logðs=k2ÞÞ−1=2

�
s
k2

�
ᾱsχð1=2Þ

;

ðA12Þ
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which leads to the high-energy behavior of the quark-quark
scattering amplitude

ÃS
qqðs; t ¼ 0Þ ∼ ðs=k2Þ1þω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log ðs=k2Þ
p ; ðA13Þ

with ω0 ¼ ᾱsχð1=2Þ ¼ 4ᾱs log 2. Typically it leads to a
very strong rise of the quark-quark total cross section in the
high-energy limit.
Now, we focus on the application of the BFKL formal-

ism to DIS. Using the optical theorem we take the
imaginary part of the elastic γ� þ proton → γ� þ proton
cross section at t ¼ 0 we can use the BFKL function
FðW2; k1; k2Þ convoluted with the proton and the photon
impact factors Φpðk2Þ and Φγ;ϵðk1Þ, respectively,

σγ
�p
ϵ ðW2; Q2Þ

¼ 1

ð2πÞ4
Z

d2k1
k21

Z
d2k2
k22

Φγ;ϵðk1ÞΦpðk2ÞFðW2; k1; k2Þ;

ðA14Þ

where

W2 ¼ ðpþ qÞ2; ðA15Þ

is the square of the center-of-mass energy of the virtual
photon-proton system. pμ and qμ are the four-momenta
of the proton and the virtual photon, respectively. Recall
that Q2 ¼ −q2 > 0. The polarization ϵ can be transverse
(T) or longitudinal (L). For inclusive DIS the proton impact
factor cannot be calculated in perturbation theory. For the
DIS of an electron with four-momentum kμ off a proton
of four-momentum pμ we can define the following kin-
ematic variables

s ¼ ðpþ kÞ2; ðA16Þ

x ¼ Q2

2p · q
≈

Q2

Q2 þW2
; ðA17Þ

y ¼ p · q
p · k

≈
Q2

xs
; ðA18Þ

where x is the Bjorken variable. Assuming the limit where
the electron and the proton masses are negligible compared
with the energy scale of DIS the approximate equalities
become exact. We also assume thatW2 ≫ Q2 ≫ M2

p, from
which it follows that 0 < x ≪ 1. The proton structure
function Fp

2 and the longitudinal one Fp
L are related to

the photon-proton cross sections (A14) by

F2ðx;Q2Þ ¼ Q2

4π2αem

�
σγ

�p
T ðx;Q2Þ þ σγ

�p
L ðx;Q2Þ

�
; ðA19Þ

F1ðx;Q2Þ ¼ Q2

4π2αem
σγ

�p
L ðx;Q2Þ: ðA20Þ

The first of these equations is similar to Eq. (A9). The
proton impact factor cannot be obtained from perturbation
theory in QCD for obvious reasons, therefore it must
be modeled. There is another important issue due to the
fact that in QCD the next-order correction to the BFKL
Pomeron is large, and it comes with opposite sign with
respect to the single BFKL Pomeron itself [40,41]. We
should emphasize that the BFKL Pomeron is derived from
a perturbative calculation in QCD.

2. The BPST Pomeron and the
unpolarized function Fp

2

In certain hadron scattering processes at high energy
(s ≫ jtj ≫ Λ2

QCD, where ΛQCD is the IR scale of QCD)
and small scattering angle the Regge theory suggests the
exchange of a soft Pomeron (Reggeon) for positive t values,
and a single BFKL-Pomeron exchange at leading order
in αs log s at weakly coupled QCD for t ≤ 0. The soft
Pomeron is understood as an exchange of a single glueball,
which in the string theory dual language it corresponds to a
closed string. Besides, the BFKL Pomeron represents the
exchange of a color-singlet object composed by Reggeized
gluons. It is worth to consider the large Nc limit a gauge
theory2 since in that case many aspects of the gauge theory
becomes simpler, both to calculate and interpret. This limit
is not real (Nc ¼ 3) QCD but a related gauge theory.
This limit leads to that a single Pomeron exchange
dominates the scattering amplitude. Otherwise, for finite
Nc one may expect multiple Pomeron exchanges become
important and eventually may dominate the high-energy
behavior of scattering amplitudes. From the type-IIB
superstring theory perspective the dual exchanged object
is a Reggeized graviton, leading to the BPST Pomeron [10].
Thus, for strongly coupled gauge theory the BPST
Pomeron unifies the soft and hard Pomerons, something
which technically is not possible in QCD. This property of
the BPST Pomeron is very important.
Let us describe very briefly the ideas behind the

derivation of the BPST Pomeron from type-IIB superstring
theory [10]. A dual representation of a hard-scattering
process of two hadrons to two hadrons at high energy may
be described in terms of a four-point superstring theory
scattering amplitude [31]. In particular, in the Regge limit
and at strong coupling of the gauge theory, the dual
description leads to a BPST-Pomeron exchange. Strictly
speaking, the holographic dual calculation is valid for
Nc ≫ λ’t Hooft ≫ 1. Therefore, within the framework of
perturbation theory of superstring theory, which means
that the string theory coupling 0 < gstring ≪ 1, one only

2Nc is the rank of the gauge group SUðNcÞ.
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needs to consider a world sheet given by a two-dimensional
sphere represented by coordinates ðσ1; σ2Þ. The closed-
string proper time is σ1 and its proper length is
0 ≤ σ2 ≤ 2π. The ten-dimensional ambient space where
the closed string propagates is described by fields which
take values on the string world sheet

XMðσ1; σ2Þ ¼ xM þ X0Mðσ1; σ2Þ; ðA21Þ

where xM with M ¼ 0;…9 labels the closed string center-
of-mass position, and X0Mðσ1; σ2Þ characterize the string
vibrations. By taking xM constant, the Gaussian integral
on X0M (which is needed for the quantization of the string
theory) leads to exactly the same result as it would do in
ten-dimensional Minkowski space-time. This gives the ten-
dimensional flat-space S matrix that would be seen by a
local observer,

S ¼ i
Z

d4x
Z

d6y
ffiffiffiffiffiffiffi
−G

p
Alocalðx; yÞ: ðA22Þ

xμ denotes coordinates in the four-dimensional Minkowski
space-time and yα is used for the radial and the angular
coordinates on the five-dimensional sphere S5. This is a
local approximation which allows to carry out the
calculations by replacing the (unknown) superstring
theory scattering amplitude of the curved AdS5 × S5

space-time by the (known) superstring theory scattering
amplitude in ten-dimensional Minkowski space-time,
Alocalðx; yÞ. For instance, if one considers the Regge limit
of the protonþ proton to protonþ proton scattering
amplitude in the gauge theory at strong coupling, the
corresponding superstring theory scattering amplitude
Alocalðx; yÞ of the dual type-IIB superstring theory
description is the flat ten-dimensional scattering ampli-
tude of four closed strings. Each of these closed strings
can be viewed as the insertion of a dilatino vertex operator
on the two-dimensional spherical world sheet. This is the
starting point of the calculation. Then, the amplitude can
be expressed as follows:

Alocalðx; yÞ → τ10ðP̃Þ
Y4
i¼1

eipi·xiΨðyiÞ; ðA23Þ

where τ10ðP̃Þ is the ten-dimensional flat space-time string
theory scattering amplitude, which only depends on
the momenta P̃ seen by a local inertial observer in the
AdS5 × S5 bulk. In addition, the four external states are
represented by four free wave functions in the flat
four-dimensional Mikowski space-time times the corre-
sponding wave functions depending on the internal
coordinates ΨðyiÞ.

Then, one can obtain the S-matrix given by

S ¼ ið2πÞ4δð4Þ
�X4

i¼1

pi

�Z
d6y

ffiffiffiffiffiffiffiffiffiffiffi
−G6d

p
τ10ðP̃Þ

Y4
i¼1

ΨðyiÞ;

ðA24Þ
where G6d is the determinant of the part of the metric
which contains the radial coordinate r and the five-sphere.
δð4ÞðP4

i¼1 piÞ comes from the four-dimensional integral
and ensures the conservation of the four-momentum.
We should emphasize that due to the metric warp factor

there is a redshift as mentioned before

P̃μ
10d ¼

R
r
pμ
4d;

where P̃μ
10d is the inertial four-momentum measured by a

local observer in the bulk, while pμ
4d is the same component

of the four-momentum corresponding to the gauge theory at
the boundary of the AdS space. The metric warp factor also
induces the redshift of the Mandelstam variables

s̃10d ¼
R2

r2
s and t̃10d ¼

R2

r2
t: ðA25Þ

Notice that we have dropped the 4d subindices of the
four-dimensional Mandelstam variables. From superstring
theory we have

τ10ðP̃Þ ¼ g2stringα
03FsðP̃

ffiffiffiffi
α0

p
Þ; ðA26Þ

where the function Fs is given by

FsðP̃
ffiffiffiffi
α0

p
Þ ¼ KðP̃

ffiffiffiffi
α0

p
Þ
" Y
x̃¼s̃;t̃;ũ

Γð−α0x̃=4Þ
Γð1þ α0x̃=4ÞÞ

#
; ðA27Þ

which, for jt̃j ≪ s̃, with s̃þ t̃þ ũ ¼ 0, can be approxi-
mated by

Fs

�
P̃

ffiffiffiffi
α0

p �
≈ KðP̃

ffiffiffiffi
α0

p
Þ Γð−α0 t̃=4Þ
Γð1þ α0 t̃ÞÞ ðα

0s̃Þ2þα0 t̃=2

¼ fðα0t̃Þðα0s̃Þ2þα0 t̃=2; ðA28Þ
where in order to abbreviate the notation we have dropped
the subindex 10d in the ten-dimensional Mandelstam
variables. KðP̃ ffiffiffiffi

α0
p Þ is a kinematic factor. Using these

expressions in τ10ðP̃Þ we obtain the four-dimensional
scattering amplitude (depending on the four-dimensional
Mandelstam variables s and t)

τ4ðs;tÞ

¼
Z

d6y
ffiffiffiffiffiffiffi
−G

p
Ψ3ðyÞΨ4ðyÞfðα0 t̃Þðα0s̃Þ2þα0 t̃=2Ψ1ðyÞΨ2ðyÞ:

ðA29Þ
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The relevant exponent in the Regge limit is
j ¼ 2þ α0 t̃=2 ¼ 2þ α0tR2=ð2r2Þ, which is a very impor-
tant result as we show in what follows.
Let us show that this expression leads to two very

different physical situations. Firstly, let us consider the case
of positive t and the Regge limit 0 < t ≪ s, for which the
maximum value of the exponent is reached when the radial
coordinate r has its minimum r0, and since r0 ≤ r, it
corresponds to the IR of the gauge theory. Therefore, it is
related to the soft Pomeron at strong coupling. Thus,
we obtain

jMax ¼ 2þ α0 t̃=2 ¼ 2þ α0tR2=ð2r20Þ; ðA30Þ

which shows a linear Regge trajectory jMaxðtÞ, with
intercept α0 ¼ 2 and slope α1 ¼ α0R2=ð2r20Þ.
The second possibility in the study of the exponent

corresponds to t < 0 and 0 < jtj ≪ s where the maximum
value of the exponent is

jMax ¼ 2; ðA31Þ

which corresponds to r → ∞, namely the UV region of the
gauge theory, related to the BFKL Pomeron. This is the
effect of unification (or interpolation) of the soft and
the BFKL Pomerons that we mentioned before [10].
The derivation presented so far deals with a local

approximation, which implies to consider the large
λ’t Hooft limit, leading to the Gaussian approximation [see
discussion below Eq. (A21)], and then the high energy
limit. However, in order to reach a more realistic parametric
domain of QCD, it is crucial to investigate the physics for
values of s growing as expðλ1=2’t HooftÞ. From the gauge/string
theory duality this is an extremely large energy scale;
however, in order to consider QCD one has to explore what
happens towards smaller values of the ’t Hooft coupling,
which means realistic values of the QCD coupling. As
we have seen in this work, this leads to a very precise
description of the proton-structure functions when this
formalism is applied to DIS. Thus, we must retain terms
of order λ−1=2λ’t Hooft

in the exponent j ¼ 2þ αt̃=2 in the
scattering amplitude (A29), which implies to consider
the ten-dimensional momentum operator (i∂μ10) in the
definition of t̃,

α0 t̃ → α0∇2
P ≡ α0

R2

r2
tþ α0∇2⊥; ðA32Þ

where ∇2⊥ is the Laplacian operator in the radial and five-
dimensional angular directions, which is proportional to
α0=R2 ¼ λ−1=2’t Hooft, and acts on the wave functions of the
incoming and outgoing states. The transverse momentum
transfer leads to theOðλ−1=2’t HooftÞ correction to the intercept as
shown in Eq. (A30), and also it makes sα

0 t̃=2 a diffusion

operator in the eight transverse directions,3 which induces
a diffusion operator similar to the one corresponding to
the BFKL Pomeron. In addition, it will show important
changes in comparison with the local approximation where
the second term in (A32) was ignored.
Now, let us write the Laplacian ∇2⊥, considering the

metric (2.1). The idea is to include the contribution of the
t-channel exchange of a generic transverse-traceless tensor
field of spin j, Φþj ≡Φþþ���þ, with j light cone indices þ,

being x� ¼ ðx0 � x1Þ= ffiffiffi
2

p
the light cone coordinates. This

represents a fluctuation of a generic field propagating in
the AdS5 × S5 bulk. In particular, in the case of the BPST
Pomeron it corresponds to j ¼ 2 and it is given by
transverse traceless fluctuations of the metric. On the other
hand, in the case of the holographic-A Pomeron it corre-
sponds to j ¼ 1 and the fluctuation is given by a linear
combination of the graviphoton and the Ramond-Ramond
four-form field A4 in type-IIB superstring theory. Thus, the
covariant Laplacian acting on a Φþþ is given by

∇2
2Φþþ ¼ r2

R2
∇2

0

��
R2

r2

�
Φþþ

�
þ 1

2
Rþ

þ; ðA33Þ

where Rþþ is the Ricci tensor þþ components, and ∇2
0 is

the scalar Laplacian (j ¼ 0). From the equations of motion
of type-IIB supergravity one obtains

Δ2Φþþ ≡ r2

R2
∇2

0

��
R2

r2

�
Φþþ

�
¼ 0; ðA34Þ

when Φþþ is a transverse traceless fluctuation of the
metric. Then, the λ−1=2’t Hooft correction to the exponent in
the amplitude (A29) leads to

τ4ðs; tÞ ¼
Z

d6y
ffiffiffiffiffiffiffi
−G

p
Ψ3ðyÞΨ4ðyÞfðα0tR2=r2Þ

× ðα0sR2=r2Þ2þα0Δ2=2Ψ1ðyÞΨ2ðyÞ: ðA35Þ

In order to calculate this amplitude at high energy it is
convenient to make a change of coordinates in the metric
(2.1) given by u ¼ logðr=r0Þ, which at large r reads

ds2 ¼ r20
R2

e2uημνdxμdxν þ
R2

r20
dr2 þ R2dΩ2

5: ðA36Þ

Notice the presence of the additional warp factor e2u

in front of the first piece of this metric. Then, one may
calculate the imaginary part of the scattering amplitude

3From the ten dimensions of type-IIB superstring theory there
are two directions defining the so-called light cone coordinates,
the time and the direction of motion of the two head-on colliding
closed strings, the eight remaining ones are the transverse
coordinates.
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(recall that this is related to the cross section of the process),
leading to

ImAðs; t ¼ 0Þ ∝
Z

du
Z

du0Ψ3ðuÞΨ4ðuÞ

×Kðu; u0; τb; t ¼ 0ÞΨ1ðu0ÞΨ2ðu0Þ;
ðA37Þ

where the BPST kernel is given by Kðu; u0; τb; t ¼ 0Þ ¼
sj0K0ðu; u0; τb; t ¼ 0Þ, with

j0 ¼ 2 −
2

λ1=2t’Hooft

; ðA38Þ

which can be identified with the strong coupling limit of the
BFKL Pomeron exponent [10]. In addition we have

K0ðu; u0; τb; t ¼ 0Þ

¼ e−ðu−u0Þ2=4τb

2
ffiffiffiffiffiffiffi
πτb

p þ F ðu; u0; τbÞ
e−ðuþu0Þ2=4τb

2
ffiffiffiffiffiffiffi
πτb

p ; ðA39Þ

where

F ðu; u0; τbÞ ¼ 1 − 4
ffiffiffiffiffiffiffi
πτb

p
eη

2

erfcðηÞ; ðA40Þ
while

η ¼ uþ u0 þ 4τbffiffiffiffiffiffiffi
4τb

p ; ðA41Þ

and

erfcðηÞ ¼ 2ffiffiffi
π

p
Z

∞

η
dke−k

2

; ðA42Þ

and τb is given by

τb ¼
1

2λ1=2’Hooft

log

�
R2

r2
α0s

�
: ðA43Þ

By increasing the center-of-mass energy
ffiffiffi
s

p
, the exchange

of multiple Pomerons is not suppressed and one must
include them. There is a way to resume multiple Pomeron
exchange known as the eikonal method [53,54]. It implies
to write the scattering amplitude in terms of the impact
parameter b⃗. Thus, for a two-to-two on shell hadrons
scattering the amplitude can be written in an eikonal
sum leading to

Aðs; tÞ ¼ 2is
Z

d2beiq⃗·b⃗
Z

dr

×
Z

dr0P13ðrÞð1 − eiχeikonalðs;b;r;r0ÞÞP24ðr0Þ;

ðA44Þ

where the eikonal is related to the BPST Pomeron kernel by

χeikonalðs; b; r; r0Þ ¼
g20
2s

�
rr0

R2

�
2

Kðs; b; r; r0Þ; ðA45Þ

g20 is a parameter to be determined by fitting to experimental
data, while we have expressed the BPST Pomeron kernel in
terms of the variables s, b, r, and r0. P13ðrÞ and P24 label
the impact factors associated to the scattered hadrons.
Now, let us focus on the DIS of an electron from a

proton. The structure function F2 can be calculated
from the total cross section corresponding to the off shell
photon-proton scattering, which by using the optical
theorem, is proportional to the imaginary part of the
forward off shell amplitudes of γ� þ proton amplitude,
σγ

�p
Total ¼ ImAðs; t ¼ 0Þ=s [see Eq. (A19)]. F2 was derived

from the BPST Pomeron in [11]. It has four free param-
eters; g20, ρ, z0, andQ

0, obtained by fitting it to experimental
data. Then

FBPSTHW
2 ðx;Q2Þ ¼ g20ρ

3=2Q

32π5=2τ1=2b Q0 e
ð1−ρÞτb

�
e−

log2ðQ=Q0Þ
ρτb þ F ðx;Q;Q0Þe−

log2ðQQ0z2
0
Þ

ρτb

�
; ðA46Þ

the supraindex HW indicates that this expression has been
derived considering the IR hard-wall cutoff in the metric
r0 ¼ R2=z0. Also, we have

F ðx;Q;Q0Þ ¼ 1 − 2ðπρτbÞ1=2eη2ðx;Q;Q0Þerfcðηðx;Q;Q0ÞÞ;
ðA47Þ

and

ηðx;Q;Q0Þ ¼ log ðQ0Qz20Þ þ ρτbffiffiffiffiffiffiffi
ρτb

p ; ðA48Þ

where

τbðx;Q;Q0Þ ¼ log

�
ρQ
2Q0x

�
; ðA49Þ

is a longitudinal boost.
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The parameter Q0 is approximately r0=R2, being r0=R2

the support of the Dirac delta function used to approximate
the hadron impact factor [11]. Therefore, r0 should be of the
order of the hadron size and Q0 must be of the order of the
proton mass. In addition, the virtual-photon impact factor is
also approximated by a Dirac’s delta function peaked at
Q ≈ r=R2. The parameter ρ is related to the ’t Hooft
coupling ρ ¼ 2=λ1=2t’Hooft, and z0 ≡ R2=r0 is the IR cutoff
of the gauge theory (Λ≡ r0=R2). Thus, there is a clear
physical interpretation of these parameters.

3. The holographic-A Pomeron
and the polarized function gp1

In order to study the g1 helicity function let us firstly very
briefly discuss where it comes from, by considering the
DIS differential cross section corresponding to polarized
charged leptons scattered off polarized hadrons. We con-
sider a final polarized lepton in the solid angle dΩ and in
the final energy range ðE0; E0 þ dE0Þ

d2σ
dΩdE0 ¼

α2em
2Mq4

E0

E
lμνWμν; ðA50Þ

in the laboratory frame [55]. Thus, the hadron four-
momentum is Pμ ¼ ðM; 0Þ of mass M, and the incoming

and outgoing lepton four-momenta are kμ ¼ ðE; k⃗Þ and

k0μ ¼ ðE0; k⃗0Þ, respectively.
This expression assumes the exchange of a single virtual

photon between the incoming lepton and the hadron.
The differential cross section is defined in terms of the
so-called leptonic tensor lμν and the hadronic tensor Wμν.
The virtual photon probing the hadron structure carries
four-momentum qμ ¼ kμ − k0μ. The Bjorken variable is
defined as

x ¼ Q2

2P · q
; ðA51Þ

where 0 ≤ x ≤ 1 corresponds to its physical range. In the
DIS limit Q2 becomes very large, while x is kept fixed. For
a spin-1=2 baryon one may write the following decom-
position for the hadronic tensor [55,56]:

Wμν ¼ WðSÞ
μν ðq; PÞ þ iWðAÞ

μν ðq; P; SÞ; ðA52Þ

where the (Lorentz-index) symmetric part WðSÞ
μν includes

the spin-independent structure functions F1ðx;Q2Þ and
F2ðx;Q2Þ, and the spin-dependent ones g3ðx;Q2Þ,
g4ðx;Q2Þ, and g5ðx;Q2Þ. On the other hand, the

(Lorentz-index) antisymmetric part WðAÞ
μν in the general

expression contains the so-called antisymmetric structure
functions g1ðx;Q2Þ, g2ðx;Q2Þ, and F3ðx;Q2Þ.

Using the optical theorem, which relates the forward
Compton scattering amplitude to the DIS cross section, it
follows that

WðSÞ
μ ¼ 2πIm

h
TðSÞ
μν

i
and WðAÞ

μν ¼ 2πIm
h
TðAÞ
μν

i
;

with

Tμν ≡ i
Z

d4xeiq·xhPjT̂fJemμ ðxÞJemν ð0ÞgjPi; ðA53Þ

where Jemμ represents the electromagnetic current inside the
hadron state jPi.
In QCD the functions g3, g4, g5, and F3 do not appear for

electromagnetic DIS. However, considering an IR defor-
mation in N ¼ 4 supersymmetric Yang-Mills theory, F3 is
nonzero [18,57,58]. In this specific situation massless
Nambu-Goldstone modes appear from the spontaneous
breaking of the R-symmetry [57] ofN ¼ 4 SYM. It allows
for a contribution to the g1ðx;Q2Þ structure function which
is obtained by using the relation g1ðx;Q2Þ ¼ F3ðx;Q2Þ=2.
For more details of these calculations we refer the reader to
Refs. [18,57,58].
QCD andN ¼ 4 SYM are different theories, specifically

N ¼ 4 SYM theory contains non-Abelian SUðNcÞ gauge
fields (which represent the gluonic sector of this theory),
gaugino fields, and six real scalar fields, all transforming in
the adjoint representation of the gauge group SUðNcÞ.
However, within the parametric regimes of Q2 and x that
we are interested in, the dominant contribution for both
theories to the DIS process comes from the gluonic sectors,
which are similar in both theories. Therefore, the behavior
of the BPST and the holographic-A Pomerons turns out to
be universal, while the model dependence is related to the
IR deformation and the hadron impact factor.
In the work [18] it has been obtained the helicity

structure function g1. This equation was obtained assuming
that the kernels for j ≈ 1 (Reggeized gauge field exchange)
and j ≈ 2 (Reggeized graviton exchange) can be approx-
imately described in the same way [18]. There are
important changes of this derivation with respect to the
derivation of the symmetric function F2, since in the
t̃-channel there is a Reggeized gauge field exchange instead
of a Reggeized graviton. Therefore, for t < 0 and
0 < jtj ≪ s, which corresponds to the UV region of the
gauge theory leads to jMax ¼ 1. The corresponding expres-
sion for g1ðx;Q2Þ is

gA4PomeronHW
1 ðx;Q2Þ

¼ Cρ−1=2eð1−
ρ
4
Þτb

τ1=2b

�
e−

log2ðQ=Q0Þ
ρτb þ F ðx;Q;Q0Þe−

log2ðQQ0z2
0
Þ

ρτb

�
:

ðA54Þ
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Notice that the parameters ρ, Q0 and z0 should be fixed by
the fitting of FBPSTHW

2 ðx;Q2Þ to data, since the physical
meaning of them is the same in both structure functions.

Then, there is only one free parameter to fit to gp1 data, the
overall constant C. Details of this derivation are given
in Ref. [18].
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