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A salient feature of supercooled liquids consists in the dramatic dynamical slowdown they un-
dergo as temperature decreases while no significant structural change is evident. These systems
also present dynamical heterogeneities (DH): certain molecules, spatially arranged in clusters, relax
various orders of magnitude faster than the others. But, again, no static quantity (like structural or
energetic measures) shows strong direct correlations with such fast-moving molecules. In turn, the
dynamic propensity approach, an indirect measure that quantifies the tendency of the molecules to
move in a given structural configuration, has revealed that dynamical constraints indeed originate
from the initial structure. Nevertheless, this approach is not able to elicit which structural quantity
is in fact responsible for such behavior. In an effort to remove dynamics from its definition in favor
of a static quantity, an energy-based propensity has also been developed for supercooled water, but
it could only find positive correlations between the lowest-energy and the least-mobile molecules,
while no correlations could be found for those more relevant mobile molecules involved in the DH
clusters responsible for the system’s structural relaxation. Thus, in this work we shall define a
defect propensity measure based on a recently introduced structural index that accurately charac-
terizes water structural defects. We shall show that this defect propensity measure provides positive
correlations with dynamic propensity, being also able to account for the fast-moving molecules re-
sponsible for the structural relaxation. Moreover, time dependent correlations will show that defect
propensity represents an appropriate early-time predictor of the long-time dynamical heterogeneity.

I. INTRODUCTION

When rapidly cooled below their melting point, most
liquids bypass crystallization and enter a supercooling
regime characterized by a strong dynamic slowing down
until eventually ending up as a metastable amorphous
solid, i.e., a glass[1–3] (strictly, while amorphous ices
are glasses at a local scale, it has been found that the
large-scale density fluctuations keep decreasing well be-
low the temperature of freezing of diffusional and rota-
tional motion[4]). A salient feature of the supercooled
liquid state is the presence of dynamical heterogeneities
(DH), that is, its local dynamics can differ in orders of
magnitude from one region of the sample to another[5–
12]. Indeed, the structural or α-relaxation is triggered
by certain fraction of the particles that perform large
displacements on the order of the interparticle distance,
while the rest of the system is basically immobile, and
this set of mobile particles is found to be clustered in
space (DH cluster)[5–13]. But strikingly, it has not been
possible to single out a clear structural source respon-
sible for such a notable spatial variation of the dynam-
ics since different quantities, like various local structural
measures, free volume, potential energy of the initial con-
figuration, etc., have failed to strongly correlate with lo-
cal dynamics [14–17]. Indeed, this lack of a specific static
correlator to predict the dynamics resulting form a given
initial configuration has recently stimulated the use of
machine learning methods[18–26]. A beautiful develop-

ment in this field was the introduction of the concept of
dynamic propensity[14–16]. This measure implies the de-
termination of the tendency of the particles to move away
from their original position and is calculated by means
of diverging molecular dynamics runs originated from a
common initial configuration. This indirect approach re-
vealed that the spatial correlations of mobility that define
the dynamical heterogeneities are indeed originated from
the initial structural configuration, thus revealing that
a causal link between structure and dynamics effectively
exists, but it does not tell us which particular structural
properties are actually responsible. Additionally, it has
been shown that the short-time propensity, which repre-
sents an estimator of the particle’s Debye-Waller factor,
represents a good early-time predictor of the long time-
dynamic heterogeneity[15, 27, 28].

In turn, water is a system of utmost importance for
which the occurrence of slow and heterogeneous dynam-
ics (even above the melting point) becomes determinant
for many central fields[1, 29–39]. And provided water is
a liquid with directional interactions (hydrogen bonds)
which promote local order, it seems reasonable to try
to search for such an elusive link between structure and
dynamics within its supercooled regime. Additionally,
water structural defects are intuitively expected to play
a role in its glassy dynamics and, thus, an energetically-
based indicator, the V4 [40] index, has been recently de-
veloped to correct overestimations of distorted configu-
rations in which incurred previous indicators[41]. Cor-
relations of different local structural measures (including
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V4) with dynamical heterogeneities have thus been sought
but, at best, they have only produced mild results even
in the case of V4[17, 42–45].This might be due to the fact
that water defects are short-lived and, thus, a given initial
configuration might not provide a good representation of
the local structural constraints. Faced with this inabil-
ity to find a strong direct correlation between structure
and dynamics, a very interesting work[17] took the indi-
rect approach to also define a propensity measure based
on potential energy which was then correlated with dy-
namic propensity. However, positive correlations could
only be found between the less mobile molecules and the
molecules with lower potential energy. This might al-
low to identify “frozen” regions in the sample but not
the molecules engaged in DH clusters which are respon-
sible for the structural relaxation of the system. Thus,
this energetic-propensity measure is not able to predict
relevant glassy relaxation events.
Within this context and armed with our recently de-

veloped structural index[40], in this work we shall de-
fine a defect propensity measure. This quantity will be
shown to indeed provide positive correlations with dy-
namic propensity. Moreover, by studying the time de-
pendence of its predictive capability, we shall show that
defect propensity represents an excellent early-time pre-
dictor of the long-time dynamic heterogeneity, compara-
ble to the short-time dynamic propensity. Finally, the
three-dimensional distribution of the high defect propen-
sity molecules will be shown to nicely coincide with that
of the high dynamic propensity ones, thus revealing the
ability of this new measure to signal the spatial location
of the DH clusters.

II. METHODS

A. Molecular dynamics simulations

We performed molecular dynamics (MD) simulations
of the TIP4P/2005 [46] model of water by means of the
GROMACS package version 5.1.1 [47]. We constrained
bonds with the LINCS algorithm and the long range elec-
trostatics was accounted for with the PME method. We
used a modified Berendsen thermostat and a Parrinello-
Rahman barostat at 1 bar and the time step was 2
fs. Cubic boxes containing N = 1000 water molecules
with periodic boundary conditions and a cutoff of 1nm
for the short range forces were employed. This system
size enables us to employ the dynamic propensity ap-
proach for which a large number of different trajectories
(1000) are generated from a common origin thus building
an isoconfigurational ensemble. After equilibrating for
timescales much larger than the α relaxation (when the
self-intermediate scattering function has decayed to 1/e),
the production runs were generated. We studied a sys-
tem at P=1 bar and a supercooling temperature T=246K
(below the melting point of this system), but the results
are similar for other supercooling temperatures. Results

are averaged over 10 different replicas. At this tempera-
ture, the mean squared displacement, MSD, of the system
presents a short-time ballistic and a long-times diffusive
regimes[48, 49], separated by a caging regime (a plateau
in the MSD) that follows a non-gaussian dynamically het-
erogenous behavior. This behavior is most prominent at
a timescale called t∗ (when the non-gaussian parameter
is maximal[48], in our case, t∗ = 5ps). This timescale
is located close to the end of the MSD plateau (at the
beginning of the diffusive regime) and is lower (in around
one order of magnitude) than the structural or α relax-
ation time. Mobile molecules are classified as that whose
displacement at time t∗ is larger than a threshold that is
defined as the value at which the van Hove function (the
system’s displacements distribution) at such time exceeds
a Gaussian distribution with the same mean value. In
practice, for temperatures within the supercooled regime,
mobile molecules could be selected as the ones that have
moved more than around 2Å within the time interval
[0, t∗] [50]. These molecules (only 5 to 10% of the sam-
ple) define the dynamical heterogeneities (DH) and are
found to be clustered in space. These DH clusters have
been shown[50] to present open-like structures similar to
the strings typical of binary Lennard-Jones systems[51]
but with more branching.

B. The V4 structural indicator

The calculation of the V4 index [40] for a central
molecule i implies the computation of all its pair-wise
interactions Vij , j 6= i to sort them in increasing order-
ing regarding their intensity. V4(i) is then the fourth
lowest Vij . A good local tetrahedral arrangement implies
a V4(i) value around a linear hydrogen bond (HB) energy,
while a distorted local order would produce a higher V4(i)
value. When applied combined with energy minimiza-
tions (that is, on configurations subject to a minimiza-
tion protocol like steepest-descent to reach the so-called
inherent structures, IS), V4 yielded clear bimodal distri-
butions for different water models [40] thus enabling an
accurate classification of water molecules in tetrahedral
(T, structured) or defect (D, unstructured) molecules.
In practice, the index, employed at the IS scheme, clas-
sifies molecules with V 4(i) ≤ −12kJ/mol as T while D
molecules are that which present a higher index value.
Thus, V4(i) is able to discriminate true defects from mere
thermally deformed configurations.

C. The dynamic and defect propensity measures

The isoconfigurational ensemble (IC) [14] is built by
a set of equal-length MD runs starting from the same
initial configuration (at initial time t=0) but each one
with molecular momenta randomly chosen from a Boltz-
mann distribution at the corresponding temperature. At
the supercooled regime, the different IC runs are diver-
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gent and each one presents a different DH cluster since
mobility is not reproducible from run to run[14]. The
dynamic propensity of a molecule within the time inter-
val [0, t] is calculated as [14]: Pdyn(i, t) =< ∆r

2

i (t) >IC

(where < ... >IC implies an average over all the runs
of the IC and ∆r

2

i (t) = ∆r
2

i = (ri(t = t) − ri(t = 0))2

is the squared displacement of molecule i within [0, t]).
This function measures the tendency of a molecule to
be mobile, that is, to move away from the initial con-
figuration. At low temperatures within the supercooled
regime, it is found that high propensity molecules are
not scattered uniformly throughout the sample but tend
to be spatially arranged in rather compact clusters [14–
16, 27, 28, 44]. If Pdyn(i, t) is calculated at very short
times (well within the caging regime of the MSD), it is
found that it correlates well with the result of Pdyn(i, t) at
larger times commensurable with the α relaxation, thus
revealing the fact that the short-time dynamics (which
represents a good estimation of the system’s Debye-
Waller factors), is able to predict the system’s long-time
dynamic heterogeneity[15, 27, 28].
In the same spirit as the dynamic propensity, Pdyn,

we now define a defect propensity, Pdef . For the dif-
ferent IC runs, each molecule i at time t is classified
as D or T and its structural state, S(i, t), is assigned
a value equal to S(i, t) = 1 if it resides in a D state
(defect) at time t or S(i, t) = 0 if it is in a T state.
Thus, we define a defect propensity, Pdef , similarly to
Pdyn: Pdef (i, t) =< S(i, t) >IC . This measure quanti-
fies the tendency of a given molecule to be defective at
time t in the IC ensemble (different MD runs) that starts
from a fixed initial configuration. Thus, it reflects the
constraints imposed by the initial configuration on the
structural state at later times during the dynamical re-
laxation.

III. RESULTS AND DISCUSSION

FIG. 1: Typical time evolution of V4 for a few initially
a) D-molecules and b) T-molecules.

For illustrative purposes, Fig. 1 shows the time evo-
lution of the V4 index for a small set of molecules that,
at the initial time of a typical MD run, are either D
(V4(i) value above the dashed line of Fig. 1) or T (V4(i)
value below the dashed line). This plot shows that ini-
tially defective molecules tend to alternate between D
and T states (defects are short-lived) and, thus, a given
initial configuration might not provide a good represen-
tation of the defective regions. This fact explains why di-
rect correlations between structural indices, also includ-
ing V4(i), could only provide partial correlations with
dynamic propensity [17, 42–45]. In turn, the initially
structured, T, molecules tend to reside for long times
in their structured state (some molecules also experience

certain short visits to D states, but they are minority).
Fig. 2 displays the probability distributions for the dy-

namic and defect propensities at t = t∗ and at t = 0.1t∗.
Both measures show non-gaussian distributions with a
tail towards large values implying the existence of high
propensity molecules. In turn, in Fig. 3 we correlate dy-
namic and defect propensities at t = t∗ for 10 different
replicas each one comprising 1000 IC runs. The existence
of a good correlation between Pdef (t

∗) and Pdyn(t
∗) for

the different molecules is evident from such contour plot
graphs. This means that the molecules that tend to be
mobile (take part of the DH cluster) are expected to show
good coincidence with the molecules that tend to be de-
fective during the structural relaxation. We also compare
the short-time (0.1t∗) with the long-time (t∗) dynamic
propensities, making evident the existence of a positive
correlation (this correlation with the short-time propen-
sity would still hold for larger timescales within the α
relaxation time[15, 27, 28]). This means that the short-
time propensity represents a good early-time predictor of
the system’s dynamical heterogeneities.

FIG. 2: Defect propensity distributions, Pdef (t), and
dynamic propensity distributions, Pdyn(t), for t = 0.1t∗

(squares) and t = t∗ (circles)

FIG. 3: Top: Correlations between Pdyn(t) at short
(t = 0.1t∗) and long (t = t∗) times; Bottom:

Correlations between defect propensity and dynamic
propensity at time (t = t∗). We show contour plots that
depict regions with different density. Thus, the inner
region enclosed by the black line (number 95 in the
accompanying scale) is characterized by having more
than 95 points per unit area (high density of points)
while the outer red line (number 5) encloses all the

region where there are more than 5 points per unit area.

To quantify the predictive capability of the dynamic
and also of the defect propensities as a function of time,
we calculated Pearson correlation coefficients between
the different quantities. This measure, evaluated at dif-

ferent times, is defined by: ρ(t) =
∑N

i=1
ρi(t), where:

ρi(t) =
[Xi(t)− 〈X(t)〉]

{

∑N
l=1

[Xl(t)− 〈X(t)〉]2
}1/2

·
[Yi(t

∗)− 〈Y (t∗)〉]
{

∑N
l=1

[Yl(t∗)− 〈Y (t∗)〉]2
}1/2

.

When Xi(t) is Pdyn(i, t) and Yi(t
∗) is Pdyn(i, t

∗), we are
correlating the dynamic propensities at different times t t
with the dynamic propensities at time t∗. As t increases
from t = 0 to t = t∗, Fig. 4 shows that the Pearson
coefficient quickly grows and gets ρ = 1 at t∗ since the
function always compares with the dynamic propensity
at such final time. The plot shows the ability of the
short-time dynamic propensity at predicting the dynam-
ical behavior at later times. Indeed, it is found that the
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short-time dynamic propensities are very good predic-
tors of the long-time DH: For example, at t = 0.1t∗ ρ is
around 0.6. However, for very short times, the correla-
tion falls: For example, at 0.02t∗ we find that ρ < 0.3. Of
course, this is a very short timescale, located at the be-
ginning of the caging regime in the MSD plot. In Fig. 4
we also correlate Pdef (i, t), the defect propensity at time
t with Pdef (i, t

∗) (that is, in this case Xi(t) is Pdef (i, t)
and Yi(t

∗) is Pdef (i, t
∗)) . From such plot we can learn

that the correlation is excellent at all times. Indeed,
the time evolution of the defect propensity correlation is
faster than that of the dynamic propensity since at 0.02t∗

ρ ≈ 0.6. This means that the long-time defectiveness of
the sample is predictable from the very beginning. Fi-
nally, in Fig. 4 we also correlate Pdef (i, t) with Pdyn(i, t

∗)
(by making Pdef (i, t) as Xi(t) and Pdyn(i, t

∗) as Yi(t
∗))

to see how well the early time defects can predict the
dynamical heterogeneities of the system. From direct
inspection of Fig. 4 it is evident that the curve grows ex-
tremely quickly. The final value is not unity but a bit be-
low ρ = 0.6 since here at t = t∗ we are comparing differ-
ent quantities: defects with mobilities. However, such a
final value speaks of a nevertheless good correlation since
it falls around the maximum correlation values found in
machine learning studies of glass-forming liquids[18]. It
also makes sense that the curve tends to a value lower
than unity when we bear in mind the open-like nature
of the DH clusters [5–7, 9, 10, 50] and the intermittent
nature of the glassy relaxation events (large periods of
inactivity to then suffer rapid bursts of mobility[13, 27])
Thus, not all the molecules comprising the mobile ob-
ject need to be defective at times before the relaxation
event. It is expected that in each IC run some defective
molecules alternate between D and T states as shown in
Fig. 1, to perform a coherent collective motion at a later
time. Once these molecules perform their displacements
(they move roughly more than 2Å), they create defec-
tive environments to previously non-defective molecules
which immediately move to complete the DH cluster.

In turn, what is even more notable from Fig. 4 is
the quick growth of the Pdef (t) vs Pdyn(t

∗) curve, which
speaks of the fact that the short-time defects work even
better as very early predictors of the final dynamical het-
erogeneities than the short-time dynamic propensity it-
self. The Pdef (t) vs Pdyn(t

∗) curve starts at higher cor-
relation values than that of the Pdyn(t) vs Pdyn(t

∗) (even
when, of course, it is later on surpassed since its satura-
tion value is lower than unity). We have also included
a normalized curve Pdef (t)/Pdef (t

∗) vs Pdyn(t
∗), which

displays a behavior similar to the excellent correlation
of the Pdef (t) vs Pdef (t

∗) curve. Thus, by defining a
defect propensity mesure we have been able to indeed
reveal the existence of a strong correlation between high-
mobility and high-defectiveness, a result that could not
be achieved by the previously defined energetic propen-
sity measure[17].

In Fig. 5 we show the spatial arrangement of the dif-
ferent high propensity molecules for one typical IC run.

Namely, we plot the three-dimensional (3D) distribu-
tion of the 5% highest propensity molecules for Pdyn(t

∗),
Pdyn(0.1t

∗), Pdef (t
∗) and Pdef (0.1t

∗). From these plots it
is evident that the different sets of molecules are located
in the same spatial region including several coincidences,
a fact that speaks of the close similarity between the dif-
ferent high propensity regions. We note that the study of
total correlation fucntions for the D molecules together
with partial radial distribution functions has evidenced
certain clustering tendency for the D molecules[40] (also,
D molecules are the only ones that can locate at around
3.5 Å of any other molecule, thus populating the intersti-
tial position of the radial distribution function). This is
consitent with the rather compact nature of the clusters
of Fig. 5.

FIG. 4: Pearson correlation coefficients for the
correlation of the different propensity measures. Red

circles: Pdyn(t) and Pdyn(t
∗); black squares: Pdef (t) and

Pdef (t
∗); purple triangles: Pdef (t) and Pdyn(t

∗); blue
stars: Pdef (t)/Pdef (t

∗) and Pdyn(t
∗)

FIG. 5: Top right: 3D distribution of the 5% highest
propensity molecules for Pdyn(t

∗) (water molecules are
simple depicted as spheres, colored in red). Top left:
Distribution of the molecules within the 5% of highest
Pdyn(0.1t

∗). The water molecules are colored colored in
yellow but, when additionally to bellonging to the 5% of

highest Pdyn(0.1t
∗) they also take part of the 5%

highest propensity in Pdyn(t
∗), they are instead painted

in green color. Bottom right: Set of molecules within
the 5% highest Pdef (t

∗) (yellow spheres, unless they
also belong to the 5% highest propensity in Pdyn(t

∗)
when they are painted in green). Bottom left: 5%

highest Pdef (0.1t
∗) set (yellow spheres, or green in the

case they also take part of the 5% highest Pdyn(t
∗) set).

In all cases, the rest of the molecules of the system are
depicted in a very light gray color.

Finally, in Fig. 6 we present the curve n(t), calculated
as the fraction of molecules that are within the 5% of
the molecules with the largest Pdyn(t), and within the
5% of the molecules with largest Pdef (t) for the replica
shown in Fig. 5. Thus, the final point (t = t∗) of this
curve would be the number of green molecules divided by
the total number of molecules in the bottom-right box of
Fig. 5 (similarly we can get the value at t = 0.1t∗t from
the bottm-left box). The function grows up to around
1/4 since, as already indicated, there is a coincidence be-
tween regions of high dynamic propensity and high defect
propensity but not all the molecules coincide (note that
the probability to get such a coincidence on a random
basis is almost completely null). We recall that the high
defect propensity molecules predict the events triggering
the DH clusters but not the whole object since certain
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DH molecules are not defective on times previous to the
relaxation event but get defective and move once a neigh-
boring defective molecule has managed to move within
the event triggering the DH cluster.

FIG. 6: Function n(t) depicting the fraction of top 5%
high defect propensity molecules that are also within

the top 5% high dynamic propensity ones for the replica
shown in Fig. 5.

Before concluding, it is worth noting that a recent work
has shown that close to water’s second critical point, sev-
eral structural indicators nicely correlate with the sys-
tem’s density, even displaying almost identical distribu-
tions of fluctuations[52]. However, such strong equiva-
lence between different structural descriptors stems for
the fact that the system is close to the critical point[52]
and does not hold when we are far from it[53]. The latter
is the case of the present study since we are interested
in a relaxation regime dominated by glassy behavior ra-
then than by critical fluctuations. Additionally, to de-
fine a Defect Propensity we needed to accurately char-
acterize water defects at the single-molecule level and,
thus, the existence of a clear bimodal index distribu-
tion (two maxima separated by a deep minimum) was
essential. This requisite has not been met by most pre-
vious indicators until V4 [40] which fulfills it both for the
supercooled regime and for the liquid above the melt-
ing point. Moreover, the distribtions of the energy per
molecule of the structured (T) and defective molecules
(D) are well separated for V4 at the inherent structures
scheme (while they are are less separated when, instead
using energy minimizations, they are calculated at the
real dynamics)[40]). This fact underlies the behavior of
the time evolution of the value of V4 illustrated in Fig. 1
which safely enabled us to perform the digitalization of
the structral state S(i, t) = 1 used for the definition of

the Defect Propensity. The only other structural indica-
tor whose distribution has displayed a rather similar bi-
modality is the local structure index (LSI) applied at the
inherent dynamics[53], but the population of the unstruc-
tured state has been found to be dominant even in a great
part of the supercooled regime and, hence, this indicator
overestimates the population of defect molecules[53] and
precludes a proper definition of Defect Propensity.

IV. CONCLUSIONS

Based on the recently introduced V4 structural indi-
cator for supercooled water, we have defined a defect
propensity measure. At variance from a previously de-
fined static propensity measure[17], the use of V4 enables
the defect propensity to appropriately discriminate the
role of water structural defects since it employs potential
energy minimizations to filter out the randomizing effect
of the thermal fluctuations. We have shown that this de-
fect propensity measure indeed correlates positively with
the previously defined dynamic propensity of the water
molecules. Moreover, by studying the time evolution of
the defect propensity measure, we have shown that it is
able to act as an excellent (very) early-time predictor of
the later dynamical events responsible for the system’s
structural relaxation. In the same trend, the spatial dis-
tribution of high defect propensity molecules was found
to nicely coincide with that defined by the cluster of the
dynamical heterogeneities, a goal that has been out of
reach for long times in spite of copious efforts[17].
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