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Antigen cross-presentation is a vital mechanism of dendritic cells and other
antigen presenting cells to orchestrate the priming of cytotoxic responses
towards killing of infected or cancer cells. In this process, exogenous antigens
are internalized by dendritic cells, processed, loaded onto MHC class I molecules
and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi
Intermediate Compartment resident SNARE protein that, in partnership with
sintaxin4, coordinates the recruitment of the transporter associated with
antigen processing protein and the peptide loading complex to phagosomes,
where antigenic peptides that have been proteolyzed in the cytosol are loaded in
MHC class I molecules and transported to the cell membrane. The silencing of
Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of
C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects
other antigen presentation routes nor cytokine production and secretion. Mice
with Sec22b conditionally silenced in dendritic cells (Sec22b−/−) show deficient
priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to
anti-checkpoint immunotherapy. In this work, we show that Sec22b−/− mice elicit
a deficient specific CD8+ T cell response when challenged with sublethal doses of
Trypanosoma cruzi trypomastigotes that is associated with increased blood
parasitemia and diminished survival.
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1 Introduction

Dendritic cells (DCs) are the most competent cells for priming
cytotoxic CD8+ T lymphocytes, as they can efficiently present
antigenic peptides associated with major histocompatibility
complex class I (MHC class I) molecules together with other
signals, such as cytokines and costimulatory molecules expressed
in response to the environment and the antigenic source (Jung
et al., 2002; Reis E Sousa, 2006; Zammit and Lefrançois, 2006).
Most cells, including DCs, can present intracellular antigens loaded
onto MHC class I molecules through the endogenous MHC class I
antigen presentation pathway, also known as direct presentation
(DPt). These intracellular antigens are processed in the cytosol by
the proteasome, transported by the transporter associated with
antigen processing (TAP) to the endoplasmic reticulum (ER) and
trimmed by endopeptidases. The resulting peptides are loaded onto
MHC class I molecules and recruited to the cell membrane. However,
DCs can also internalize foreign antigens from the extracellular
milieu, process them and present them bound to MHC class I
molecules to stimulate naïve CD8+ T cell responses, a process
known as cross-presentation (XPt) (Joffre et al., 2012; Blum et al.,
2013; Kotsias et al., 2019). DCs are particularly efficient antigen
presenting cells, as they show unique characteristics -such as
delayed phago-lysosomal fusion and early recruitment of the
NOX2 to phagosomes-that promote a mild degradative niche for
antigens, hence favoring antigen processing and presentation instead
of pathogen elimination (Savina and Amigorena, 2007; Alloatti et al.,
2015; 2016; Embgenbroich and Burgdorf, 2018).

Within the different subpopulations of DCs, conventional type
1DCs (cDC1) have been characterized as efficient cross-presenting cells
in vivo in both humans and mice (Den Haan et al., 2000; Bedoui et al.,
2009; Balan et al., 2019). In these cells, two main XPt routes have been
described: vacuolar and cytosolic, according to the compartment where
antigen processing occurs. However, the cytosolic pathway has been
studiedmore and has collectedmore experimental evidence (Cruz et al.,
2017). In the cytosolic pathway, internalized antigens are partially
degraded in the phagosome or endosome and are then translocated to
the cytosol where they are ubiquitinated and further processed by the
proteasome. The peptides obtained are transported by TAP to either
the ER or back to the phagosome to be loaded onto MHC class I
molecules (Ackerman et al., 2003; Joffre et al., 2012;Wagner et al., 2012;
Nair-Gupta and Blander, 2013; Cruz et al., 2017; Kotsias et al., 2019).
Peptide loading in phagosomes require both TAP and the peptide-
loading complex (the rest of the machinery involved in transporting
and loading the peptides onto MHC class I molecules) to be recruited
from the ER to the endocytic or phagocytic compartments, and in this
process the SNARE protein Sec22b plays an essential role. Sec22b is a
resident protein of the ER-Golgi intermediate compartment, and
throughout the interaction with the SNARE protein syntaxin
4 –localized in phagosomes–promotes the fusion between these two
compartments and thus the recruitment of ER cargo to phagosomes.
(Cebrian et al., 2011).

A few animal models have been developed to study the relevance
of XPt in the priming of immune responses in vivo. One of them is the
Batf3−/−mouse line, which lacks the cDC1 subset (Hildner et al., 2008).
These mice show impaired antigen XPt but also a decreased capacity
to secrete IL-12 and other important pro-inflammatory cytokines.
Recently, a mouse model with WDFY4 conditionally silenced in

cDC1s showed deficient XPt but a normal cytokine profile
(Theisen et al., 2018). Our group has developed and characterized
another mouse line with Sec22b conditionally excised in DC
populations, which presents a clear phenotype of impaired antigen
XPt but functional DPt and classic presentation in MHC class II
molecules (Alloatti et al., 2017). These mice (from now on Sec22b−/−)
fail to cross-prime CD8+ T cells to initiate responses against dead cells
and tumor antigens if compared to their littermates (from now on
Sec22b+/+) (Alloatti et al., 2017), but to our knowledge they were not
studied in the context of infectious diseases that require cytotoxic
responses to control the pathogen replication. For this reason, in this
work we set out to further characterize this line of mice in a context of
infection with the intracellular parasite Trypanosoma cruzi, causative
agent of Chagas’ disease in human.

Inmammals,T. cruzi trypomastigotes infect host cells establishing
a parasitophorous vacuole that is subsequently lysed, releasing the
newly formed amastigotes to the cytosol of the infected cell, where
they replicate. Like in many intracellular infections, CD8+ T cells are
essential effectors of the immune response against T. cruzi, as
demonstrated by experimental evidence (Tarleton, 1990; Tarleton
et al., 1992; 1996; Rottenberg et al., 1993). This CD8+ T cell response is
robust and is critical for the control of the parasite load, although it
develops more slowly when compared to the response against other
infections (Tarleton et al., 1994; Tzelepis et al., 2006). Additionally,
during T. cruzi infection, the cytotoxic response is biased to certain
immunodominant epitopes (e.g., TsKb20 in C57BL/6 mice) derived
from the T. cruzi family of trans-sialidase proteins (Rosenberg et al.,
2010; Tarleton, 2015; Ferragut et al., 2021). Although the CD8+ T cell
response has been extensively studied, the contribution of the different
mechanisms of antigen presentation (DPt or XPt) to elicit the
response during parasitic infection has not been addressed.
Besides, antigen XPt is important in the development of the
immune response against infection with other related parasites
such as Toxoplasma gondii and Leishmania major, and Batf3−/−

mice are extremely susceptible to infection with these parasites
(Bertholet et al., 2006; Mashayekhi et al., 2011; Ashok et al., 2014;
Martínez-López et al., 2015). We thus aimed to characterize the
Sec22b−/− mouse line in the context of the infection with T. cruzi,
and thereby to contribute to the study of the role of XPt during this
parasitic infection. Analyzing spleens and lymph nodes from
Sec22b−/− mice infected with T. cruzi, we found that XPt is an
important mechanism in the priming of T. cruzi-specific CD8+

T cells. Furthermore, Sec22b−/− mice showed increased parasitemia
than Sec22b+/+ (littermate controls), and lost weight until they finally
died, while 100% of Sec22b+/+ mice survived at the time analyzed.

2 Materials and methods

2.1 Experimental animals

Mice were maintained with a supply of food and sterile water ad
libitum, exposed to a 12-h light/dark cycle in specific pathogen-free
conditions in the animal facility. Sec22b−/− and Sec22b+/+ male mice
were provided by the Curie Institute. All animals were 8–20 weeks
old. As per mice production, Sec22b−/− mice together with their
Sec22b+/+ littermates were generated by crossing Sec22bflox/WT mice
with CD11cCre mice. 25% of the progeny have the Sec22bflox/WT Cre+
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genotype. By means of another mating between mice obtained in the
first cross, Sec22bflox/flox Cre+ (Sec22b−/−) mice and Sec22bWT/WT Cre+

(Sec22b+/+) mice were generated. Sec22b−/− mice express the Cre
recombinase under the CD11c promoter (specific to DCs) which
catalyzes the ablation of an essential exon - flanked by LoxP cleavage
sites of the Cre recombinase, in Sec22bflox/flox mice - of the Sec22b
protein. Therefore, Sec22b−/− mice present a non-functional Sec22b
protein only in DCs (Alloatti et al., 2017). As a method of
euthanasia, a CO2 chamber was used followed by cervical
dislocation. All procedures were approved and performed
following the guidelines and recommendations of the animal
ethical committee (IUCAC) of the School of Medical Sciences of
the National University of Rosario (res. 6157/2018).

2.2 Parasites and infection

Sec22b−/− and Sec2b+/+ mice were intraperitoneally (IP) infected
with 2,000 blood trypomastigotes of T. cruzi Y strain. Previously, the
parasites were thawed, and inoculated into IFNγ receptor KO
C57BL/6 recipient mice as detailed in Sanoja et al., 2013; Castro
et al., 2007. After this initial passage, blood was collected and
trypomastigotes in the supernatant were obtained by
centrifugation for 10 min at 124 g. Another Sec22b+/+ male mice
were left uninfected (control group).

The infected mice were monitored analyzing their general
condition, corporal weight and parasitemia. For the latter, a 5 uL
sample of tail blood was placed on a slide, covered with a 22 × 22 mm
coverslip. Parasitemia was monitored by the Brener method as
described in (Brener, 1962).

2.3 Spleen and lymph node cell suspensions
preparation

At days 6, 10 and 13 post infection (pi), 4 mice from each group
were sacrificed and inguinal lymph nodes and spleen were harvested
in complete Roswell Park Memorial Institute medium (RPMI,
Thermo Fisher Scientific) containing 2 mM L-glutamine, 100 U/
mL penicillin, 100 μg/ml streptomycin and 0.1 mM non-essential
amino acids and supplemented with 5% Fetal Bovine Serum and

mechanically disrupted with a 70 µM-pore filter and syringe
plunger, at 4°C. After disruption, spleen suspensions were treated
with red blood cell lysis buffer (Gibco) for 3 min at RT. To count and
determine viable cells, Trypan Blue 0.4% (Gibco) was used.

2.4 Flow cytometry

Initially, the samples were incubated at 4°C for 1 h with Fc receptor
binding antibody (Invitrogen) to avoid non-specific binding. Each
staining was performed with 100,000 cells. The following antibodies
were used: anti-mouse CD3-Brilliant Violet, anti-mouse CD4-FITC,
anti-mouse CD8-PerCP Cy5.5, TsKb20 tetramer (H- 2K(b)-PE, NIH
Tetramer Facility), anti-mouse B220-APCCy7 and anti-mouseMHCII-
APCCy7. For the determination of T lymphocytes, CD3, CD4 and
CD8 were used as T cell markers, a DUMP exclusion channel was also
used using B22O, MHC II and the cell viability marker LIVE/DEADtm

near IR-fluorescent (Invitrogen). All antibodies were purchased from
eBioscience. For the staining, cells were incubated for 40 min at 4°C in
the dark. A BDFACSCantotm II flow cytometer was used, and data were
analyzed with FlowJo v10.8.1 software.

2.5 Statistical analysis

The statistical analysis was performed with the GraphPad Prism
9 software, differences with p-values <0.05 were considered significant.
Shapiro-Wilk test of normality was performed to decide the use of
parametric or non-parametric tests. The statistical tests used in each
case are indicated in the legends of the figures.

3 Results

3.1 The SNARE protein Sec22b participates in
the XPt of antigens from T. cruzi involved in
the priming of naïve CD8+ T cells during
parasite infection

To analyze the contribution of Sec22b-dependent XPt to elicit
CD8+ T cell responses in the context of T. cruzi infection, we designed

FIGURE 1
Experimental scheme. Male Sec22b+/+ and Sec22b−/− mice were IP infected with 2,000 trypomastigotes of the T. cruzi Y strain. As controls,
Sec22b+/+ mice were left uninfected. At days 6, 10 and 13 post infection four mice per group were euthanized and spleen and lymph nodes were
harvested to analyze the specific TsKb20-CD8+ T cell response by flow cytometry using tetramer staining.
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an experimental scheme as summarized in Figure 1. To assess the
response of specific effector CD8+ T cells, we used a fluorescent
multimer composed of four molecules of MHC class I (Kb allele)
loaded with the epitope TsKb20 (Rosenberg et al., 2010; Biscari et al.,
2022). Figure 2A shows the gating strategy used to determine splenic
specific CD8+ T cells. Dead cells, B lymphocytes, and myeloid cells
were discarded from subsequent analysis with a DUMP channel.
Then, on the CD3-positive population, CD4+ T lymphocytes were
discriminated from CD8+ T lymphocytes, and on the latter, TsKb20+

cells were quantified using the tetramer. As shown in Figure 2B, at day
6 pi, the population of TsKb20-specific CD8+ T cells was significantly
higher in the spleen of Sec22b+/+mice compared to Sec22b−/−mice and
the control group (uninfected Sec22b+/+ mice). No difference was
found between specific CD8+ T cells in spleens of Sec22b−/− mice and
the control group at day 6 pi. At days 10 (Figure 2C) and 13 pi
(Figure 2D), XPt-deficient Sec22b−/− mice primed significantly lower
TsKb20-CD8+ T cells compared with Sec22b+/+ littermates.

Interestingly, at day 6 pi Sec22b−/− mice were not able to mount
substantial levels of TsKb20-CD8+ T cells responses, whereas at days
10 and 13 pi, they raised a significant amount of specific T cells
response when compared with uninfected mice (although to a lesser
extent than in Sec22b+/+ mice, as mentioned). We have previously
shown that antigen DPt is fully functional in Sec22b−/−mice (Alloatti
et al., 2017). Therefore, the evident increase in the priming of CD8+

T cells at days 10 and 13 pi in Sec22b−/−mice is likely originated from
the DPt of T. cruzi antigens. Remarkably, the contribution of DPt to
mount the TsKb20-CD8+ T cells response -depicted in Figure 2E as
the ratio of TsKb20-CD8+ T cells in Sec22b+/+ (T cell response
primed from both DPt and XPt) and TsKb20-CD8+ T lymphocytes
in Sec22b−/− (T cell response primed only fromDPt)- increases as the
infection with T. cruzi progresses.

Flow cytometric analysis of inguinal lymph nodes-derived cells
is summarized in Figure 3A. The gating strategy was analogous to
that used for spleens. The response elicited in lymph nodes of

FIGURE 2
Analysis of the specific TsKb20-CD8+ T cells response in spleen. (A)Gating strategy used to analyze splenocytes at day 10 pi. After selecting singlets,
T lymphocytes were determined as CD3+ cells, discriminating from dead cells, B lymphocytes and myeloid cells using a DUMP channel. On the CD3+

population, CD8+ T cells were selected (as positive cells for the CD8 marker) which were then evaluated with the tetramer to measure specific TsKb20-
CD8+ T cells. Analysis of the specific TsKb20-CD8+ T cells (%) in spleen at day 6 p. i. (B) (p-values: Sec22b+/+ vs. Sec22b−/− 0.0100, Non-Infected vs.
Sec22b+/+ 0.0115, Non-Infected vs. Sec22b−/− 0.9948); day 10 p. i. (C) (p-values: Sec22b+/+ vs. Sec22b−/− 0.0035, Non-Infected vs. Sec22b+/+ <0.0001,
Non-Infected vs. Sec22b−/− 0.0042) and day 13 p. i. (D) (p-values: Sec22b+/+ vs. Sec22b−/− 0.0017, Non-Infected vs. Sec22b+/+ <0.0001, Non-Infected vs.
Sec22b−/− <0.0001). The analysis was performed using One way ANOVA with Tukey’s multiple comparison test, N = 4 (E) Ratio of the percentage of
specific TsKb20-CD8+ T cells found in Sec22b−/− mice over the percentage of TsKb20-CD8+ T cells obtained in Sec22b+/+ mice. All bar graphs represent
the mean with SEM of the parameter analyzed in each case.
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Sec22b−/− mice was significantly impaired at days 6 (Figure 3B) and
10 (Figure 3C) pi compared to Sec22b+/+ mice. However, at day 13 pi
the contribution of DPt to the priming of the TsKb20-CD8+ T cells
response completely compensated the deficiency caused by Sec22b
silencing (Figure 3D). The growing contribution of DPt to generate
specific effector T cells along T. cruzi infection is visualized in
Figure 3E.

3.2 Sec22b-mediated XPt is an important
mechanism for immune protection during
infection with T. cruzi

Next, to study the participation of XPt in the protective capacity
of the immune response against T. cruzi infection, Sec22b−/− and
Sec22b+/+ mice were IP infected with 2,000 trypomastigotes of the T.
cruzi Y strain. Subsequently, infected mice were evaluated over time
to monitor parasitemia, corporal weight and survival (Figure 4). As

expected, in Sec22b+/+ mice the parasite burden reached a maximum
in blood on day 13, whereas in Sec22b−/− mice it peaked earlier (at
day 10 pi) and remained higher during the experiment (Figure 4A).
As shown in Figure 4B, Sec22b−/− mice started losing weight and
their condition was deteriorating (not shown) until they finally died,
from day 30 pi. Conversely, Sec22b+/+ mice, that spontaneously
controlled parasitemia, survived during the time studied (up to
60 days). Our model with T. cruzi Y strain allows us to establish a
sub-lethal infection in C57BL/6 mice when parasites are
administered intraperitoneally (Sanoja et al., 2013). The results
presented here indicate that XPt in DCs dependent on the
Sec22b protein is necessary for the control of T. cruzi.

4 Discussion

During T. cruzi infection CD8+ T cells play a critical role in the
immune response, as mice depleted of CD8+ T cells using antibodies

FIGURE 3
Analysis of the specific TsKb20-CD8+ T cells response in lymph nodes. (A) Gating strategy used to analyze cells derived from lymph nodes at day
10 pi. As with splenocytes, CD3+ cells were selected, excluding dead cells, B lymphocytes, andmyeloid cells with a DUMP channel. CD8+ T cells were then
determined (as positive cells for the CD8 marker) and TsKb20-CD8+ T cells were determined as the tetramer positive population. Analysis of the specific
TsKb20-CD8+ T cells (%) in lymph nodes at day 6 p. i. (B) (p-values: Sec22b+/+ vs. Sec22b−/− 0.0263, Non-Infected vs. Sec22b+/+ 0.1194, Non-
Infected vs. Sec22b−/− 0.6087; day 10 p. i.) (C) (p-values: Sec22b+/+ vs. Sec22b−/− 0.0377, Non-Infected vs. Sec22b+/+ 0.0399, Non-Infected vs. Sec22b−/−

0.9993) and day 13 p. i. (D) (p-values: Sec22b+/+ vs. Sec22b−/− 0.0411, Non-Infected vs. Sec22b+/+ <0.0001, Non-Infected vs. Sec22b−/− <0.0001). The
analysis was performed using One way ANOVA with Tukey’s multiple comparison test, N = 4 (E) Ratio of the percentage of specific TsKb20-CD8+ T cells
found in Sec22b−/− mice over the percentage of TsKb20-CD8+ T cells obtained in Sec22b+/+ mice. All bar graphs represent the mean with SEM of the
parameter analyzed in each case.
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(Tarleton, 1990; Tarleton et al., 1994), as well as mice lacking
functional MHC class I molecules (β2-microglobulin-depleted,
Tarleton et al., 1992) or CD8 knockout mice (Rottenberg et al.,
1993), show higher susceptibility to infection and higher parasite
burden. However, even though the CD8+ T cell-mediated immunity
is vigorous, it is not sufficient to fully eliminate the pathogen from
the murine host. These important but deficient CD8+ T cell
responses are associated with epitope immunodominance (de
Alencar et al., 2007; Tzelepis et al., 2008; Rosenberg et al., 2010),
delayed kinetics of parasite-specific CTL responses -mainly related
to insufficient TLR activation of antigen presenting cells (Tarleton
et al., 1992; Padilla et al., 2009a; 2009b), immunosenescence
(Argüello et al., 2014) and a potential tolerogenic imprint to
infected DCs (Alba Soto et al., 2010; Poncini et al., 2010; 2015).
Some similarities have been described in humans, wherein patients
with whole-blood transcriptional signatures enriched in genes
related to CD8+ T cell cytotoxicity show reduced parasitism as
well as less severe chagasic chronic symptoms (Laugier et al.,

2017; Acosta Rodríguez et al., 2019). Also, during the chronic
phase, cardiac severity was associated with exhaustion of CD8+

T cells (Albareda et al., 2006). Such results highlight the
significance of effector CD8+ T cell responses for protection
during T. cruzi infection.

To date, many MHC class I-restricted epitopes have been
described in T. cruzi, being those derived from proteins of the
trans-sialidases family the most studied, in particular the epitope
TsKb20 (Martin et al., 2006; Tzelepis et al., 2008; Ferragut et al.,
2021). T. cruzi, unlike other parasites, has been shown not to
impair—indeed in some cases upregulate—antigen processing
and presentation in MHC class I, at least in vitro (Buckner et al.,
1997). Non-etheless, the contribution of both MHC class I antigen
presentation mechanisms (DPt or XPt) to mount CD8+ T cell
responses were not evaluated before, mainly due to the lack of
appropriate tools. As already mentioned, XPt is important in the
development of the CD8+ T cell response in other parasites related to
T. cruzi such as T. gondii and L. major (Bertholet et al., 2006;

FIGURE 4
Parasitemia, corporal weight and survival of infectedmice. (A) Experimental scheme. Sec22b−/− and Sec22b+/+ malemice (N = 4 each group) were IP
infected with 2,000 T. cruzi Y strain trypomastigotes. Blood parasitemia, corporal weight and survival were analyzed over time (up to day 60 pi). (B)
Parasitemia, expressed as parasites permL (and represented asmeanwith SEM), was determined in tail blood, as the number of parasites perml. Statistical
comparison was performed per day using the Mann-Whitney test, all p-values < 0.05 at days 10, 19, 21, 24, 26 and 28 dpi (days post infection). (C)
Corporal weight (g) measured at several days post infection and represented as box plot with line at mean. (D) Survival curves for Sec22b−/− and Sec22b+/+

mice. Statistical analysis was performed with Log-rank (Mantel-Cox) test, p-value: 0.0062.
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Mashayekhi et al., 2011; Ashok et al., 2014; Martínez-López et al.,
2015).

In this work we used the Sec22b−/− mouse line to assess the
impact of XPt during T. cruzi infection. We showed that Sec22b-
dependent XPt is important for mounting murine CD8+ T cell
responses (in particular, specific for TsKb20) which, in turn, are
essential for controlling infection with the T. cruzi Y strain, as
evidenced by increased parasitemia, decreased body weight and
decreased survival of XPt-impaired (Sec22b−/−) mice. This
deficient infection control is associated with a clear reduction
in the priming of early specific CD8+ T cell responses in
secondary lymphoid organs, although in lymph nodes the
CD8+ T cell response finally reaches similar values in both
Sec22b−/− and Sec22b+/+ mice at day 13 pi. According to the
intracellular life cycle of T. cruzi (Supplementary Figure S1A),
DCs can present different sources of parasite antigens: a) XPt of
antigens from internalized trypomastigotes before they reach the
cytosol (antigens dumped to the cytosol in step 3 of
Supplementary Figure S1A), b) DPt of antigens generated
during amastigote or trypomastigote replication, c) XPt of
dead parasites or parasite debris after cell lysis, that have
been phagocytosed by uninfected DCs, processed and
presented to activate CD8+ T cells (Supplementary Figure
S1B) and d) XPt of antigens obtained by the internalization of
infected or apoptotic tissue non-APC with parasitic peptides
loaded onto MHC class I molecules (Supplementary Figure S1C).
Sec22b possibly orchestrates the XPt of all antigen sources, either
in infected or uninfected DCs. Interestingly, we showed that as
the infection with T. cruzi develops, the priming of T. cruzi-
specific responses increases even in XPt-deficient mice, likely
promoted by the direct presentation of cytosolic antigens
generated upon amastigote intracellular replication.
Nevertheless, this compensation was not sufficient to control
the T. cruzi Y strain infection in XPt deficient mice, which would
otherwise trigger a sublethal infection (Sanoja et al., 2013). This
represents, to our knowledge, the first evidence of the relevance
of antigen XPt in the priming of CD8+ T cells during T. cruzi
infection.

According to the results obtained in this report, we consider
that the Sec22b−/− mouse line constitutes an appropriate model to
study the relevance of XPt in the development of the immune
response induced against different pathogens, without affecting
other important functions of DCs such as classical MHC class II
presentation, DPt or cytokine production (Mashayekhi et al.,
2011; Martínez-López et al., 2015). Although two main pathways
of XPt have been described—cytosolic and vacuolar (Cruz et al.,
2017) –, here we demonstrate that the cytosolic Sec22b
dependent-XPt plays a critical role in the activation of CD8+

T cells, an important branch of the immune response against the
infection caused by T. cruzi in mice and humans.

These findings are of relevance for the development of
vaccine strategies aimed to induce or boost cytotoxic
responses using adjuvants that specifically stimulate XPt.
Studies on vaccines that induce CD8+ T cell responses have
shown to be relevant for the generation of protective
immunity against T. cruzi infection (Araújo et al., 2005;
Miyahira et al., 2005; Hoft et al., 2007; Bustamante et al.,
2008; Bontempi et al., 2015; Biscari et al., 2022). Hence, we

have shown that in DCs, the SNARE protein Sec22b facilitates
the XPt of T. cruzi antigens that are necessary for the control of
parasite replication in mice. Deficient XPt directly correlates with
the impaired priming of specific CD8+ T cells.
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