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1 Introduction

The reduced density matrix ρA of a subsystem A provides the entanglement entropy

SA = −Tr
(
ρA ln ρA

)
, (1.1)

that quantifies the bipartite entanglement between A and its complement. This entangle-
ment measure can also be obtained from the Rényi entropies S(n)

A , a family of infinitely
many entanglement quantifiers, as follows

S
(n)
A = 1

1− n lnTrρnA , SA = lim
n→1

S
(n)
A . (1.2)

There are fascinating connections between thermodynamic entropy, entanglement entropy,
and gravity in asympotically anti-de Sitter spacetimes. Recently, analogous connections
have been studied between the thermodynamic heat capacity and concepts of quantum
information theory and gravity.

In the context of entanglement in many-body physics and quantum field theory, ca-
pacity of entanglement CA(ρA), as introduced in [1] and [2], was first modeled after the
definition of thermal heat capacity, and proposed to detect different phases in topological
matter. As thermodynamic heat capacity is related to the variance of thermodynamical
entropy, it was realized that capacity of entanglement is equal to the variance of the entan-
glement Hamiltonian KA = − ln ρA, and can also be derived from the Rényi entropies [3–5]
as follows

CA = ∂2
n

(
logTrρnA

)∣∣
n=1 = ∂2

n

(
TrρnA

)∣∣
n=1 −

[
∂n
(
TrρnA

)]2∣∣
n=1 = 〈K2

A〉 − 〈KA〉2 . (1.3)

Meanwhile, in quantum information theory, variance has appeared e.g. in subleading
corrections to Landauer inequality [6], in the context of majorizing state transitions [7],
and in state interconvertibility in finite systems [8].

Recently, in the context of quantum field theories, gravity, and random states, there
has been growing interest in capacity of entanglement [4, 5, 9–36]. In part, the interest
arises from the holographic duality between conformal field theories (CFTs) and quantum
gravity in asymptotically anti-de Sitter spacetimes. In this setting, the area law of entan-
glement entropy in a CFT was found to have a geometrical interpretation as the area of a
minimal surface in the bulk spacetime [37]. Later, also Rényi entropies were interpreted in
this context, taking into account gravitational backreaction [38]. It was then anticipated
that variance of entanglement entropy is associated with gravitational fluctuations, and an
interpretation based on [38] and (1.3) was developed in [4, 5]. There are also other proposals
to relate capacity of entanglement (alternatively called modular fluctuations) to quantum
fluctuations in e.g. [9, 19, 35] motivating suggestions that fluctuations may accumulate
to give rise to possibly observable effects e.g. in laser interferometry [9, 12, 19, 29, 36].
Another context where capacity of entanglement has been explored is the Page curve of
Hawking radiation. In the spirit of [1], capacity of entanglement is seen to have a qualita-
tively different behaviour in different phases: it marks the transition peaking at the Page
time where the black hole develops an island region [13]. Further work in this direction

– 2 –



J
H
E
P
0
3
(
2
0
2
3
)
1
7
5

can be found in [14, 15], qualitatively related observations have also been made in the
context of time evolution of local operators [17] and in phase transitions of entanglement
spectrum. Finally, we note that, due to work in many different areas and the relative
novelty, nomenclature has not yet been established: the same quantity is referred to as
capacity of entanglement, entanglement capacity, entropy variance, varentropy, variance of
surprisal, and modular fluctuations. This variance in terminology hampers somewhat the
task of identifying relevant literature.

The goal of this work is to further compare capacity of entanglement and entanglement
entropy, both by direct computations and via extending other entropy-based concepts to
analogous concepts with definitions based on capacity. Our arena will be that of simple
two-dimensional CFTs and related discrete models, allowing explicit calculations. Our
direct comparisons begin from the area law of capacity of entanglement, which was found
in [4] to hold for a global ground state in conformal field theories. In 1+1 dimensional
CFTs on the line, in their ground state and for an interval A of length `, the law takes
the sharpest form, where, in the series expansion as the UV cutoff ε→ 0, the leading term
behavior of capacity of entanglement equals that of entanglement entropy,

CA = SA = c

3 log
(
`

ε

)
+O(1) , (1.4)

where c is the central charge of the model. We begin by exploring some other cases, such
as two intervals, to identify subleading finite modifications to the above equality.

The leading term equality CA = SA was also found to hold for a finite system, and
even for the time evolution after a global or local quench [4]. In the case of the quench,
the equality is in conflict with the heuristic explanation of entanglement spreading by
maximally entangled pairs of quasiparticles created at the quench propagating in opposite
directions [39]. Tracing out one member of a pair, the entanglement entropy carried by
a quasiparticle into the interval is maximal, while it carries zero capacity. In [4], this
contradiction was amended by the suggestion that instead of the pairs being maximally
entangled, they are randomly entangled.

In this work we will study discretized models by employing the results of [40], where
it has been suggested that the distribution of created quasiparticles can be reconstructed
from the Generalized Gibbs Ensemble that results after equilibration. We calculate the time
evolution of CA and SA and compare the results with those computed from the quasiparticle
model of [40], finding agreement. In the discrete models, conformal invariance is broken,
and as a result the quasiparticles propagate in opposite directions with a whole spectrum
of quasimomentum-dependent velocities, in contrast to moving at the speed of light in a
CFT. As a result, in discrete models different features of entanglement are carried by the
quasiparticles at different speed: we see this as capacity and entropy in an interval both
growing linearly (before saturation), but at different rates. Recovery of the CFT result in
the continuum limit is expected, but we leave it for future more detailed study.1

1Computation of results for discrete models requires a numerical fit of a parameter τ0 in the rate, see
e.g. figure 3 in [41], which needs to be treated very carefully to recover the continuum limit CFT prediction.
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For another view on how these two measures of entanglement develop in time, we
define a contour of capacity, modeled after the definition of contour of entanglement en-
tropy [42–45]. The time evolution of contours can be roughly understood as wavefronts of
entropy and capacity propagating in the system. The fronts of the contour of entropy and
of the contour of capacity have distinct features that can be traced back to the different
distributions of entropy and capacity of the quasiparticles.

A related concept is the monotonic readjustment of entanglement in the ground state
of a system under a Renormalization Group (RG) flow. This idea is manifested by the
entropic c-function, which was introduced for relativistic unitary QFTs in [46], based on
the entanglement entropy of a subsystem.2 The entropic c-function shows that a Lorentz
invariant theory and a quantity satisfying the strong subadditivity (SSA) gives a rigorously
monotonic c-function. However, as far as we know, there is no rigorous proof for the
necessity of the SSA to be satisfied, in order to find monotonicity. Furthermore, as the
example of the Rényi entropy based generalization [50, 51] shows, some functions may
show monotonicity even when a rigorous proof has not been found. We would like to
call the Rényi entropy based function an example of an accidental c-function: one that
behaves monotonically in a class of theories, while there exists no rigorous proof for this
monotonicity. In contrast, the entanglement entropy determines a rigorous c-function. It
may be that at least for some theories, where the majorization order3 of reduced density
matrices under RG flow [52–54] is true, a c-function based on a Schur concave4 quantifier,
such as the Rényi entropies, can be shown to be monotonic. Or, there may be other reasons
for finding monotonicity, yet to be discovered and understood.

We construct entanglement candidate c-functions and explore their monotonicity. One
construction is based on capacity of entanglement CA. Another construction is based on
the quantifier investigated in [7], defined as5

MA(ρA) = CA(ρA) +
[
SA(ρA) + 1

]2
, (1.5)

which was shown to be Schur concave. This property implies that in quantum processes
involving two states ρ and σ with the majorization order ρ � σ, any Schur concave quantifier
applied to the two states leads to an inequality. For example, von Neumann entropy is

2A generalization for higher dimensional relativistic unitary QFTs is given by the F-function, based on
a renormalized entanglement entropy [47, 48]. See [49] for a review of entanglement c-functions.

3Consider two n × n density matrices ρ, σ with eigenvalues collected to ordered vectors ~λ, ~µ with
components in descending order, e.g. λ1 ≥ λ2 ≥ · · · . If the partial sums of components satisfy∑k

i=1 λi ≥
∑k

i=1 µi ∀k = 1, . . . , n, then ρ majorizes σ and we denote ρ � σ.
4A quantifier Q(ρ) is Schur concave if ρ � σ ⇒ Q(ρ) ≤ Q(σ).
5This measure and its generalization are defined for general finite dimensional systems and states. In

this work our focus is on bipartite systems and reduced states in the subsystem A, hence the subscripts A
in MA(ρA) etc. Note also that ref. [7] uses the convention where definitions involve the binary logarithm
log2(x). We prefer to follow the physics convention and use the natural logarithm in definitions. Note
that in this work we follow the convention of many of our references and denote the natural logarithm
by log(x) instead of ln(x). Since log(x) = (log 2) log2(x), denoting below quantities defined with log2 by
tildes (e.g. S̃ = −Tr[ρ log2 ρ]), we have S = (log 2)S̃, C = (log 2)2C̃ and M = (log 2)2M̃ with M̃(ρ) =
C̃(ρ) +

(
S̃(ρ) + 1

ln 2

)2, as given in [7].
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Schur concave, with S(ρ) ≤ S(σ) and likewise for M , i.e. M(ρ) ≤ M(σ). In this work we
only consider mixed states characterised by reduced density matrices.

The expression (1.5) can be generalised by introducing the moments of shifted modular
Hamiltonian as follows [55]

M
(n)
A (ρA) = Tr

[
ρA (− log ρA + bn)n

]
− bnn , (1.6)

for n ≥ 1, withM (2)
A (ρA)

∣∣
bn=1 = MA(ρA)−1. The properties of the sequence (1.6) and other

related sequences in the context of quantum information theory have been investigated
in [55]. The M (n)

A in (1.6) can also be computed from the Rényi entropies, through the
generating function formula

M
(n)
A (ρA) = ebn(−1)n dn

dαn

[
exp

{
− αb+ (1− α)S(α)

A (ρA)
}]∣∣∣

α=1,b=bn
− bnn . (1.7)

Let us now the compare the properties of the quantities mentioned above. The Rényi
entropies S(α)

A are Schur concave for α > 0, but concave only for 0 < α ≤ 1 [56]. On
the other hand, by the generating function formula (1.7) they can be converted to M (n)

A

which are concave for all n ≥ 1, bn ≥ n − 1 and thus can be used to define entanglement
monotones [55]. However, we do not expect them to satisfy SSA for n ≥ 2. In contrast,
the capacity CA does not satisfy any of the concavity properties or SSA. It is therefore
somewhat surprising that both CA and MA turn out to give accidental c-functions: they
behave monotonically at least in massive free theories, and at the fixed point of the flow
reduce to a constant determined by the central charge of the theory, just like what was
previously found for the c-functions based on Rényi entropies [50, 51].

Finally, we consider the way in which the entanglement splits into different charge
sectors of a theory with a global symmetry, quantitatively determined by the symmetry-
resolved entanglement measures. This phenomenon has attracted significant attention,
sparked by some recent theoretical [57–59] and experimental [60, 61] results, and has been
studied in several contexts as lattice systems [62–69], quantum field theories [60, 61, 70–72]
and holography [73].

We define symmetry-resolved versions of the capacity of entanglement and of the nth

moments of shifted modular Hamiltonian and discuss some of their properties. In particu-
lar, we find that in systems endowed with a global U(1) symmetry, the moments of shifted
modular Hamiltonian M (n) can be written as a sum over the charge sectors of a certain
combination of the symmetry-resolved M (k)(q), with k 6 n. We compare the symmetry-
resolved entanglement entropy and capacity of entanglement of an interval in a Luttinger
liquid CFT (massless compact boson), observing that they have the same dominant loga-
rithmic behaviour, while are different at order log(log `).

This paper is organized as follows. In section 2, we study modifications to the equal-
ity (1.4) in more general settings. In section 3, we use CA and MA to define entanglement
c-functions. We then move to consider time evolution after a global quench (section 4 and
section 5). In section 4, we compute and compare the time evolution of SA and CA after
a global quench in CFTs and free chains. We then show how the results for the free chains
can be obtained and explained through the quasiparticles picture. In section 5, we define a
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contour function for the capacity of entanglement, and then compare its time evolution to
the one of the contour function of entanglement entropy, after a global quench. In section 6
we define the symmetry-resolved capacity of entanglement and the symmetry-resolved mo-
ments of shifted modular Hamiltonian, discuss their properties and provide explicit results
in a Luttinger liquid CFT. We end with a summary and outlook in section 7. Additional de-
tails about the computations and further discussions are reported in appendices A, B and C.

2 Capacity of entanglement in 2D QFTs and fermionic chains

In this section we evaluate SA and CA for some bipartitions of one dimensional and trans-
lation invariant systems.

2.1 Some known CFT results

In this section we study S, C defined in (1.3) and M given in (1.5) in simple bosonic and
fermionic conformal field theories, and related discrete models (which can be mapped to
fermionic chains). Considering a 2D CFT for certain states and when the subsystem A is
a single interval of length `, it has been found that [74–77]

TrρnA = cn e
− c

12

(
n− 1

n

)
WA , (2.1)

where c is the central charge of the CFT, WA is a function of ` that depends also on the
state and on the geometry of the entire system and which diverges as the UV cutoff ε→ 0.
The constant cn is model dependent and c1 = 1 (because of the normalisation of ρA). For
instance, when the system is on the infinite line and in its ground state, when the system
is on the circle of length L and in its ground state or when the system is on the infinite
line and at finite temperature 1/β, for WA we have respectively

WA = 2 log
(
`

ε

)
, WA = 2 log

(
L

πε
sin π`

L

)
, WA = 2 log

(
β

πε
sinh π`

β

)
. (2.2)

By employing (2.1) into the definitions (1.1) and (1.3), it is straightforward to find
that [4]

CA = SA = c

6 WA +O(1) , (2.3)

and that CA and SA differ at the subleading order O(1) determined by the non-universal
constant cn.6 We explore various cases where SA − CA is UV finite and non-trivial.

In the following we report the expression of M (n)(ρ; bn) defined in (1.6) for a CFT on
the line in its ground state and an interval A of length `. By using (2.1) and (1.7), for the
leading term we find

M
(n)
A (bn) =

( log(`/ε)
3

)n
+O

((
log(`/ε)

)n−1)
, (2.4)

6In higher dimensional CFTs and more general quantum field theories, the relation is more ambiguous;
indeed the UV cutoff in the two quantities appears in a power law and the quantities become more dependent
on the regularization scheme (see [4] for more discussion).
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where the subleading terms in `/ε depend both on the non-universal constants and on the
parameter bn. For instance, in the special case of n = 2 we get

M
(2)
A (b2) =

( log(`/ε)
3

)2
+ 1

3
(
1 + 2b2 − 2c′1

)
log(`/ε) +O(1) , (2.5)

where the subleading terms that we have neglected are finite as ε vanishes. Throughout this
manuscript, with a slight abuse of notation, we denote by ` both the number of consecutive
sites in a block A and the length of the corresponding interval A in the continuum. This
convention is adopted also for the number of sites of a finite chain and for the finite size of
the corresponding system in the continuum limit, both denoted by L.

2.2 Ground state, two disjoint intervals

Another important class of examples where CA and SA are significantly different corre-
sponds to subsystems A made by the union of disjoint intervals. In the following we con-
sider the simplest case where A = A1∪A2 is the union of two disjoint intervals Aj = (uj , vj)
on the line and the entire CFT is in its ground state. The moments of the reduced density
matrix can be written as a four-point function of branch point twist fields [78–82]

TrρnA = c2
n

(
ε2 |u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

) c
6 (n− 1

n)
Fn(x) , (2.6)

where Fn(x) is a model dependent function of the cross ratio of the four endpoints

x = (u1 − v1)(u2 − v2)
(u1 − u2)(v1 − v2) , (2.7)

and cn is the constant occurring in (2.1). Explicit expressions for Fn(x) for generic integer
n are known only for few models [50, 80–83].

From (1.1), (1.3) and (2.6), for the entanglement entropy one finds

SA = c

3 log
( |u1 − v1||u2 − v2||u1 − v2||u2 − v1|

|u1 − u2||v1 − v2|ε2
)
− ∂n

[
logFn(x)

]∣∣
n=1 − 2c′1 , (2.8)

while the capacity of entanglement reads

CA = c

3 log
( |u1 − v1||u2 − v2||u1 − v2||u2 − v1|

|u1 − u2||v1 − v2|ε2
)

+ ∂2
n

[
logFn(x)

]∣∣
n=1 + 2

[
∂2
n(log cn)

]∣∣
n=1 .

(2.9)
We may cancel the divergences and construct an UV finite combination by the difference

SA−CA = − ∂2
n

[
log
(
Fn(x)

)]∣∣
n=1− ∂n

[
log
(
Fn(x)

)]∣∣
n=1− 2

[
∂2
n(log cn)

]∣∣
n=1− 2 c′1 , (2.10)

which is a non-trivial function of x, but difficult to find analytically because the analytic
continuation in n is usually not accessible. Numerical analyses based on extrapolations can
be performed [84, 85].

– 7 –
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For the sake of simplicity, let us consider two equal intervals of length ` and indicate
with d the separation between them. In this case (2.9) and (2.8) simplify respectively to

CA = 2c
3 log `

ε
+ c

3 log(1− x) + ∂2
n

[
logFn(x)

]∣∣
n=1 + 2

[
∂2
n(log cn)

]∣∣
n=1 , (2.11)

SA = 2c
3 log `

ε
+ c

3 log(1− x)− ∂n
[
logFn(x)

]∣∣
n=1 − 2c′1 , (2.12)

where the cross ratio reads
x = 1

(1 + d/`)2 . (2.13)

From (2.11) and (2.12) it is evident that for two equal intervals (2.3) holds up to O(1)
corrections depending on x.

For instance, the massless Dirac fermion is a CFT with c = 1 and Fn(x) = 1 identi-
cally [50]; hence (2.11) and (2.12) drastically simplify respectively to

CA = 2
3 log `

ε
+ 1

3 log(1− x) + 2
[
∂2
n(log cn)

]∣∣
n=1 , (2.14)

SA = 2
3 log `

ε
+ 1

3 log(1− x)− 2 c′1 . (2.15)

These expressions tell us that SA−CA is independent of x, which is ultimately a consequence
of the triviality of Fn(x) for this model.

A CFT where the function Fn(x) is non trivial is the free compactified massless scalar,
whose action reads

I = g

4π

∫
∂µφ∂

µφd2x , (2.16)

with a field compactification radius R such that φ ∼ φ+ 2πjR, j ∈ Z. The function Fn(x)
for this model has been found in [80] and its analytic continuation in n is not know for
any value of the compactification radius. In the decompactification regime gR2 � 1, this
function becomes

logFn(x) = 1− n
2 log

(
gR2)− Dn(x) +Dn(1− x)

2 , Dn(x) =
n−1∑
k=1

logFk/n(x) , (2.17)

where Fy(x) ≡ 2F1(y, 1− y, 1;x). The analytic continuation of (2.17) has been performed
by employing that

Dn(x) = n

2i

∮
C′

cot(πzn) log
[
Fz(x)

]
dz , (2.18)

being C′ defined as the rectangle in the complex plane whose vertices are
{
1 − iL , 1 +

iL , iL ,−iL
}
. Taking the derivative of (2.18) and observing that the horizontal contribu-

tions in the contour integral vanish as L→∞, one obtains [80]

D′1(x) = π

i

∫ i∞

−i∞

z

[sin(πz)]2 logFz(x) dz . (2.19)

A similar computation leads to

D′′1(x) = 2π
i

∫ i∞

−i∞

z

[sin(πz)]2
[
1− πz cot(πz)

]
logFz(x) dz . (2.20)
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Figure 1. SA − CA in terms of the cross ratio x for two equal disjoint intervals of length ` in a
free fermionic chain, where Fn(x) = 1 identically. The horizontal solid line is obtained from (2.10)
and by using the values reported in the text for the non-universal constant terms. The height of
the dashed line is half the height of the solid line.

By employing (2.19) and (2.20) respectively into (2.12) and (2.11) with c = 1, one finds

SA = 2
3 log

(
`

ε

)
+ 1

3 log(1− x) + D′1(x) +D′1(1− x)
2 + 1

2 log(gR2)− 2c′1 , (2.21)

CA = 2
3 log

(
`

ε

)
+ 1

3 log(1− x)− D′′1(x) +D′′1(1− x)
2 + 2

[
∂2
n(log cn)

]∣∣
n=1 . (2.22)

A numerical check of the capacity of entanglement (2.14) can be performed by em-
ploying the infinite chain of free fermions, which provides the lattice discretisation of the
massless Dirac field on the line. The Hamiltonian describing this chain reads

H = −
+∞∑

n=−∞

[
ĉ†n ĉn+1 + ĉ†n+1 ĉn

]
, (2.23)

where ĉ†n and ĉn satisfy the canonical anticommutation relations {ĉ†n, ĉ†m} = {ĉn, ĉm} = 0
and {ĉn, ĉ†m} = δm,n. In figure 1 we show SA − CA in terms of the cross ratio x for two
disjoint equal blocks made by ` consecutive sites in the fermionic chain described by (2.23).
The numerical procedure to obtain the data points (reported in terms of the cross ratio
x) is described in appendix A.3. From (2.14) and (2.15), a constant value is expected for
this quantity when ` is large enough. This is confirmed by the numerical lattice results
in figure 1, where the data points lie on the horizontal black solid line determined by
−2(c′1 + [∂2

n(log cn)]
∣∣
n=1) ' 0.3830, whose value has been obtained in [55] using the results

of [86]. The height of the last data point (which corresponds to x = 1) is half the height
of the other data points. This is due to the fact that, in the limit where the two intervals
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become adjacent, the non universal constant must be taken into account only once; hence
it is given by −(c′1 + [∂2

n(log cn)]
∣∣
n=1) ' 0.1915 (horizontal black dashed line).

2.3 Free massive fields

2.3.1 Scalar field

Consider a 1+1-dimensional real scalar field theory with mass m in its ground state and on
the infinite line, which is bipartite into an interval A and its complement. By employing
the replica approach to the entanglement entropies, we have that

TrρnA = Zn
Zn1

, (2.24)

where Zn is the partition function in the imaginary time on the n-sheeted Riemann surface
obtained by gluing cyclically n copies of the spacetime along the cut A. The partition
function Zn can be computed as follows [51]

logZn =
n−1∑
k=0

log ζk/n , (2.25)

where ζa is the partition function of a real scalar field in a plane with boundary conditions
Φ(x)+ = e2πia Φ(x)− along the upper part and the lower part of the cut. By introducing

wa = ` ∂` log ζa , (2.26)

we have that

Cn ≡
n−1∑
k=0

w k
n

= ` ∂` logZn =⇒ logZn =
∫ log `

log ε
Cn d(log `′) , (2.27)

where ε is the UV cutoff. The function wa defined in (2.26) can be written as

wa(η) = −
∫ ∞
η

y u2
a(y)dy , (2.28)

where η ≡ m` and ua is the solution of the Painléve V differential equation

u′′a + u′a
η

= ua
1 + u2

a

(
u′a
)2 + ua(1 + u2

a) + 4(a− 1/2)2

η2 ua(1 + u2
a) , (2.29)

whose solution is not known analytically. However, in the η → 0 regime, it is known that

wa = ` ∂` log ζa = − a(1− a)− 1
2 log(η) +O

(
log−2(η)

)
. (2.30)

By using (2.26), (2.25) and the fact that Z1 is independent of `, we get (see also eq. (86)
in [51], with Cn = (1− n)cn,there)

Cn = ∂ logTrρnA
∂ log(`/ε) = ∂ logZn

∂ log(`/ε) − n
∂ logZ1
∂ log(`/ε) = 1− n2

6n + 1− n
2 log η + . . . , (2.31)
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which can be integrated when `� ε, finding

log
[
TrρnA

]
= 1− n2

6n log(`/ε) + 1− n
2

[
log
(
− log(m`)

)
− log

(
− log(mε)

)]
+ . . . , (2.32)

where the dots denote subleading terms originating from the terms neglected in (2.30).
From (2.32), for the leading terms of the entanglement entropy (1.1) one obtains [51]

SA = 1
3 log(`/ε) + 1

2
[

log
(
− log(m`)

)
− log

(
− log(mε)

)]
+ . . . , (2.33)

while for the capacity of entanglement (1.3) we have that

CA = 1
3 log(`/ε) + . . . . (2.34)

Thus, while the leading terms of SA and CA are the same, we observe a substantial difference
in the subleading terms. Indeed, the double logarithmic correction (due to the zero mode)
occurring in the entanglement entropy [51] is not present in the expansion (2.34) of the
capacity of entanglement.

2.3.2 Dirac fermion

An analysis similar to the one discussed in section 2.3.1 can be carried out for the free
massive Dirac fermion, following closely [50]. In [50] it has been found that (we remind
that Cn = (1− n)cn,there)

Cn = ∂ logTrρnA
∂ log(`/ε) = 1− n2

6n
[
1− η2(log η)2]+O(η2 log η) . (2.35)

Integrating this expression first and then using (1.1) and (1.3), we obtain (recall η = m`)

SA = CA = 1
3 log(`/ε)− 1

6
[
m` log(m`)

]2 +O
(
(m`)2 log(m`)

)
, (2.36)

where SA and CA differ at subleading orders. Differently from the results (2.33) and (2.34)
for the scalar field, for the Dirac field the first correction due to the non vanishing mass in
SA and CA is the same.

2.4 Oscillating terms

In the previous examples we have seen that the difference between SA and CA comes from
the subleading terms, when A is a single interval. In the following we show this fact in
specific models where SA − CA can be evaluated analytically.

Consider the free fermionic chain whose Hamiltonian is

H = −
+∞∑

n=−∞

[
ĉ†n ĉn+1 + ĉ†n+1 ĉn − 2h

(
ĉ†n ĉn −

1
2

)]
, (2.37)

which reduces to (2.23) when h = 0. The ground state of this model is a Fermi sea with
a Fermi momentum kF = arccos |h|. Considering the subsystem A made by a block of `
consecutive sites, it has been found that

logTrρnA = − 1
6

(
n− 1

n

)
log `+ log(cn) + bn cos(2kF`)

| 2` sin(kF) |2/n
+ dn
| 2` sin(kF) |2 + . . . , (2.38)
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where cn is the constant obtained in [86] through the Fisher-Hartwig conjecture and in the
subleading terms which have been computed in [87, 88] through the generalised Fisher-
Hartwig conjecture, the coefficients read

bn ≡ 2
(Γ

(
1
2(1 + 1/n)

)
Γ
(

1
2(1− 1/n)

))2

, dn ≡
1− n2

285n3

[
15(3n2 − 7) + (49− n2) (sin kF)2

]
. (2.39)

The dots in (2.38) and in subsequent equations correspond to higher order subleading terms
that have been neglected.

As highlighted in [87, 88], the entanglement entropy does not contain oscillating sub-
leading terms; indeed

SA = 1
3 log `+ c′1 + 8

95
4(sin kF)2 − 5
| 2` sin(kF) |2 + . . . , (2.40)

while the Rényi entropies contain subleading oscillatory terms at order `−2/n (see (2.38)).
As for this qualitative feature, the capacity of entanglement (1.3) is more similar to the
Rényi entropies. Indeed, by using that bn → 0 and ∂nbn → 0 as n→ 1, we get

CA = 1
3 log `+ [∂2

n(log cn)]
∣∣
n=1 + cos(2kF`)

| 2` sin(kF) |2 −
240− 122(sin kF)2

285 `2| sin(kF) |2 + . . . , (2.41)

which contains a subleading oscillatory term.
In the context of quantum field theories, a similar behaviour has been found for the

family of non-relativistic Lifshitz spinless fermion fields ψ(t, x) satisfying the equal time
canonical anticommutation relations and whose time evolution is[

i ∂t −
1

(2m)2z−1 (− i ∂x)2z
]
ψ(t, x) = 0 , z ∈ N , (2.42)

which becomes the familiar Schrödinger equation for z = 1. The state of the entire system
is characterised by zero temperature and non-vanishing chemical potential µ. Focussing
on the Schrödinger field theory for simplicity, i.e. z = 1, the Rényi entropies and the
entanglement entropy of an interval either on the line or at the beginning of the semi-
infinite line have been studied in [27, 89].

In order to compare with the lattice model results discussed above, let us consider the
interval A = (−R,R) on the line [27]. In this case the moments TrρnA are UV finite and
they are single-variable functions of the dimensionless variable kFR, being kF ≡

√
2mµ

defined as the Fermi momentum. The whole regime kFR ∈ (0,+∞) has been explored,
finding analytic expressions for some terms of the expansions both at large kFR and at
small kFR. It has been shown also that SA is a strictly increasing function, while the Rényi
entropies display oscillations. Similarly to the fermionic chain considered above, also in this
fermionic Schrödinger field theory CA is qualitatively more similar to the Rényi entropies.
Indeed, some oscillations occur in CA in the regime of small values of kFR, as shown in
figure 15 of [27], where both SA and CA are reported. A quantitative analysis of these
oscillations can be carried out, but it is beyond the scope of this manuscript.
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3 Entanglement c-functions along the RG flow

An attractive idea is that entanglement in the ground state of a system readjusts itself
under RG flow. This idea is manifested by the entropic c-function, which was introduced
for 1 + 1-dimensional relativistic unitary QFTs in [46], based on the entanglement entropy
of a subsystem. A generalization for higher dimensional relativistic unitary QFTs is given
by the F -function, based on a renormalized entanglement entropy [47, 48] (see also the
review [49]). Our focus will be in 1+1 dimensional relativistic QFTs. One takes the
subsystem to be an interval of length `, then the c-function is given by

CS = `
dSA
d`

= dSA
d log(`/ε) , (3.1)

which becomes c/3 at the fixed points. One can show [46] that CS is monotonically de-
creasing, ∂`CS 6 0, and the monotonicity with respect to ` corresponds to monotonicity of
CS under readjusting of the couplings gi of the theory. The proof of monotonicity is based
on the Lorentz invariance of the theory and strong subadditivity (SSA) of entanglement
entropy.
Similar functions were studied starting from the Rényi entropies S(n)

A , which do not satisfy
SSA [50, 51]. There is no rigorous argument to expect the Rényi entropy based functions
to be monotonic in a generic QFT, yet they were observed to behave monotonically in
some theories. A stronger proposal for the readjustment of entanglement is the concept of
fine-grained entanglement loss along renormalization group flows [52–54]: according to this
idea, the reduced density matrix ρA of the ground state follows a majorization ordering
along the RG flow.

In this section we explore whether an entanglement candidate c-function based on
capacity of entanglement CA or the second moment of shifted modular Hamiltonian MA

can exhibit monotonicity in some theories. As we showed, MA satisfies a stronger property
than Schur concavity of Rényi entropies: it is concave and an entanglement monotone.
However, as explained in more details in appendix B, it violates SSA. In contrast, CA does
not satisfy any of the concavity properties or SSA. It is therefore somewhat surprising
that both CA and MA turn out to give accidental c-functions: they behave monotonically
at least in massive free theories, and at the fixed point of the flow reduce to a constant
determined by the central charge of the theory.

As our theories we consider the massive free scalar field and massive Dirac field theories.
For numerical calculations we discretize the theories, the first one to the harmonic chain,
and the latter to a free fermionic chain. We begin by deriving some analytic results, first
for the harmonic chain.

3.1 Capacity of entanglement for the harmonic chain: CTM approach

A very powerful tool for computing the entanglement in gapped lattice models is the
corner transfer matrix (CTM) [90–93]. Exact results for the massive harmonic chain can
be obtained from [94, 95], while results for the XXZ chain and the Ising model are contained
in [76, 96, 97].
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Consider the infinite harmonic chain with nearest neighbour spring-like interaction
described by the Hamiltonian

ĤHC =
+∞∑
i=−∞

(
1

2µ p̂
2
i + µω2

2 q̂2
i + λ

2 (q̂i+1 − q̂i)2
)
, (3.2)

where the position and the momentum operators q̂i and p̂i are Hermitean operators satis-
fying the canonical commutation relations [q̂i, q̂j ] = [p̂i, p̂j ] = 0 and [q̂i, q̂j ] = iδi,j (we set
~ = 1 throughout this manuscript). The canonical transformation given by q̂i → q̂i/

4√µλ
and p̂i → 4√µλ p̂i allows us to write this Hamiltonian as

ĤHC =
√
λ/µ

2

+∞∑
i=−∞

(
p̂2
i + ω2

λ/µ
q̂2
i + (q̂i+1 − q̂i)2

)
, (3.3)

which naturally leads us to introduce

ω̃2 = ω2

λ/µ
. (3.4)

We assume that the system is in its ground state and take the subsystem A first
to be half of the chain (we will later consider a finite interval as a subsystem). The
CTM approach relies on the possibility of relating the corner transfer matrix of the two-
dimensional integrable Gaussian model to the reduced density matrix of the subsystem A

and allows us to write the entanglement Hamiltonian associated to the latter as [94, 95]

HCTM =
∞∑
j=0

εjnj =
∞∑
j=0

ε(2j + 1)nj , (3.5)

where nj are bosonic number operators and

ε = ε(ω̃) ≡
πK

(√
1− κ(ω̃)2 )

K(κ(ω̃)) , κ(ω̃) ≡ 2 + ω̃2 − ω̃
√
ω̃2 + 4

2 , (3.6)

beingK the complete elliptic integral of the first kind and ω̃ defined in (3.4). The knowledge
of the entanglement Hamiltonian in (3.5) (and therefore of the reduced density matrix)
allows us to write [98]

logTrρnA =
∞∑
j=0

[
n log

(
1− e−(2j+1)ε

)
− log

(
1− e−(2j+1)nε

)]
. (3.7)

From (1.1), the CTM result for the entanglement entropy reads [98]

SA =
∞∑
j=0

[
ε(2j + 1)
e(2j+1)ε − 1

− log
(
1− e−(2j+1)ε

)]
. (3.8)

As for the capacity of entanglement, according to (1.3), taking two derivatives of (3.7) with
respect to n and evaluating the result in n = 1, we get

CA =
∞∑
j=0

(
ε(2j + 1)
e(2j+1)ε − 1

)2
e(2j+1)ε =

∞∑
j=0

(
ε(2j + 1)

2 sinh
(
ε
2(2j + 1)

))2

. (3.9)
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We stress that these expressions for SA and CA are different, while, as discussed in ap-
pendix C.3, they become equal in the critical regime. The entanglement entropy (3.8) can
be written in a closed form, as done in [98]. It reads

SA = − 1
24

[
log
(16(κ′)4

κ2

)
−
(
1 + κ2)4K(κ)K(κ′)

π

]
, (3.10)

where κ is defined in (3.6) and κ′ ≡
√

1− κ2. The derivation of (3.10) has been reviewed
in appendix C.1. In appendix C.1 we also exploit some of the properties of the Jacobi
theta functions θr(q) ≡ θr(0, q) with r ∈ {2, 3, 4} in order to obtain a closed form for the
capacity of entanglement and another expression for the entanglement entropy. We find

SA = −1
6

[
log 2 + log

(
θ2

4(e−ε)
θ2(e−ε)θ3(e−ε)

)
− ε

4
(
θ4

2(e−ε) + θ4
3(e−ε)

)]
, (3.11)

and
CA = ε2

6 e−ε
[
θ3

3(e−ε) θ′3(e−ε) + θ3
2(e−ε) θ′2(e−ε)

]
, (3.12)

where we have defined θ′r(q) = ∂qθr(q), with r ∈ {2, 3, 4}.7 The CTM techniques are
also employed in appendix C.4 to compute the entanglement entropy and the capacity of
entanglement in XXZ spin chains.

Next, we take the subsystem A to be an interval of length `. In this case, since the global
ground state is a Gaussian state, we will compute SA and CA by the method of finding
the symplectic eigenvalues of the reduced covariance matrix. This method is reviewed in
appendix A.2, and in the end we compute SA and CA numerically. We may also compare
the finite interval case with the half-infinite subsystem, by taking the limit `→∞ where we
expect to recover twice the constants predicted by the CTM calculations (3.11) and (3.12).

In the left panel of figure 2 we show the results for SA and CA, for an interval in
an infinite harmonic chain as a function of the length of the interval ` for three values of
ω̃ = ω. All the numerical data points for the harmonic chains displayed in this manuscript
have been obtained by setting µ = 1 and λ = 1. The data are obtained as explained in
appendix A.2. The numerical curves saturate to a constant: the value of ` at which the
saturation is reached is smaller for bigger values of ω. The saturation constants are very
well predicted by the CTM calculations (3.8) and (3.9) (up to a factor two due to the
number of endpoints) and in the panel correspond to the horizontal solid lines. In the right
panel of figure 2 we plot SA, CA andMA as functions of ω̃ using (3.11), (3.12) and these two
results in (1.5) respectively. All these functions are decreasing in ω̃ and can be regarded
as c-functions along the RG flow. The decreasing behaviour of SA and MA as functions
of ω̃ can be justified exploiting their Schur concavity and the computation reported in
appendix C.2, while we do not have an a priori argument for the behaviour of CA.

7The derivative of elliptic theta functions with respect to the variable u can be written as the following
series expansions

θ′3(q) = 2
∞∑
k=1

k2qk
2−1 , θ′2(q) = θ2(q)

4q + 2
∞∑
k=1

k(k + 1)qk(k+1)− 3
4 , (3.13)

which have been used to check the validity of (3.12).
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Figure 2. In the left panel we report SA and CA of an interval in an infinite harmonic chain as a
function of the length of the interval `. The solid lines correspond to twice the constants predicted
by the CTM calculations (3.11) and (3.12). The curves in the right panel have been obtained
from (3.11), (3.12) and (1.5).

3.2 c-functions from CA and MA

Inspired by the definition (3.1), from CA and MA defined in (1.3) and (1.5), we introduce
respectively

CC = `
dCA
d`

= dCA
d log(`/ε) , (3.14)

and

CM = `
dMA

d`
= dMA

d log(`/ε) . (3.15)

While CC at the fixed point gives c/3, for CM we obtain 2c2

9 log(`/ε). In order to obtain a
finite result at the fixed point, let us consider

C̃M = dMA

d[log(`/ε)]2 = 1
2 log(`/ε) `

∂MA

∂`
= CM

2 log(`/ε) , (3.16)

which gives c2/9 at the fixed points. From (2.4) with n = 2 into (3.16) it is straightforward
to observe that, at the fixed point, corrections of order 1/ log(`/ε) arise in C̃M .

3.2.1 c-functions in 1+1 dimensional free QFT

In the following subsection we compute (3.14), (3.15) and (3.16) in the context of 1+1
dimensional free massive QFT.

Massive scalar field theory. We consider a free scalar field theory with mass m and
its discretization through the harmonic chain described by the Hamiltonian (3.2). We set
µ = 1 and λ = 1 in (3.2); hence ω is identified in the continuum limit with the mass m
of the scalar field. In this setup, one can compute numerically the quantities (3.1), (3.15)
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Figure 3. The c-functions (3.1), (3.14), (3.15) and (3.16). In the top panel we compute them for
the harmonic chain as function of ω` with ` = 100. The black dashed curve is obtained from (3.19),
while the orange dashed line corresponds to the constant 1

3 . In the bottom panels we consider the
discretisation of the massive Dirac field theory. In the bottom left panel the data points are plotted
as function of m̃`, while in the bottom right panel are reported as function of ` with m̃ = 0. The
green and red horizontal lines correspond to the constant 1, while the blue and the black curves are
given by the the first and the second expression in (3.26) respectively with ε = 1. The horizontal
black dashed line is the constant 1

9 . In all the panels for the discrete derivatives of the numerical
data (3.17) has been employed.

and (3.16).8 The numerical results displayed in the top panel of figure 3 (for the details
see appendix A.2) show that all these three quantities are decreasing functions of ω`.

At QFT level, the results of [51], reviewed in section 2.3, provide the behaviour of
these quantities for small values of η = m`. Indeed, CS and CC can be rewritten as

CS = −
(
∂nCn

)∣∣
n=1 , CC =

(
∂2
nCn

)∣∣
n=1 , (3.18)

8The numerical results displayed in figure 3, both for the bosonic and the fermionic models, have been
obtained by computing SA, CA and MA numerically first and then taking the discrete derivative as [50]

f ′(j + 1/2) = 1
4
[
f(j + 2) + f(j + 1)− f(j)− f(j − 1)

]
. (3.17)
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where Cn is given in (2.31). Applying these definitions to (2.31) we obtain

CS = 1
3 + 1

2 log η +O
(

log−2(η)
)
, CC = 1

3 +O
(

log−2(η)
)
. (3.19)

From (3.19) we can observe that, while we can say that in the small mass limit CS is a
decreasing function of η, the same cannot be concluded for CC since we know only the
constant term. However the monotonic decreasing behaviour of CC can be observed from
the numerical calculation reported in the top panel of figure 3.

While CS and CC converges to 1
3 when m` → 0, CM seems to diverge. This can be

explained by computing MA from (1.5) using (2.33) and (2.34): denoting by −c′1 the non
universal constant in the expression of the entanglement entropy, one finds

MA = 1
9 log2

(
`

ε

)
+
[
1 + 2

log 2 − 2c′1 + log
(
− log(m`)

)] log(`/ε)
3

+
( 1

log 2 − c
′
1

)
log
(
− log(m`)

)
+ 1

4 log2 (− log(m`)
)

+O(1) . (3.20)

Applying the definition in (3.15) we obtain

CM =
(2

9 + 1
3 log(m`)

)
log

(
`

ε

)
+ 1

2 log(m`)

[ 2
log 2 − 2c′1 + log

(
− log(m`)

)]
(3.21)

+1
3 log

(
− log(m`)

)
+O(1) ,

that is divergent when m`→ 0 because of the last term. To avoid the divergence, we can
apply the definition (3.16) to (3.21), finding

C̃M = 1
9 + 1

6 log(m`) +
2

log 2 − 2c′1 + log
(
− log(m`)

)
4 log(`/ε) log(m`) +

log
(
− log(m`)

)
6 log(`/ε) +O

(
1/ log(`/ε)

)
.

(3.22)
If we take the limit `/ε→∞ before m`→ 0 we obtain

C̃M = 1
9 + 1

6 log(m`) , (3.23)

that at the conformal fixed point for m`→ 0 gives C̃M (m`→ 0) = 1
9 .

Massive Dirac field theory. Another example of the calculation of the c-func-
tions (3.1), (3.15) and (3.16) concerns the 1 + 1 dimensional massive Dirac field theory.
We discretise the massive Dirac field theory with mass m on the lattice through a free
fermionic chain described by the following Hamiltonian [50]

H = − i
2

N−1∑
j=0

(
ĉ†j+1ĉj − ĉ

†
j ĉj+1

)
+ m̃

N−1∑
j=0

(−1)j ĉ†j ĉj , (3.24)

where ĉj satisfy the anti-commutation relations {ĉj , ĉ†k} = δjk, the number of sites of the
chain is given by N and m̃ is the discrete counterpart of the mass m. In appendix A.4 we
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report the correlators of this model when N →∞ and we derive an analytic expression in
terms of hypergeometric functions.

As we can see in the bottom left panel of figure 3, also in this case the three functions
are decreasing in m̃`. While CS and CC converge to 1

3 when m̃ → 0 (as expected from
CFT), CM goes to a different value in the conformal limit. Given that for the lattice
fermionic model we are considering it is possible to set m̃ = 0 sharply, in the bottom right
panel we have studied the c-functions as functions of ` when m̃ = 0. The functions CS
and CC are constantly equal to 1

3 , while the behaviour of CM (m̃ = 0) is non trivial: it can
be argued as follows. For a 1 + 1 dimensional Dirac theory with m = 0, which is a CFT
with central charge equal to one, we expect (using also the non universal constant terms
reported in [55])

MA = 1
9
[
log(`/ε)

]2 + 1.77917 log(`/ε) +O(1) . (3.25)

Then, using (3.15) and (3.16)

CM (m = 0) = 2
9 log(`/ε) + 1.77917 , C̃M (m = 0) = 1

9 + 0.889587
log(`/ε) , (3.26)

where we stress that, in the limit ` → ∞, C̃M (m = 0) is constant and therefore scale
invariant at the fixed point. Identifying the mass of the field m and the lattice parameter
m̃ in the continuum limit, we have that the behaviours in (3.26) are nicely reproduced by
the data (blue and black points) in the the bottom right panel of figure 3 (in figure 3 we
have set ε = 1).

4 Capacity of entanglement after a global quantum quench

The global quantum quench is a protocol that has been largely studied during the past years
to explore the dynamics of quantum systems out of equilibrium (see the reviews [99, 100]
for an exhaustive list of references). Given a system prepared in the ground state |ψ0〉 of
the hamiltonian Ĥ0, at t = 0 a sudden global change is performed such that the unitary
evolution of |ψ0〉 is induced by the hamiltonian Ĥ, namely

|ψ(t)〉 = e−iĤt |ψ0〉 , t > 0 . (4.1)

Since Ĥ0 and Ĥ do not commute in general, the time evolution in (4.1) is highly non trivial.
In this section we study the time evolution of the capacity of entanglement of an

interval in an infinite line after a global quantum quench. We consider a fermionic model
and a bosonic model, in the simple cases where all the Hamiltonians involved are free.

The temporal evolutions of various entanglement quantifiers after these quenches have
been considered in the literature: we mention the entanglement Hamiltonians [77, 101–103],
the entanglement spectra [77, 103–105], the contours of entanglement [43, 103, 106] and
the entanglement negativity [41]. Also the temporal evolution after a quantum quench of
the circuit complexity between two reduced density matrices have been recently consid-
ered [107, 108].
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4.1 CFT approach

For critical evolutions, CFT methods have been developed to study the temporal evolution
of the Rényi entropies after a global quench [99].

When A is a semi-infinite line, a linear growth has been found, both by using the twist
fields correlators [39] and the entanglement Hamiltonian [77]. In this case (2.1) holds with

WA = log
[
τ0
πε

cosh(2πt/τ0)
]
, (4.2)

where τ0 is a parameter that encodes some properties of the initial state. Taking t/τ0 � 1
in (4.2), one obtains

WA = log
(
τ0

2πε

)
+ 2πt

τ0
. (4.3)

When A is an interval of length ` in an infinite line, in the regime where `
τ0
� 1 and

t
τ0
� 1, the twist field approach has lead to the following temporal evolution [39]

TrρnA = c̃n

(2π
τ0

) c
12 (n− 1

n)(e2π`/τ0 + e4πt/τ0

e2π`/τ0e4πt/τ0

) c
12 (n− 1

n)
, (4.4)

where c̃n is a non-universal constant such that c̃1 = 1. By employing this result into (1.1)
and (1.3), we get respectively

SA = const +


2πc
3τ0

t t < `/2
πc `

3τ0
t > `/2

CA = const +


2πc
3τ0

t t < `/2
πc `

3τ0
t > `/2

(4.5)

where the constant term is −c̃′1 − c
6 log(2π/τ0) for SA and [∂2

n(log c̃n)]
∣∣
n=1 −

c
6 log(2π/τ0)

for CA. The saturation regime in (4.5) is induced by the finiteness of the subsystem. In
order to get rid of the constant term, it is convenient to consider

∆SA(t) = SA(t)− SA(0) , ∆CA(t) = CA(t)− CA(0) . (4.6)

Thus, if the evolution Hamiltonian is critical, from (4.5) one expects ∆SA(t) = ∆CA(t).
Notice that the linear growth for both the quantities in (4.5) is consistent with the one
obtained by combining (2.3) and (4.3), up to a factor 2 due to the occurrence of two
entangling points.

The CFT result in (4.5) tells us that SA and CA grow linearly in time with the same
slope until t ' `/2. Since the numerical analysis performed in section 4.2 provide different
slopes for the linear growth of these two quantities, let us introduce a possible dependence
on n in τ0, as already done in [41] (in this paper, see the right panel of figure 3 and its
inset). Evaluating (1.1) and (1.3) through (4.4) with τ0 = τ0(n), we find that, while SA
remains equal to (4.5), for CA we have

CA = − c6 log
(
e
− 2π`
τ0(1) + e

− 4πt
τ0(1)

)
− cπ τ

′
0(1)

3 τ2
0 (1)

[
− (`+ 2t) + (`−2t) tanh

(
π(`− 2t)
τ0(1)

)]
+ const ,

(4.7)
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where the constant reads
[
∂2
n(log c̃n)

]∣∣
n=1 −

c
6 log(2π/τ0) + c τ ′0(1)

3τ0(1) . In the regimes of small
and large t, we have respectively

CA = const +


2πc

3 τ0(1)

(
1 + 2τ ′0(1)

τ0(1)

)
t t < `/2

πc

3 τ0(1)

(
1 + 2τ ′0(1)

τ0(1)

)
` t > `/2 ,

(4.8)

which has a different slope for the initial linear growth with respect to SA.

4.2 Quantum quenchs in free chains

4.2.1 Quasi-particle picture

In order to explain the qualitative temporal behaviour (4.5), where a linear growth is
followed by a saturation, a quasi-particle picture has been introduced [39, 99]. When the
initial state has very high energy with respect to the ground state of the Hamiltonian
governing the temporal evolution, it can be seen as a source of quasi-particle excitations.
In one spatial dimension, it is assumed that at t = 0 each spatial point of the system
emits in the same way a pair of entangled quasi-particles with opposite momenta k and
−k according to certain probability distribution that depends on both the initial state and
the evolution hamiltonian. Only the particles emitted at the same point are entangled.

Considering the spatial bipartition A∪B, since only the particles emitted at the same
point are entangled, at time t a point in A is entangled with another one in B if they
are reached simultaneously by two quasi-particles emitted from the same point at t = 0.
When A is an interval of length ` in the line, since SA is proportional to the number of
quasi-particles entangling the two subsystems, for the entanglement entropy at time t one
finds [39, 40, 99]

∆SA(t) = 2 t
∫

2|vk|t<`
s̃(k) vk dk + `

∫
2|vk|t>`

s̃(k) dk , (4.9)

where vk is the velocity of the quasi-particles with momentum k and s̃(k) denotes the
product of the momentum distribution function and the contribution of the pair of quasi-
particles with momenta k and −k to the entanglement entropy. The explicit expressions of
vk and s̃(k) are model dependent and the initial value of the entanglement entropy cannot
be obtained from this qualitative description.

A straightforward extension of the above description to the capacity of entanglement
gives

∆CA(t) = 2 t
∫

2|vk|t<`
c̃(k) vk dk + `

∫
2|vk|t>`

c̃(k) dk , (4.10)

where vk is the same velocity occurring in (4.9) and c̃(k) is the model dependent function
given by the product between the momentum distribution function and the contribution
of the pair of quasi-particles with momenta k and −k to the capacity of entanglement.

By adapting the analysis reported in [109], where s̃(k) has been computed from the
asymptotic state for t → ∞ of the model, in the following we evaluate c̃(k). In free and
integrable models infinitely many conserved quantities occur; hence the stationary state
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reached at t→∞ is characterised by a Generalised Gibbs Ensemble (GGE) [110–113] (see
the review [114] for an extensive list of references). In particular, for free models the GGE
reads [109, 115]

ρGGE = e−
∑

k
λkn̂

(B,F)
k

Z
, Z =

∏
k

(
1∓ e−λk

)∓1
, (4.11)

where n̂(B)
k and n̂(F)

k are bosonic and fermionic number operators respectively. The upper
and the lower signs in the partition function Z, which is written in terms of the Lagrange
multipliers λk and guarantees the normalisation to one of the density matrix, correspond
to the bosonic and the fermionic case respectively. The expectation value on the GGE
state of n̂(B,F)

k is

nk ≡ 〈n̂
(B,F)
k 〉 = −∂ logZ

∂λk
= 1
eλk ∓ 1 . (4.12)

In order to compute the entropy and the capacity in the GGE, one introduces Zn by
rescaling λk → nλk in (4.11), namely

Zn ≡ Tre−n
∑

k
λkn̂

(B,F)
k =

∏
k

(
1∓ e−nλk

)∓1
. (4.13)

Then, since TrρnA = Zn/Z
n, one finds

SGGE = − ∂n(logZn)
∣∣
n=1 + logZ =

∑
k

[
(nk ± 1) log(1± nk)− nk log nk

]
, (4.14)

CGGE = ∂2
n(logZn)

∣∣
n=1 =

∑
k

(1± nk)nk
[
log
(1± nk

nk

)]2
. (4.15)

In the thermodynamic limit L → ∞ the sum over the momenta becomes an integral
over a model dependent domain K that depends on the quench we are considering. In this
limit (4.14) and (4.15) become respectively

SGGE = L

∫
K

[
(nk ± 1) log(1± nk)− nk log nk

] dk
|K|

, (4.16)

CGGE = L

∫
K

(1± nk)nk
[
log
(1± nk

nk

)]2 dk

|K|
, (4.17)

where |K| denotes the size of the model dependent domain K.
When the subsystem A is an interval with length ` < L, the density of thermodynamic

entropy in the GGE coincides with the one of the entanglement entropy along the evolution
after the quench [109]. For free models, this holds also for Rényi entropies [116]; hence the
validity of this property is expected also for the capacity of entanglement. The densities
of entropy and capacity of entanglement occurring in (4.9) and (4.10) are

s̃(k) = 1
|K|

[
(nk ± 1) log (1± nk)− nk log nk

]
, c̃(k) = (1± nk)nk

|K|

[
log
(1± nk

nk

)]2
.

(4.18)

– 22 –



J
H
E
P
0
3
(
2
0
2
3
)
1
7
5

These densities provide the saturation constants of SA and CA as follows

lim
t→∞

∆SA
`

=
∫
K
s̃(k) dk , lim

t→∞

∆CA
`

=
∫
K
c̃(k) dk . (4.19)

In the free fermionic and bosonic systems that we are considering, the reduced density
matrices for a block made by ` consecutive sites are Gaussian states which can be written
as follows [95, 98, 117]

ρA = e−
∑`

k=1 εk b̂
†
k
b̂k

Tr
(
e−
∑`

k=1 εk b̂
†
k
b̂k
) = e−

∑`

k=1 εk b̂
†
k
b̂k∏`

k=1 (1∓ e−εk)∓1 , (4.20)

where b̂†k, b̂k are bosonic (fermionic) creation and annihilation operators and the upper
(lower) signs in the last expression correspond to the bosonic (fermionic) case respectively.
The occupation number is determined by single-particle entanglement energies εk

Tr
(
ρAb̂

†
k b̂k
)

= 1
eεk ∓ 1 ≡ ñk . (4.21)

In the simplest configuration, the chain is made by two sites and ` = 1 in (4.20)
and (4.21). In this case, by employing (4.21), we have that the spectrum of ρA in (4.20)
for fermions and bosons read respectively

{
e−ε

1 + e−ε
,

1
1 + e−ε

}
=
{
ñ , 1− ñ

}
, (4.22)

and {
e−sε

(
1− e−ε

)
; s ∈ N0

}
=
{ 1

1 + ñ

(
ñ

1 + ñ

)s
; s ∈ N0

}
, (4.23)

where we have set ε1 ≡ ε and ñ1 ≡ ñ. These spectra provide the corresponding entangle-
ment entropy and capacity of entanglement. From (4.22) and (4.23) we get respectively

S
(1f)
A = −ñ log ñ− (1− ñ) log(1− ñ) , C

(1f)
A = (1− ñ) ñ

[
log
(1− ñ

ñ

)]2
, (4.24)

and

S
(1b)
A = −ñ log ñ+ (1 + ñ) log(1 + ñ) , C

(1b)
A = (1 + ñ) ñ

[
log
(1 + ñ

ñ

)]2
. (4.25)

Notice that these expressions for SA and CA coincide with the corresponding densities
in (4.18), once we identify nk = ñ. This is consistent with the quasi-particles picture
after a quench of free theories, where the quasi-particles can be seen as pairs of counter-
propagating fermions or bosons with the same momenta.
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Figure 4. The densities of the quasi-particles (4.18) and the corresponding velocity for the quantum
quenches discussed in section 4 and section 5 for the bosonic (left panel) and the fermionic (right
panel) chain, in terms of the momentum k.

4.2.2 Harmonic chain

Considering the harmonic chain (3.2), in the following we explore the temporal evolution of
the capacity of entanglement after the global quench where the initial state is the ground
state of (3.2) for the value ω0 and the evolution Hamiltonian is (3.2) with ω 6= ω0.

The temporal evolutions of the entanglement entropy and of the capacity of entangle-
ment after this global quench are given by (4.9) and (4.10) respectively, with k ∈ [0, 2π]
and the densities in (4.18). The occupation numbers nk to employ in these expressions
read [115]

nk = 1
4

(
ωk
ω0,k

+ ω0,k
ωk

)
− 1

2 , (4.26)

where

ωk =
√
ω2 + 4λ

µ
sin2(k/2) , (4.27)

and ω0,k is obtained by replacing ω with ω0 in this dispersion relation. The velocity of the
quasi-particles after the quench is given by

vk ≡
∂ωk
∂k

= (λ/µ) sin(k)√
ω2 + 4(λ/µ) sin2(k/2)

. (4.28)

Both the saturation constants in (4.19) depend on ω0 and ω. We cannot find analytic
expressions for these constants, but their values can be obtained numerically case by case.

In figure 4 we show the functions (4.18) entering in (4.9) and (4.10), both for the
bosons (left panel) and the fermions considered in the next subsection (right panel). For
the quench in the harmonic chain, the density functions s̃ and c̃ are defined in the domain
k ∈ [0, 2π] and are obtained by employing (4.26) and (4.28). In the left panel of figure 4, we
plot s̃ and c̃ for ω = 0 and two different values of ω0. A crucial difference occurs between
s̃ and c̃ : for either k = 0 or k = 2π the density s̃ diverges logarithmically, while c̃ is
always finite. We remark that both s̃ and c̃ have maxima at k = 0 and k = 2π, where the
velocity of the particles takes its maximum value. In the right panel of figure 4 we show
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Figure 5. Temporal evolutions of ∆SA and ∆CA of a block made by ` consecutive sites in the
infinite harmonic chain after a global quantum quench of the mass parameter from ω0 to ω. In the
left panel ω0 = 1, while ω0 = 5 in the right panel.

the densities s̃ and c̃ (see (4.32) and (4.33)) for the free fermionic quench. In this case,
while s̃ has a maximum in the center of the domain k ∈ [0, π] and vanishes at its extrema,
the function c̃ vanishes for k ∈ {0, π/2, π} and it has local maxima when k = k̄, π− k̄, with
k̄ ' 0.585. For this fermionic quench, notice that s̃ and the velocity reach their maximum
at k = π/2, where c̃ is minimum.

In figure 5 we show the temporal evolutions of ∆SA and ∆CA of an interval in an
infinite harmonic chain after two global quantum quenches of the mass parameter from
ω0 to ω = 0, with ω0 = 1 (left panel) and ω0 = 5 (right panel). The numerical data
shown in this figure have been obtained as explained in appendix A. Since the evolution
hamiltonian is massless, the CFT predictions can be employed. We have reported the data
corresponding to two different lengths for the interval and the solid lines are obtained from
the expressions derived from the quasi-particle picture, namely (4.9), (4.10), (4.18), (4.26)
and (4.28). In both the panels of this figure the data reported have either ω0` = 50 or
ω0` = 100. Both ∆SA and ∆CA exhibit a linear growth in the regime t/` < 1/2 and a
saturation for t/` > 1/2, as expected from CFT (see (4.5)). However, the slopes of the
linear growth for ∆SA and ∆CA are different and, consequently, also the saturation value.
Thus, (4.5) is not confirmed by the numerical data at quantitative level. Following [41],
this discrepancy can be explained by assuming that τ0 depends on n, which leads to (4.8).
Now, the different slopes for the linear growths for ∆SA and ∆CA can be reproduced by
fitting τ0(1) and τ ′0(1). Furthermore, notice that the slopes of the linear growths depend
on the value of ω0. Let us remark that we can have either ∆SA < ∆CA (see e.g. the left
panel) or ∆SA > ∆CA (see e.g. the left panel), depending on the value of ω0.

From the definition of MA in (1.5), we have that ∆MA ≡MA(t)−MA(0) reads

∆MA =
(
∆SA

)2 + ∆CA + 2 ∆SA
(
SA(0) + 1

)
. (4.29)

This expression and the data collapses of ∆SA/` and ∆CA/` (see figure 5) for large `
suggest to consider ∆MA/`

2 and compare it with (∆SA/`)2. Moreover, (4.29) tells us also
that ∆MA/`

2 → (∆SA/`)2 for large `. This is supported by the data in figure 6 showing
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Figure 6. Temporal evolutions of ∆MA and of (∆SA)2 of a block of ` consecutive sites in an
infinite harmonic chain after a global quantum quench of the mass parameter.

the temporal evolution of ∆MA. The values of ` in this figure are not large enough to
display this collapse. However, the data for ∆MA/`

2 approach the ones for (∆SA/`)2 for
increasing `, as expected.

4.2.3 Free fermionic chain

In the following we consider the temporal evolution of the capacity of entanglement in a
free fermionic chain after the global quench introduced in [98, 118].

Consider the following inhomogeneous free fermionic Hamiltonian [118]

Ĥ0 = − 1
2

+∞∑
n=−∞

tn
(
ĉ†n ĉn+1 + ĉ†n+1 ĉn

)
, (4.30)

in terms of the fermionic creation and annihilation operators ĉ†n and ĉn (which satisfy the
standard anticommutation relations {ĉ†n, ĉ†m} = {ĉn, ĉm} = 0 and {ĉn, ĉ†m} = δm,n), with
t2n = 1 and t2n+1 = 0 (i.e. a fully dimerized chain). The system is half filled and prepared
in the ground state |ψ0〉 of Ĥ0 and, at t = 0, the inhomogeneity is removed by setting all
tn = 1; hence the unitary time evolution of |ψ0〉 is governed by the translation invariant
hopping Hamiltonian (tight binding model at half filling)

Ĥ = − 1
2

+∞∑
n=−∞

(
ĉ†n ĉn+1 + ĉ†n+1 ĉn

)
, (4.31)

which is gapless; hence in the continuum limit the CFT predictions can be used. Notice
that the Hamiltonian (4.31) is equal to the one in (2.23) up to a prefactor 1/2. We
introduce this rescaling, which does not alter the physical properties of the model, for
fixing conventionally the maximal velocity of the excitations equal to one (see 4.33).
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Figure 7. Temporal evolution of ∆SA and ∆CA of a block of ` consecutive sites in the infinite free
fermionic chain after a global quench from the fully dimerised chain to the homogeneous gapless
chain. Two different values of ` are considered. The blue and the red solid lines are obtained
from (4.9) and (4.10) respectively, by using (4.18), (4.32) and (4.33).

For the temporal evolutions of the entanglement entropy and of the capacity of en-
tanglement, the formulas (4.9) and (4.10) from the quasi-particle picture with k ∈ [0, π]
and (4.18) can be employed. In this fermionic quench, the occupation numbers nk read [118]

nk = 1 + cos k
2 , k ∈ [0, π] , (4.32)

whose range is between 0 and 1 (as expected from the fermionic statistics) and the velocity
of a quasi-particle with momentum k after the quench is

vk = sin k . (4.33)

By using (4.32) and (4.33) in (4.19), for the saturation constants of ∆SA and ∆CA at large
time one finds respectively

lim
t→∞

∆SA
`

= log 4− 1 ' 0.3863 , lim
t→∞

∆CA
`

= π2

8 − 1 ' 0.2337 . (4.34)

In figure 7 we show the temporal evolutions of ∆CA and ∆SA for the global quench
of the free fermionic system described above. The numerical data in figure 7 are obtained
as described in appendix A and are reported for two different values of the subsystem
size `. The linear growth predicted from CFT when t/` < 1/2 is observed, but ∆CA and
∆SA increases with different slopes. Hence, like for the quench in the harmonic chain
discussed in section 4.2.2 the prediction (4.5) with τ0 independent of n does not hold, but
this behaviour can be explained by introducing a n dependent parameter τ0. The curves
coming from the quasi-particle picture, obtained by plugging (4.18), (4.32) and (4.33)
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Figure 8. Temporal evolution of ∆MA and of (∆SA)2 of a block of ` consecutive sites in the
infinite fermionic chain, after a quantum quench from the fully dimerised chain to the homogeneous
gapless chain.

into (4.9) and (4.10), correspond to the solid lines in figure 7 and exhibit a very good
agreement with the numerical data, also after the linear growth regime. The different
slopes in the linear growths of ∆SA and ∆CA in figure 7 can be understood within the
quasi-particle picture. The coefficient of the linear growth of ∆SA and ∆CA is determined
by the first term in (4.9) and (4.10) respectively. From the right panel of figure 4, we
observed that in this quench the entropy density s̃ has maximum when vk is maximum,
while c̃ is minimum for this value of k; hence we expect that ∆SA grows faster ∆CA, as
confirmed by the data reported in figure 7.

The temporal evolution of ∆MA/`
2 compared to the one of (∆SA/`)2 is shown in

figure 8 and the expected convergence of ∆MA/`
2 to (∆SA/`)2 for large ` (discussed

below (4.29)) is more evident with respect to the bosonic case (see figure 6).

5 Contour functions for the capacity of entanglement

The contour for the entanglement entropies is a function of the position defined in A

that describes the spatial structure of the bipartite entanglement inside the subsystem A

when the system is in a pure state. When the system is out of equilibrium, also a non
trivial dependence on time typically occurs. In this section we discuss the contour function
associated to the capacity of entanglement.

In a lattice model, the contour function for the entanglement entropy and the contour
function for the capacity of entanglement are sA : A → R and cA : A → R respectively
such that

SA =
∑
i∈A

sA(i) , CA =
∑
i∈A

cA(i) , (5.1)
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and satisfying the positivity constraint given by sA(i) > 0 and cA(i) > 0. For sA(i), further
requirements have been discussed in [43].

It is straightforward to extend these notions to quantum field theories in the continuum
by introducing positive real functions sA(x) and cA(x) defined for x ∈ A such that

SA =
∫
A
sA(x) dx , CA =

∫
A
cA(x) dx . (5.2)

These contour functions can be easily obtained from the contour function s
(n)
A (x) of the

Rényi entropies, defined by S(n)
A =

∫
A s

(n)
A (x) dx, as follows

sA(x) = −
[
∂ns

(n)
A (x)

]∣∣
n=1 , cA(x) =

[
∂2
ns

(n)
A (x)

]∣∣
n=1 . (5.3)

For CFT in one spatial dimension and for the bipartitions considered in [77], which
always involve an interval A = (u, v) of length `, the following function has been suggested
for the contour function of the Rényi entropies [45]

s
(n)
A = − c

12

(
n− 1

n

)
f ′(x) + log cn

`
, (5.4)

where f(z) is the conformal mapping characterising the underlying physical case, which is
related to WA in (2.1) as follows

WA =
∫
Aε
f ′(x) dx , (5.5)

being Aε ≡ (u+ ε, v − ε) ⊂ A. From (5.4), one obtains

sA(x) = c

6 f
′(x)− c′1

`
, cA(x) = c

6 f
′(x) +

[
∂2
n(log cn)

]∣∣
n=1

`
. (5.6)

When the conformal field theory is in its ground state and A is an interval on the
line, we have that f(x) = log

(
x/(` − x)

)
; hence the contour functions in (5.6) become

respectively

sA(x) = c

6
`

(`− x)x −
c′1
`
, cA(x) = c

6
`

(`− x)x +
[
∂2
n(log cn)

]∣∣
n=1

`
. (5.7)

As for the free lattice models that we are considering, in the appendix A we construct
the corresponding contour functions for the capacity of entanglement by adapting the
constructions of the contour functions of the entanglement entropies discussed in [43, 45].
The numerical results for these contour functions are displayed in figure 9, both for the
harmonic chain (left panels) and for the free fermionic chain (right panels), where the
dashed lines correspond to the curves obtained from CFT with c = 1. For the dashed
curves in the top left panel, the constants c′1 and [∂2

n(log cn)]
∣∣
n=1 in (5.7) have been fitted,

while for the top right panel they have been set as predicted in [55]. In the top panels we
observe a nice agreement between the CFT curve and the lattice data points all over the
interval for the fermionic case (right panel) and only in the region close to the endpoints
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Figure 9. Contour functions for the entanglement entropy and for the capacity of entanglement
of a block made by ` sites in an infinite harmonic chain (left panels) and free fermionic chain (right
panels) reported for various values of `. In the left panel we set ω` = 10−10. The dashed lines in
the top panels represent (5.7) with c = 1 and different additive constant.

for the bosonic case (left panel). The latter observation is made quantitative in the bottom
left panel, where the difference between the contour functions of the entanglement entropy
and of the capacity of entanglement is considered. This quantity is non vanishing in the
central part of the interval and the nice collapse observed for its data points provides a
curves that would be interesting to reproduce through a CFT analysis. In the fermionic
case (bottom right panel), this quantity displays oscillations in the parity of the integer
parameter labelling the sites, whose amplitudes decrease with `.

We find it worth investigating also the temporal evolution of the contour function for
the capacity of entanglement after a global quantum quench.

As for the contour function of the entanglement entropy after a global quantum quench,
by employing the quasi-particle picture, the following formula has been studied [103]

sA(x, t) = 1
2

[ ∫
x<2|vk|t<`

s̃(k) dk +
∫
`−x<2|vk|t<`

s̃(k) dk
]

+
∫

2|vk|t>`
s̃(k) dk + f0(x) , (5.8)

where x ∈ A and A is a block of ` consecutive sites in an infinite chain. The function s̃(k)
has been introduced in (4.9), the velocity of the excitations with quasi-momentum k is vk
and f0(x) satisfying ∫

A
f0(x) dx = SA

∣∣
t=0 , (5.9)
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must be added because the quasi-particle picture does not take into account the value of
the entanglement entropy at the initial time t = 0. When the post-quench evolution is
determined by a CFT Hamiltonian, the following expression has been proposed [103]

f0(x) = πc

3τ0

[ 1
sinh(2πx/τ0) + 1

sinh(2π(`− x)/τ0)

]
, (5.10)

where τ0 is the parameter introduced in section 4.1, which is not known a priori from the
lattice and it can be obtained by fitting the linear growth of the entanglement entropy (see
figure 5 and figure 7 for the quench in the two models).

By adapting (5.8), it is natural to write the following expression for the contour function
of the capacity of entanglement

cA(x, t) = 1
2

[ ∫
x<2|vk|t<`

c̃(k) dk +
∫
`−x<2|vk|t<`

c̃(k) dk
]

+
∫

2|vk|t>`
c̃(k) dk + f̃0(x) , (5.11)

where c̃(k) has been introduced in (4.10) and f̃0(x) satisfies∫
A
f̃0(x) dx = CA

∣∣
t=0 . (5.12)

By adapting the derivation of (5.10) to the case of the capacity of entanglement (as done
e.g. for (5.6)), one expects f̃0(x) = f0(x) + C, where C is non universal constant.

For the global quench of the free fermionic chain described in section 4.2.3, we can
explore the contour function of the capacity of entanglement in the asymptotic regime
t→∞ by adapting the results of [103, 118]. This leads to

sA(i) = 2
`+ 1

∑̀
k=1

s(ζk)
[
sin(iθk)

]2
, cA(i) = 2

`+ 1
∑̀
k=1

c(ζk)
[
sin(iθk)

]2
, (5.13)

where ` is the number of consecutive sites in A, the functions s(y) and c(y) are defined
in (A.16) and (A.17) respectively and

θk = πk

`+ 1 , ζk = 1 + cos θk
2 . (5.14)

It is worth taking the limit `→∞ of (5.13) because it allows to capture the behaviour of
sA(i) and cA(i) close to one of the endpoints. This limit can be studied by substituting
the sums over k with an integral (i.e. replacing 1

`+1
∑`
k=1 f(θk)→

∫ π
0
dθ
π f(θ) for any given

function f). In [103] it has been found that sA(i) in (5.13) becomes

sA(i) = log 4− 1 + 1
2i(4i2 − 1) . (5.15)

From (5.14) and (A.17), for the limit `→∞ of cA(i) in (5.13) we obtain

cA(i) = π2

8 − 1− 1
4π

∫ π

0

[
log
(

tan(θ/2)
)]2 [2 cos(2iθ)− cos(2(i+ 1)θ)− cos(2(i− 1)θ)

]
dθ .

(5.16)
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Figure 10. Temporal evolution of the contour of the capacity of entanglement of an interval made
by ` = 100 sites after the mass quench in the infinite harmonic chain. In the quench considered
ω0 = 1 and ω = 0. The quasi-particle formula provides the solid lines in all the panels.

In figure 10 and figure 11 we show the numerical results for the temporal evolution
of the contour function of the capacity of entanglement after the global quantum quench
in the harmonic chain described in section 4.2 and for a block made by ` = 100 sites,
obtained through the procedure discussed in the appendix A. These numerical results are
compared with the formula obtained from (5.11), (4.18), (4.26), (4.28) and (5.10), which
is represented by solid lines. The function f̃0 is (5.10) in all the panels of figure 10 and
figure 11. In figure 10 we show the data corresponding to ` = 100. We remark that cA(i, t)
displays the same qualitative behaviour observed for sA(i, t) in [43, 103]: two fronts start
from the endpoints of the interval moving at the same velocity but in opposite directions
towards the center of the interval, where they meet and then superpose. In figure 11 we
report the numerical data for two values of `. The corresponding curves do not collapse on
the quasi-particle formula, like for the quench of the fermionic chain (see figure 12), where
we have access to large enough values of `.

In figure 12 we show the temporal evolution of the contour of the capacity of entan-
glement after the global quench in the free fermionic chain discussed in section 4.2.3. The
numerical results are obtained as discussed in appendix A and correspond to two values of `.
A remarkable agreement is observed with the formula computed from (5.11), (4.18), (4.32)
and (4.33) with f̃0 = 0, which is represented by the black dashed lines. The qualitative
behaviour described above for the global quench in harmonic chains (see figure 10) is ob-
served also for the temporal evolution of cA(i, t) in this fermionic quench. The curves
corresponding to sA(i, t) for this quench have been reported in figure 21 of [103]. We find
it instructive comparing these two quantities. For the contour of the entanglement entropy,
the CFT analysis in [103] suggests that the fronts are almost vertical when the velocity of
all the excitations is equal to 1 (see figure 1 in [103]), while the analysis in [43, 103] shows
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Figure 11. Temporal evolution of the contour of the capacity of entanglement of an interval made
by ` sites after the mass quench in the infinite harmonic chain. In the quench considered ω0 = 1
and ω = 0. The quasi-particle formula provides the solid lines in all the panels.

that in the lattice models where the velocity distribution is non-trivial the fronts become
less steep. Such a steepness decreases as we have less quasi-particles moving with velocity
close to 1. This argument holds also for the contour for the capacity of entanglement.
Thus, from the right panel of figure 4, we expect that the fronts in the temporal evolution
of the contour for the entanglement entropy are steeper than the ones of the contour for the
capacity of entanglement. This expectation is confirmed when the top panel of figure 12 is
compared with figure 21 of [103].

The top panel of figure 12 shows also that, for large values of t/`, the capacity saturates
to a constant value and, correspondingly, the contour converges towards the limiting curve
giving by (5.13) (blue dashed line). When the post-quench evolution is determined by a
CFT Hamiltonian, vk = 1 for any k the saturation occurs exactly at t/` = 1/2. If the
velocities vk are distributed in a non trivial way, the transition from the linear growth to
the saturation regime occurs in a smoother way. From top panel of figure 12 we observe
that for t/` ' 1 the saturation has not reached yet. Comparing this behaviour with the
one of the contour for the entanglement entropy shown in figure 21 of [103], we notice that
sA(i, t) reaches the asymptotic curve earlier than cA(i, t). This can be explained through
the considerations reported in the discussion of the right panel of figure 4.

In the bottom panel of figure 12 the temporal evolution of sA(i, t)−cA(i, t) is reported.
These curves deserve further investigations.
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Figure 12. Temporal evolution of the contour function of the capacity of entanglement cA(i, t)
(top panel) and of sA(i, t)− cA(i, t) after the global quench in the free fermionic chain described in
section 4.2.3.

6 Symmetry-resolved capacity of entanglement

In this section we introduce the symmetry resolution for the the capacity of entangle-
ment and for the n-th moments of shifted modular Hamiltonian by adapting the analysis
discussed in [60, 61] for the entanglement entropy.

Consider a system endowed with a U(1) global symmetry generated by a charge Q
and a spatial bipartition A ∪ B. When the whole system is in an eigenstate |Ω〉 of Q, its
density matrix ρ = |Ω〉〈Ω| satisfies [ρ,Q] = 0. Assume that Q = QA ⊕QB, where QA and
QB denote the restriction of the charge operator to A and B respectively. Taking the trace
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of [ρ,Q] = 0 over B, one obtains [ρA, QA] = 0, which implies the following block diagonal
structure for ρA

ρA =
⊕
q

p(q) ρA(q) , (6.1)

where each block ρA(q) corresponds to an eigenvalue q of QA. The quantity p(q) is the
probability of finding q in a measurement of QA in the reduced density matrix ρA; hence
p(q) = TrΠqρA, where Πq is the projector onto the eigenspace of QA with eigenvalue q. The
normalisation of each block implies that TrρA(q) = 1. Since this normalisation condition
holds, it is natural to define the so called symmetry-resolved entanglement entropies, i.e.
the analogous of the entanglement entropies for each block

S
(n)
A (q) = 1

1− n logTr
[
ρA(q)n

]
, SA(q) = −Tr

[
ρA(q) log ρA(q)

]
. (6.2)

We find it natural to consider

CA(q) = Tr
(
ρA(q)

[
log ρA(q)

]2)−[Tr(ρA(q) log ρA(q)
)]2

= ∂2
n

[
(1− n)S(n)

A (q)
]∣∣∣
n=1

, (6.3)

and

M
(n)
A (q; bn) = Tr

[
ρA(q)

(
− log ρA(q) + bn

)n]− bnn (6.4)

= ebn(−1)n dn

dαn

[
exp

{
− α b+ (1− α)S(α)

A (q)
}]∣∣∣

α=1,b=bn
− bnn ,

that can be interpreted respectively as the symmetry-resolved capacity of entanglement
and the symmetry-resolved moments of shifted modular Hamiltonian. In (6.4) we find it
convenient to highlight the dependence on the constant bn.

The expression (6.4) reduces to the SA(q) in (6.2) when n = 1. Instead, when n = 2
and bn = 1, we have that (6.4) provides the symmetry-resolved version of (1.5) up to an
additive constant. From (6.3) and (6.4), it is straightforward to realise that S(n)

A (q) allows
to compute also CA(q) and M (n)

A (q; bn).
Remarkably, the entanglement entropy can be decomposed as a sum of the contribu-

tions from the different symmetry sectors. Indeed, from (6.1) in (1.1) and the fact that the
trace of a block diagonal matrix is the sum of the traces of each block, one finds

SA = −
∑
q

Tr
[
p(q) ρA(q) log

(
p(q)ρA(q)

)]
(6.5)

=
∑
q

{
− Tr

[
p(q) ρA(q) log ρA(q)

]
− Tr

[
p(q) ρA(q) log p(q)

]}
(6.6)

=
∑
q

p(q)SA(q)−
∑
q

p(q) log p(q) ≡
∑
q

p(q)SA(q) +
∑
q

h(q) , (6.7)

where
h(q) ≡ − p(q) log p(q) (6.8)

is the Shannon entropy associated to the probability distribution p(q) and we have also
exploited that TrρA(q) = 1. The first and the second terms in (6.7), which have been called
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respectively configurational and number entanglement entropies [57], respectively quantify
the entanglement within symmetry sectors and fluctuations thereof. The configurational
and the number entanglement entropies have been measured in experiments involving a
system of interacting bosons with disorder [57]. This fact motivates to study these two
quantities and to look for their possible extensions.

The analogue of (6.7) for the Rényi entropies cannot be written because S(n)
A does

not have the form Tr [f(ρA)], for some function f . Since CA defined in (1.3) contains S2
A,

where SA is written as in (6.7), we conclude that the capacity of entanglement cannot be
written as a sum over the charge sectors. Instead, this can be done for the moments of
the shifted modular Hamiltonian, which are written as traces of specific functions of the
reduced density matrix.

Plugging the decomposition (6.1) into the definition (1.6) of the total M (n)
A , we obtain

M
(n)
A =

∑
q

Tr
{
p(q) ρA(q)

[
− log (p(q)ρA(q)) + bn

]n}− bnn . (6.9)

When n = 2, from (6.9) we have

M
(2)
A =

∑
q

Tr
[
p(q) ρA(q)

(
log[p(q)ρA(q)]− 2b2

)
log[p(q)ρA(q)]

]
(6.10)

=
∑
q

{
p(q) Tr

[
ρA(q)

(
log ρA(q)− 2b2

)
log ρA(q)

]
(6.11)

+ 2 p(q) log p(q) Tr
[
ρA(q) log ρA(q)

]
+ p(q)

(
log p(q)

)2 − 2 b2 p(q) log p(q)
}

=
∑
q

(
p(q)M (2)

A (q; b2) + 2h(q)SA(q) +m(2)(q; b2)
)
, (6.12)

where
m(n)(q; a) = p(q)

{[
a− log p(q)

]n − an} . (6.13)

Notice that, differently from (6.7), in (6.12) also the product between the symmetry-
resolved entanglement entropy and its classical counterpart (6.8) occurs, which does not
depend on free parameter b2.

When n = 3, we find

M
(3)
A = Tr

{
ρA
[
− (log ρA)3 + 3 b3 (log ρA)2 − 3 b2

3 log ρA
]}

(6.14)

=
∑
q

Tr
{
ρA(q) p(q)

(
log ρA(q) + log p(q)

)
(6.15)

×
[
−
(

log ρA(q) + log p(q)
)2 + 3b3

(
log ρA(q) + log p(q)

)
− 3b2

3

]}
=
∑
q

{
p(q)M (3)

A (q; b3) + 3m(2)(q; b3/2) SA(q) + 3h(q)M (2)
A (q; b3/2) +m(3)(q; b3)

}
,

(6.16)

where m(n)(q; a) is given by (6.13). Also in (6.16) some terms involve the symmetry-
resolved moments of order lower than n = 3, but now they do depend on b3. We guess
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that the generalisation of (6.9) to a generic value of n reads

M
(n)
A =

∑
q

{
p(q)M (n)

A (q; bn) +m(n)(q; bn) +
n−1∑
k=1

[(
n

k

)
m(k)(q; bn/2) M (n−k)

A (q; bn/2)
]}

,

(6.17)
where m(n)(q; a) is defined in (6.13). It would be useful to provide a proof for (6.17), which
has been checked for the first 700 positive integer values of n.

The functions m(n)(q; a) in (6.13) can be found by replacing ρA(q) with p(q) into the
definition of M (n)

A (q; a) given in (6.4). Since m(1)(q; a) = h(q) in (6.8), we have that (6.13)
provides a generalisation of the Shannon entropy h(q) to higher values of n. For a given
n, the relation (6.17) tells us that M (n)

A can be written in terms of the symmetry-resolved
moments M (k)

A (q; a) with k 6 n and their classical counterparts. Notice that (6.17) be-
comes (6.7) when n = 1.

As mentioned in section 1, bn > n − 1 in order for M (n)
A to be concave and therefore

provide an entanglement monotone. The decomposition (6.17) can be employed to find
additional constraints on bn by imposing that all the quantities involved in the decompo-
sition are entanglement monotones. This holds when bn ≥ n − 1 and bn/2 ≥ n − 2 are
satisfied. For n = 1, the relation (6.17) is independent of b1 and therefore it is not useful in
this analysis. When n = 2 and n = 3, we have that n− 1 > 2n− 4; hence we do not obtain
constraints stronger than bn > n−1, already considered in section 1. Instead, when n > 3,
we have 2n − 4 > n − 1 and therefore concavity condition for (6.17) gives the stronger
constraint bn > 2n− 4.

In the remaining part of this section we explore the quantities defined above for the
Luttinger liquid CFT with parameter K, which is equivalent to the free compact boson
CFT with radius R ∝ 1/

√
K. For this model, the U(1) conserved charge is the electric

charge; hence q is an integer number. When A is an interval with length ` and the entire
system is in its ground state, the symmetry-resolved entanglement entropies have been
computed in [60, 61], finding

S
(n)
A (q) = 1

6

(
n+ 1
n

)
log(`/ε)− 1

2 log
(2K
π

log(`/ε)
)

+ yn + . . . , (6.18)

SA(q) = 1
3 log(`/ε)− 1

2 log
(2K
π

log(`/ε)
)

+ yS + . . . , (6.19)

where yn is a non-universal additive constant and the dots denote subleading terms as
ε → 0 and yS ≡ y1. The entanglement equipartition observed in [61] corresponds to the
fact that the leading terms of S(n)

A (q) and SA(q) are independent of q.
From (6.18) and (6.3) we can compute CA(q), finding

CA(q) = 1
3 log(`/ε) + yC + . . . , (6.20)

where yC = ∂2
n[(1−n)yn]|n=1. Comparing (6.19) and (6.20), we have that SA(q) = CA(q) at

leading order, but a subleading term of order log log(`/ε) breaks this equality. Moreover,
since the parameter q occurs only in the subleading terms of the expansion for ε → 0
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of the symmetry-resolved capacity of entanglement, it also displays equipartition in the
sense of [61].

As for the symmetry-resolved moments of shifted modular Hamiltonian, by plug-
ging (6.18) into (6.4) it is straightforward to obtain

M
(n)
A (q; bn) =

( log(`/ε)
3

)n
− n

2

( log(`/ε)
3

)n−1
log
(2K
π

log(`/ε)
)

+O
[(

log(`/ε)
)n−1]

,

(6.21)
where the subleading terms depend on non-universal constants (like e.g. ∂kα(yα)|α=1 for
k 6 n) and on bn. The first two leading terms in (6.21) are independent of the charge q,
but a non trivial dependence on q occurs in the subleading terms that we have neglected.
For instance, by considering the simplest case given by n = 2, from (6.18) and (6.4) for
n = 2, we find

M
(2)
A (q; b2) =

[
log(`/ε)

]2
9 − 1

3 log
(2K
π

log(`/ε)
)

log(`/ε) + a1 log(`/ε) (6.22)

+ 1
4

[
log
(2K
π

log(`/ε)
)]2

+ a2 log
(2K
π

log(`/ε)
)

+O(1) ,

with the constants a1 and a2 defined as

a1 = 1
3 (1 + 2yS + 2b2) , a2 = −yS − b2 , (6.23)

which contain both the non universal constant yS and b2.
Let us discuss the validity of (6.17) at the leading orders. By plugging (6.21) into the

r.h.s. of (6.17) and using that
∑
q p(q) = 1, we obtain

∑
q

n−1∑
k=1

(
n

k

)
m(k)(q; bn/2)

2

[
2

3n−k
(

log `
ε

)n−k
− n− k

3n−k−1

(
log `

ε

)n−k−1
log
(2K
π

log `
ε

)]

+
( log(`/ε)

3

)n
− n

2

( log(`/ε)
3

)n−1
log
(2K
π

log(`/ε)
)

+
∑
q

m(n)(q; bn) + . . . , (6.24)

where the dots represent the terms that have been neglected in (6.21). In order to
check (6.17) up to O

(
log(`)n−1 log(log `)

)
, we need to know p(q) for the specific model

we are considering. For the free compactified massless scalar, in the limit `/ε→∞, is has
been found that [61]

p(q) =
√

π

2K log(`/ε) e
− π2q2

2K log(`/ε) , (6.25)

and that the sum over q can be approximated by an integral over the real axis. The
dependence on q in (6.24) occurs only through m(k)(q; a), whose integrals over q reads

∫ ∞
−∞

m(k)(q; a) dq = 1
2k
[

log
(2K
π

log(`/ε)
)]k

+ O
([

log
(

log(`/ε)
)]k−1)

. (6.26)
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By employing this result into (6.24), we observe that the largest contribution comes from
the term with k = 1 in the sum, which cancels the second term in the second line. Thus,
for (6.24) we have ( log(`/ε)

3

)n
+O

((
log(`/ε)

)n−1)
, (6.27)

consistently with the leading term of M (n)
A (bn) when A is an interval in a CFT (see (2.4))

in its ground state.

7 Conclusions

In this section we report some conclusive remarks, organizing the main aspects investigated
in this work into paragraphs. In each of these we summarize the main related findings of
the manuscript and we discuss various avenues for interesting future explorations.

Comparing CA with other quantities from quantum information theory. In [4]
it has been pointed out that if one considers a 1 + 1-dimensional CFT either in its ground
state or in a thermal state, when the subsystem is a single interval, the entanglement
entropy and the capacity of entanglement have the same leading logarithmic behaviour in
the subsystem size. This observation naturally suggests considering the difference CA−SA,
which is a UV finite quantity. Moreover, since the universal logarithmic divergence cancels,
this difference should encode non-universal features at the leading order in the subsystem
size; to support this statement, in section 2 we have computed CA − SA in various cases
of interest. In section 2.2 we have considered free bosonic and free Dirac CFTs, when the
subsystem A is made by two disjoint intervals. Interestingly, CA−SA is able to discriminate
between the two theories, given that it is constant for the fermionic theory (see figure 1)
and is a non-trivial function of the cross-ratio in the bosonic case (see (2.21) and (2.22)).
Free massive quantum field theories in the regime where the mass m is much smaller than
the inverse of the subsystem size ` have been considered in section 2.3. While in the case
of CFTs CA − SA is of order one in the subsystem size, terms depending on m` � 1
arise in the massive case and they have a different functional form in the bosonic and the
fermionic theory. In particular, for the massive scalar field, CA − SA exhibits a double-
logarithmic divergence as m` → 0 (see (2.33)), which is not present in the massive Dirac
theory, as shown in (2.36). Understanding more about the differences between capacity
of entanglement and entanglement entropy is an important task, which deserves future
investigations.

The difference CA−SA proves to be interesting also at the level of the contour functions.
The CFT analysis of section 5 suggests that, computing the difference between the leading
terms of sA(x) and cA(x) in (5.7), non-universal contributions can be detected. The same
conclusion can be drawn by looking at the bottom panels of figure 9, where sA(x)− cA(x)
is shown and different behaviours are observed for a single interval in a harmonic chain
(bottom left panel) and for the same bipartition in a free fermionic chain (bottom right
panel). For the fermionic chain, the curves of data points approach zero as the subsystem
size grows, while for the harmonic chain the data points collapse on a curve, which provides
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a non-trivial prediction in the continuum limit. To the best of our knowledge, the expression
of this function is not known and therefore it would be very interesting to derive it through
QFT techniques. Notice that, because of non-universal effects, from our numerical analysis
we cannot ensure that the difference of the contour functions is finite close to the endpoints,
as the CFT analysis would suggest. Also out of equilibrium, the difference between the
contour functions exhibits a rich behaviour (cf. bottom panel of figure 12), which is still to
be completely understood.

As pointed out in [55] and discussed in section 1, the capacity of entanglement and
the other cumulants of the entanglement Hamiltonian can be combined to give the entan-
glement monotones M (n)

A defined in (1.6). Another central question that this manuscript
addresses is whether the capacity of entanglement and M

(n)
A are capable of capturing

features that the Rényi entropies are not sensitive to. In this respect, the capacity of
entanglement of a block of consecutive sites in a free fermionic chain with non-vanishing
chemical potential is studied in section 2.4. We find that CA exhibits oscillations in the
subsystem size, with frequency proportional to the Fermi momentum of the system. This
features are not present for the entanglement entropy, while they show up for S(n)

A with
n > 2 [87, 88]. Moreover, the temporal evolution of M (2)

A after a global quench in free
bosonic and fermionic chains is studied in section 4. As shown in figure 6 and figure 8, it
exhibits an initial quadratic growth in time before the saturation regime, differently from
the linear growth of the entanglement entropies. This can be traced back to the presence
of a term involving S2

A, which is dominant for large subsystem sizes. It would be insightful
to expand these analyses to other models that allow to find properties of M (n)

A and CA,
which are not shared by S(n)

A .

Looking for new c-functions. In [46] a c-function for relativistic QFTs has been con-
structed as the logarithmic derivative of the entanglement entropy with respect to the
subsystem size. Exploiting only the Lorentz invariance of the theory and the strong sub-
additivity of SA, this function is shown to be decreasing along the RG flow, consistently
with the c-theorem [119]. Along this line, in section 3 we have introduced the two functions
in (3.14) and (3.16) from the capacity of entanglement and the entanglement monotone
MA defined in (1.5) respectively. When evaluated for free bosonic and fermionic theories,
these functions exhibit a decreasing behaviour in the RG parameters, namely the masses.
This behaviour is shown in figure 3. Since CA and MA do not satisfy the strong subad-
ditivity, the argument of [46] does not apply. Currently, we have no a priori reasons for
establishing the monotonicity of (3.14) and (3.16) along the RG flows and therefore we
dub them accidental c-functions. In order to frame our analysis in a more general context,
we could ask whether monotonic c-functions can be constructed using properties different
from strong subadditivity. A similar question has been addressed in [52–54], where it has
been argued that reduced density matrices follow a majorization order along RG flows.
The arguments in [52–54] are worth being expanded and made more rigorous; this might
allow to conclude that all the infinitely many Schur concave functions of the entanglement
spectrum are monotonically decreasing along the RG flows.
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Temporal evolution after a quantum quench. In section 4 we compute the temporal
evolution of the capacity of entanglement after a global quantum quench in free bosonic and
fermionic chains. As shown in figure 5 for the bosons and in figure 7 for the fermions, we
find an initial linear growth and a subsequent saturation to an asymptotic value. Both these
features are very well captured by the formula (4.10) based on the quasi-particle picture
of [39], while the correct asymptotic value is predicted using the generalized Gibbs ensemble
as stationary state at large times. Comparing the evolution of the capacity of entanglement
with the one of the entanglement entropy, one observes that the slopes characterizing the
linear regime of the two quantities are different (see figure 5 and figure 7). This finding is
a fingerprint of the dependence of the parameter τ0 introduced in [39] on n (see also the
right panel of figure 3 of [41] for a numerical analysis of this dependence). Indeed, if we
assume that τ0 is independent of n, the CFT computation would lead to the same slope for
the entanglement entropy and the capacity of entanglement [4]. To understand better the
origin of the different initial slopes, it would be desirable to obtain these results exploiting
other field theoretical techniques.

A related question is whether the reduced density matrices satisfy a majorization order
along the temporal evolution after a quench. Notice that the ordering ρA(t) � ρA(t′) when
t > t′ is ruled out given that both the Schur concave quantities SA andMA evaluated along
the temporal evolution are increasing in time (see figures 5, 6, 7 and 8). On the other hand,
the possible ordering given by ρA(t) � ρA(t′) when t < t′ cannot be excluded exploiting the
results reported in this manuscript, requiring a more refined investigation. A promising
approach could be studying the temporal evolution of the entanglement spectrum of these
chains, expanding, for instance, the analyses in [103].

Symmetry-resolved related issues. In section 6 we have found that the entanglement
monotonesM (n)

A defined in (1.6) decompose non-trivially, as shown in (6.17), into the charge
sectors of a theory with a global U(1) symmetry. Remarkably, this decompostion holds
for M (n)

A for any value of n, but not for the Rényi entropies S(n)
A (unless n = 1, when the

entanglement entropy is retrieved). This analysis motivates the study of symmetry-resolved
monotones M (n)

A (q) as a tool for probing the various charge sectors of the theory. For
instance, given two density matrices such that ρ � σ, we may ask whether this majorization
order survives once we decompose ρ and σ according to (6.1). One can try to diagnose this
aspect using M (n)

A (q) in (6.4), given that these quantities are entanglement monotones also
in a fixed charge sector. We leave this analysis for future investigations.

Finally, we have studied the resolution of the capacity of entanglement in the vari-
ous U(1) sectors of a Luttinger liquid CFT. As one can see in (6.20), we have found that
the symmetry-resolved capacity of entanglement is independent of the charge at leading
order for small cutoff. This feature is the so-called equipartition of entanglement and
has been observed also for the entanglement entropy and the Rényi entropies in the same
model [60, 61]. A remarkable difference with respect to the symmetry-resolved entangle-
ment entropies (see (6.18) and (6.19)) is that CA(q) does not exhibit any double logarithmic
correction and therefore shows dependence on the non-universal properties of the theory
only at order one in the small cutoff expansion. An interesting consequence is that the
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difference CA(q) − SA(q) enjoys equipartition and encodes non-universal features at lead-
ing order. On the other hand, differently from what we have discussed at the beginning
of this section for the difference between the total quantities, CA(q) − SA(q) is not UV
finite because of the aforementioned log-log divergence of SA(q). It would be interesting to
find a quantity that not only is equally distributed among the charge sectors and displays
non-universal features at leading order, but is also UV finite.
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A Free fermionic and bosonic lattice models

In this appendix we review the numerical procedure to evaluate the entanglement entropy,
the capacity of entanglement and their contour functions for the free bosonic and fermionic
lattice models that we are considering in this manuscript. Moreover, we derive analytic
expressions for the correlators of the fermionic chain with Hamiltonian (3.24).

A.1 Capacity of entanglement and its contour function

In a free lattice model in a generic number of spatial dimensions described by a quadratic
Hamiltonian, consider a sublattice A made by ` sites. When the entire system is in a
Gaussian state (e.g. the ground state), the entanglement entropy and the capacity of en-
tanglement can be computed as follows [42, 98, 117, 120–123]

SA =
∑̀
k=1

s(ξk) , CA =
∑̀
k=1

c(ξk) , (A.1)

where the explicit expressions of s(y) and c(y) and the nature of the eigenvalues ξk depend
on whether the lattice is made by fermions or bosons.

The contour functions sA(i) and cA(i) in (5.1) can be constructed by associating `

real numbers pk(i) to every ξk, being 1 6 i, k 6 `. The function pk(i) is called mode
participation function [42] and fulfils the following conditions

∑̀
i=1

pk(i) = 1 , pk(i) > 0 , (A.2)
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which tell us that pk(i) is a probability distribution for every k. A mode participation
function pk(i) allows to write the contour functions (5.1) as follows

sA(i) =
∑̀
k=1

pk(i) s(ξk) , cA(i) =
∑̀
k=1

pk(i) c(ξk) , (A.3)

through the functions s(y) and c(y) occurring in (A.1). The explicit expression of the mode
participation function pk(i) depends on the model and it is not unique, even for a given
model. Some reasonable constraints that pk(i) must satisfy have been introduced in [43].
However, they do not fix pk(i) uniquely.

In the following we employ the mode participation functions proposed in [43] for the
free fermionic lattices and in [45] for the free bosonic lattices, whose construction is reviewed
in the forthcoming discussion.

A.2 Harmonic lattice

The Hamiltonian of the harmonic lattice with nearest neighbours spring-like interactions
reads

ĤHL =
∑
i

(
1

2µ p̂
2
i + µω2

2 q̂2
i

)
+
∑
〈i,j〉

λ

2 (q̂i − q̂j)2 , (A.4)

where the hermitean operators q̂i and p̂i satisfy the canonical commutation relations
[q̂i, q̂j ] = [p̂i, p̂j ] = 0 and [q̂i, p̂j ] = iδi,j . The Hamiltonian (A.4) generalises (3.2) to higher
dimensional lattices.

Assuming that the entire system is in a Gaussian state and considering a spatial
bipartition of the lattice into a subsystem A made by ` sites and its complement, the en-
tanglement properties are encoded into the reduced covariance matrix γA, which is defined
as the following (2`)× (2`) symmetric and positive definite matrix

γA ≡
(
QA MA

M t
A PA

)
, (A.5)

in terms of the two point functions restricted to A, namely (QA)i,j = 〈q̂iq̂j〉, (PA)i,j = 〈p̂ip̂j〉
and (MA)i,j = Re

[
〈q̂ip̂j〉

]
, with i, j = 1, . . . , `. In the time independent case, γA = QA ⊕

PA. Since γA is a (2`) × (2`) real symmetric and positive definite matrix, its symplectic
eigenvalues {σ1, . . . , σ`} can be considered [124].

The moments TrρnA are obtained from the symplectic eigenvalues σk’s as [125]

log TrρnA = −
∑̀
k=1

log
[(
σk + 1

2

)n
−
(
σk −

1
2

)n ]
. (A.6)

From (1.1) and (1.3), one finds that SA and CA are given by (A.1) with

ξk = σk , (A.7)
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and

s(y) =
(
y + 1

2

)
log

(
y + 1

2

)
−
(
y − 1

2

)
log

(
y − 1

2

)
, (A.8)

c(y) =
[(
y + 1

2

)
log

(
y + 1

2

)
−
(
y − 1

2

)
log

(
y − 1

2

)]2

−
[(
y + 1

2

)(
log

(
y + 1

2

))2
−
(
y − 1

2

)(
log

(
y − 1

2

))2
]
. (A.9)

The above expressions have been used to obtain the numerical data reported in the left
panel of figure 2, in the top panel of figure 3, in figure 5 and figure 6.

We adopt the proposal made in [45] for the mode participation function in free bosonic
lattice models, which is constructed as follows. Consider the Williamson’s decomposition
of γA, namely

γA = W tDW , (A.10)

where W is a symplectic matrix and D = diag
(
σ1, . . . , σ`

)
⊕
(
σ1, . . . , σ`

)
contains the

symplectic eigenvalues. Let us introduce the auxiliary matrix K given by

K = W (W tW )−1/2 = (WW t)−1/2W , (A.11)

which can be decomposed into `× ` blocks

K =
(
UK YK
ZK VK

)
. (A.12)

The mode participation function pk(i) proposed in [45] reads

pk(i) = 1
2

([
(UK)ki

]2 +
[
(YK)ki

]2 +
[
(ZK)ki

]2 +
[
(VK)ki

]2)
. (A.13)

By using (A.13) and the symplectic spectrum of the reduced covariance matrix in (A.5),
we can compute the contour functions for the entanglement entropy and the capacity of
entanglement for a generic harmonic chain. In the left panels of figure 9, in figure 10 and
in figure 11 the numerical data for the contour functions have been obtained by employ-
ing (A.8), (A.9) and (A.13) into (A.3).

A.3 Fermionic lattice

In free fermionic lattices (see e.g. the Hamiltonians (2.23), (2.37) and (3.24)) in their ground
state, the moments TrρnA can be computed from the eigenvalues νk of the ` × ` reduced
correlation matrix CA, i.e. the matrix whose entries are 〈ĉ†i ĉj〉, with i, j = 1, . . . , `. The
logarithm of TrρnA is given by [98, 117]

log TrρnA =
∑̀
k=1

log
[
νnk + (1− νk)n

]
. (A.14)
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From (1.1), (1.3) and (A.14), one finds that the entanglement entropy and the capacity of
entanglement can be computed through (A.1) with

ξk = νk , (A.15)

and

s(y) = − y log(y)− (1− y) log(1− y) , (A.16)

c(y) =
[
y
(

log y
)2 + (1− y)

(
log(1− y)

)2]− [y log y + (1− y) log(1− y)
]2
. (A.17)

These relations have been used to obtain the numerical data for free fermionic chains
reported in figure 1, in the bottom panels of figure 3, in figure 7 and figure 8.

The contour functions for the free fermionic chains considered in this manuscript have
been evaluated by employing the proposal made in [43]. Since the reduced correlation
matrix CA is hermitian, it is diagonalised by a unitary matrix Ũ , which can be exploited
to construct the following mode participation function [43]

pk(i) =
∣∣Ũk,i∣∣2 . (A.18)

Notice that the i-th element of the diagonal of the matrix relation Ũ †Ũ = 1 gives the
condition

∑`
k=1 pk(i) = 1 for 1 6 i 6 `. The contour for the entanglement entropy

and for the capacity of entanglement in these free fermionic models are obtained by us-
ing (A.18), (A.16), (A.17) and the eigenvalues νk’s in (A.3). Numerical data points found
through these expressions are shown in the right panels of figure 9 and in figure 12.

A.4 Lattice correlators for the massive Dirac field

In this appendix we derive analytic expressions for the two-point correlators of the free
fermionic chain described by the Hamiltonian (3.24), which provides the lattice discretisa-
tion of the massive Dirac fermion in 1 + 1 dimensions.

Some of the numerical results reported in section 3.2.1 have been obtained by employing
the two-point correlators of the model (3.24) in the thermodynamic limit N → ∞, which
reads [50]

〈ĉ†j ĉk〉 = 1
2δj−k,0 + (−1)j

∫ 1
2

0

m̃ cos(2πx(j − k))√
m̃2 + sin(2πx)2 dx , even |j − k| , (A.19)

〈ĉ†j ĉk〉 = i
∫ 1

2

0

sin(2πx)√
m̃2 + sin(2πx)2 sin(2πx(j − k)) dx , odd |j − k| . (A.20)

The following integrals

Ij,k =
∫ 1

2

0

cos(2πx(j − k))√
m̃2 + sin(2πx)2 dx , Ĩj,k =

∫ 1
2

0

sin(2πx)√
m̃2 + sin(2πx)2 sin(2πx(j − k)) dx ,

(A.21)
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can be evaluated in terms of hypergeometric functions by employing the following integral
representation of the hypergeometric function 2F1∫ π

0

cos(nθ)
2π(1− a cos θ)b dθ = (A.22)

= 2b−1 Γ(n+ b)
n! ab Γ(b)

(
1−
√

1− a2

a

)n+b

2F1

(
b , n+ b ;n+ 1 ;

(1−
√

1− a2

a

)2)
,

where n is an integer number and Γ(x) is the gamma function.
As for Ij,k, by denoting by |j−k| ≡ r and performing the change of variables 2πx = θ̃,

for the first integral in (A.21) we obtain

Ij,k =
√

2a(m̃)
∫ π

0

cos(rθ̃)√
1− a(m̃) cos(2θ̃)

dθ̃

2π , a(m̃) ≡ 1
1 + 2m̃2 . (A.23)

By adopting the integration variable θ̃ = θ/2 and exploiting the symmetry of the integrand
function in the integration domain, we get

Ij,k =
√

2a(m̃)
∫ π

0

cos(θr/2)√
1− a(m̃) cos(θ)

dθ

2π

=
Γ
(
r
2 + 1

2
)

√
π Γ

(
r
2 + 1

) Z(m̃)
r
2 + 1

2 2F1

(1
2 ,

r

2 + 1
2 ; r2 + 1 ;Z(m̃)2

)
, (A.24)

where Z(m̃) ≡ 1 + 2m̃2 − 2m̃
√

1 + m̃2 and (A.22) has been used in the special case where
n = r/2 and b = 1/2. Notice that setting n = r/2 is not inconsistent with (A.22), which
holds only for integer values of n; indeed, the integral Ij,k enters in (A.19), where r = |j−k|
is even; hence n is integer.

The integral Ĩj,k in (A.21) can be studied by observing that

Ĩj,k = 1
2
(
Ĩ−j,k − Ĩ

+
j,k

)
, (A.25)

where

Ĩ±j,k ≡
∫ 1

2

0

cos(2πx|j − k ± 1|)√
m̃2 + sin(2πx)2 dx . (A.26)

By introducing r± ≡ |j−k±1| and repeating the same calculation discussed above for Ij,k
(with r replaced by r±) we obtain

Ĩ±j,k =
Γ
(
r±

2 + 1
2
)

√
π Γ

(
r±

2 + 1
) Z(m̃)

r±
2 + 1

2 2F1

(
1
2 ,

r±

2 + 1
2 ; r

±

2 + 1 ;Z(m̃)2
)
. (A.27)

Thus, (A.24), (A.25) and (A.27) provide analytic expressions for the correlators (A.19)
and (A.20), which have been used to obtain the numerical data displayed in the bottom
left panel of figure 3.
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B Three qubits playground

In this appendix we explore the relation between strong subadditivity and concavity for the
second moment of shifted modular Hamiltonian M

(2)
A defined in (1.6). In this appendix,

we slightly modify the notation by removing the label referring to the subsystem A and
highlighting the dependence of M (2) on b2. For this purpose, we consider three examples
involving simple qubit systems. From the first two of them we find that the strong sub-
additivity property of M (2)(b2) does not necessarily require it to be a concave function of
the reduced density matrix. In the last example we obtain that the opposite also holds,
namely that there is a range of the parameter b2 where concavity is satisfied but the strong
subadditivity is not.

In all the three cases studied here the total Hilbert space H can be decomposed as
H = H1 ⊗H2 ⊗H3, where Hi = C2, with i = 1, 2, 3.

Example 1. Consider the three qubits in the W state |W 〉 ∈ H [126], given by

|W 〉 = 1√
3

(|001〉+ |010〉+ |100〉) . (B.1)

The corresponding total density matrix is given by

ρW = |W 〉〈W | , (B.2)

from which we compute the following reduced density matrices ρW,12 = Tr3ρW , ρW,23 =
Tr1ρW and ρW,2 = Tr13ρW , which will be needed to discuss the strong subadditivity.
They read

ρW,12 = ρW,23 = 1
3
(
|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |01〉〈10|+ |10〉〈01|

)
, (B.3)

ρW,2 = 2
3 |0〉〈0|+

1
3 |1〉〈1| . (B.4)

The idea now is to see whether

M (2)(ρW ; b2) +M (2)(ρW,2; b2)−
[
M (2)(ρW,12; b2) +M (2)(ρW,23; b2)

]
6 0 , (B.5)

is satisfied or not. Using the form of M (2)(b2) written in (1.6) for a general coefficient b2 we
see that the inequality (B.5) is satisfied as long as b2 & −1.109. Then there is a range in the
parameter b2 (that is −1.109 . b2 < 1) where the strong subadditivity condition (B.5) is
satisfied but the concavity condition is not (remember that it holds for b2 ≥ 1, as discussed
in section 1). This means that the strong subadditivity property does not require the
concavity in terms of ρ. Of course, using the coefficient b2 = 1 as used for instance in [7],
this issue does not occur because for that value the strong subadditivity holds and also the
concavity condition is satisfied. This example shows that at the level of density matrices
the strong subadditivity implies that concavity is not true in general.
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Example 2. We can do the same analysis for the following three qubits example used
in [127] to show that Tsallis entropy does not satisfy the strong subadditivity property.
The total density matrix ρ123 of the state is

ρ123 = 1
4
(
|010〉〈010|+ |010〉〈011|+ |100〉〈100|+ |100〉〈101|+ |011〉〈010|

+ |011〉〈011|+ |101〉〈100|+ |101〉〈101|
)
, (B.6)

from which its reduced density matrices can be obtained. It is easy to compute M (2)(b2) in
this case and see that the SSA inequality (B.5) is satisfied for any value of the coefficient
b2. And as before one can see that for b2 < 1 the strong subadditivity holds but concavity
does not. Thus, also in this case the strong subadditivity does not imply concavity.

Example 3. In the previous examples it is clear that for b2 = 1 the second moment
of shifted modular Hamiltonian satisfies the strong subadditivity and one is tempted to
think that this will always happen. In the following example we will show that this is not
the case.

In this exercise we have three free parameters to play with. The density matrix of the
three qubits state is

ρ123 = η
(
|000〉〈000|+ |000〉〈111|+ a|001〉〈001|+ b|010〉〈010|+ c|100〉〈100| (B.7)

+ a−1|011〉〈011|+ b−1|101〉〈101|+ c−1|110〉〈110|+ |111〉〈000|+ |111〉〈111|
)
,

with η = 1
2+a+b+c+1/a+1/b+1/c to have a well normalized density matrix. After comput-

ing the corresponding reduced density matrices and setting, for example, a = 1, c =
1, b = 1 we can see that the strong subadditivity condition (B.5) is satisfied as long as
−1

2 (b2 − 96 log 2) log 2 ≤ 0, which leads to b2 & 66.5. This means that for 1 6 b2 . 66.5 we
have the concavity property satisfied but the strong subadditivity does not hold. Also it
shows that, for the value of b2 considered in [7] and used in some parts of this manuscript,
M (2)(b2) does not satisfy the strong subadditivity for any state, but just in particular cases
as we mentioned above.

Thus, two conclusions can be taken from this appendix. The first one is that the strong
subadditivity and concavity are not related properties at the level of density matrices for
M (2)(b2). The second conclusion is that M (2)(b2) does not satisfy the strong subadditivity
for any density matrix and therefore one can say that it is not a strong subadditive quantity.

C Some results based on the corner transfer matrix

In this appendix we report derivations of some results presented in section 3.2.1 and also
provide supplementary computations based on the corner transfer matrix.

C.1 SA and CA from the corner transfer matrix

In the following we describe the derivation of (3.10), (3.11) and (3.12). First one observes
that (3.7), (3.8) and (3.9) can be written in terms of elliptic functions. This can be done
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by introducing q ≡ e−ε and taking the derivative with respect to n of (3.7), which gives

∂n logTrρnA =
∞∑
j=0

[
ε(2j + 1) qn(2j+1)

1− qn(2j+1) − log
(
1− q(2j+1)

) ]
. (C.1)

Following the computation reported in appendix A of [128] with q replaced by qn, we find

∂n logTrρnA = 1
24

[
log
(
16κ′4/κ2)− 4(1 + κ2

n)
π

K(κn)K(κ′n)
]
, (C.2)

where κ′n ≡
√

1− κ2
n and κn is implicitly defined as follows

n ε ≡
πK

(√
1− κ2

n

)
K(κn) , (C.3)

which implies that κ1 = κ, where κ is defined in (3.6). By evaluating (C.2) for n = 1, one
obtains (3.10), first found in [98].

In order to explore the capacity of entanglement, let us first notice that the definition
of q in terms of ε and the relation (C.3) lead to

κn = θ2
2(qn)
θ2

3(qn)
, κ′n ≡

√
1− κ2

n = θ2
4(qn)
θ2

3(qn)
, (C.4)

in terms of the Jacobi theta functions θr(q) with r = 2, 3, 4 [129], which give

κ′n√
κn

= θ2
4(qn)

θ2(qn) θ3(qn) . (C.5)

By using (C.3), (C.4), (C.5) in (C.1) and exploiting the fact that the elliptic integral K
can be written as K(κn) = π

2 θ
2
3(qn), we obtain

∂n logTrρnA = 1
6

[
log
(

θ2
4(q)

θ2(q)θ3(q)

)
− ε

4
(
θ4

2(qn) + θ4
3(qn)

)
+ log 2

]
. (C.6)

Taking the limit n→ 1, changing the sign of both sides of (C.6) and exploiting that q = e−ε,
we find (3.11) for the entanglement entropy. Then, by applying (1.3) to (C.6), one finds
the capacity of entanglement in (3.12).

C.2 Majorization in the harmonic chain

The corner transfer matrix results of [95] can be exploited to show that the entanglement
spectrum of a harmonic chain on the line with frequency ω2 corresponding to the bipartition
of the line into two half-lines majorizes the entanglement spectrum obtained for ω1 < ω2.

In this subsection and also in the following one, we consider the harmonic chain (3.2)
with µ = 1 and λ = 1, hence ω̃ = ω. When the subsystem of the harmonic chain in its
ground state is half chain, the elements of the entanglement spectrum are given by [95]
(see section 3.1 for more details)

λ(n1, n2, n3, . . . ;ω)=
∞∏
k=0

e−nk(2k+1)ε(1− e−(2k+1)ε)≡ ∞∏
k=0

λk(nk;ω)=
∞∏
k=0

e−nk(2k+1)ελk(0;ω),

(C.7)
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where ε = ε(ω) > 0 has been introduced in (3.6). The eigenvalues (C.7) depend by infinitely
many occupation numbers nk that can take non-negative integer values. Denoting by λ(ω)
the collection of all the eigenvalues (C.7), our aim is to prove that λ(ω2) � λ(ω1) when
ω2 > ω1. The factorised structure of (C.7) allows us to exploit the lemma discussed in [53]
claiming

if λk(ω2) � λk(ω1) when ω2 > ω1 ∀k =⇒ λ(ω2) � λ(ω1) when ω2 > ω1 , (C.8)

where λk ≡ {λk(nk;ω) ; nk > 0}; hence we can focus on the k-th mode.
In order to prove the l.h.s. of (C.8), we apply directly the definition in the footnote 3

to λk, which contains eigenvalues already ordered as λk(0;ω) > λk(1;ω) > λk(2;ω) > . . .

(which is a consequence of (C.7)) and satisfies the normalisation condition
∞∑

nk=0
λk(nk;ω) = 1 , ∀ω, k > 0 . (C.9)

Thus, we need to show that

d

dω

N∑
nk=0

λk(nk;ω) =
N∑

nk=0

d

dω
λk(nk;ω) > 0 , ∀ω, k,N > 0 , (C.10)

where, by using (C.7), we have that
d

dω
λk(nk;ω) = (2k + 1)X dε

dω

[
Xnk − (1−X)nkXnk−1

]
, X ≡ e−(2k+1)ε , (C.11)

and X ∈ [0, 1], from ω, k > 0. Plugging (C.11) into (C.10) and exploiting the following
relations

N∑
nk=0

Xnk = 1−XN+1

1−X ,
N∑

nk=0
nkX

nk−1 = 1− (1 +N)XN +NXN+1

(1−X)2 , (C.12)

which is valid for N ≥ 0 and X ∈ [0, 1], we obtain

d

dω

N∑
nk=0

λk(nk;ω) = (2k + 1)(N + 1) e−(2k+1)(N+1)ε dε

dω
, (C.13)

where also the relation between X and ε has been employed.
Since ε(ω) in (3.6) is a monotonically increasing function of ω when ω > 0, we have

proved (C.10) and, from (C.8), we have

λ(ω2) � λ(ω1) , ω2 > ω1 . (C.14)

This tells us that a generic quantity defined as a Schur concave function of the entanglement
spectrum is decreasing in the parameter ω. Since SA and M (n)

A defined in (1.6) (with bn >
n− 1) are Schur concave functions of the entanglement spectrum [7, 56], we conclude that

dSA
dω

< 0 , dM
(n)
A

dω
< 0 . (C.15)

The relations in (C.15) are confirmed by the behaviour of the curves in the right panel of
figure 2.
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C.3 Critical regime

In the following we compute the critical limit of the results obtained in section 3.1 through
the corner transfer matrix techniques and compare them with some results obtained from
quantum field theory [98].

Close to the critical point, the correlation length becomes large 1 � ξ < ∞. In
the harmonic chain the frequency ω = ξ−1; hence ω � 1 close to the critical point.
By expanding (3.6) in this regime, we have that logω ' −π2/ε + O(1), which implies
log ξ ' π2/ε + O(1), where ε is defined in (3.6). Thus, the critical limit is achieved when
ε→ 0.

In order to take ε→ 0 in (3.8) and (3.9), we exploit the generalised Poisson resumma-
tion formula ∞∑

j=−∞
f(|ε(bj + a)|) = 2

εb

∞∑
k=−∞

f̂

(2πk
εb

)
e2πika/b , (C.16)

where
f̂(y) =

∫ ∞
0

f(x) cos(yx) dx , (C.17)

as done in [96] (see also [130] for the application to the harmonic chain).
In the following we employ (C.16) for a = 1/2, b = 1 and f(x) = fn(x) ≡ log

(
1−e−2nx).

First one rewrites (3.7) as

logTrρnA =
∞∑
j=0

[
nf1(ε(j + 1/2))− fn(ε(j + 1/2))

]
= 1

2

∞∑
j=−∞

[
nf1|(ε(j + 1/2)|)− fn(|ε(j + 1/2))|

]
, (C.18)

where the cosine Fourier transform (C.17) of fn(x) is given by

f̂n(y) = n

y2 −
π coth

[
πy/(2n)

]
2y . (C.19)

Then, by applying (C.16) for (C.18) and using (C.19), we obtain

logTrρnA = 1
4

∞∑
k=−∞

(−1)k

k

(
coth

[
π2k/(nε)

]
− n coth

[
π2k/ε

])
. (C.20)

Isolating the k = 0 contribution, that gives the leading contribution in 1/ε when ε → 0,
and exploiting the fact that the argument of the sum is even in k, we obtain

logTrρnA = π2

12 ε

( 1
n
− n

)
+ 1

2

∞∑
k=1

(−1)k

k

(
coth

[
π2k/(nε)

]
− n coth

[
π2k/ε

])
, (C.21)

where coth(x) ' 1/x+ x/3 + O(x3) as x→ 0 has been used to get the first term. Taking
ε→ 0 in the remaining sum and using that

∑∞
k=1

(−1)k
k = − log 2, we arrive to

logTrρnA = π2

12 ε

( 1
n
− n

)
− (1− n) log 2

2 +O(ε) . (C.22)
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Then, from (1.1) and (1.3) for the leading term of SA and CA we find

SA = CA = π2

6ε '
1
6 log ξ , (C.23)

where (3.6) has been exploited. The critical limit of the entanglement entropy can be found
also by taking ω → 0 in (3.10), as done in [98].

These results can be compared with the corresponding ones found through quantum
field theory methods. Consider a massive field theory with mass m that becomes a CFT
with central charge c as m vanishes. When this model is in its ground state and the
subsystem is the half-line, we have that [76]

log TrρnA = − c

12

( 1
n
− n

)
log(mε) , (C.24)

where ε is the UV cutoff. From (1.1), (1.3) and ξ ' m−1, at leading order one obtains

SA = CA = c

6 log
(
ξ

ε

)
, (C.25)

where the result for SA has been found in [76]. The massive harmonic chain in the contin-
uum limit is the massive Klein-Gordon field theory in 1+1 dimensions, which becomes a
specific CFT with c = 1 in the massless limit. Setting c = 1 in (C.25), we retrieve (C.23)
as expected, once the UV cutoff ε is identified with the lattice spacing a = 1.

C.4 Capacity of entanglement in the XXZ chain

The corner transfer matrix allows to compute the capacity of entanglement also in the XXZ
chain in the antiferromagnetic regime. Similarly to the harmonic chain (see section 3.1),
we find that the lattice results for capacity of entanglement and entanglement entropy
are different and that only in the critical limit the leading terms of these two quantities
coincide, consistently with the massive field theory predictions discussed at the end of
section C.3.

The Hamiltonian of the anisotropic Heisenberg model (also called XXZ chain) is

HXXZ =
∑
j

(
σxj σ

x
j+1 + σyj σ

y
j+1 + ∆σzjσzj+1

)
, (C.26)

where σα with α = x, y, z are the Pauli matrices. The model has a quantum critical point
for ∆ = 1, it is gapless when |∆| < 1 and gapped when |∆| > 1. We consider this model
in the antiferromagnetic gapped regime with ∆ > 1.

Considering the bipartition of the infinite chain into two half-chains, in [90] it has been
found that the entanglement Hamiltonian takes the form (3.5) with

εj = 2εj , ε = arccosh(∆) , (C.27)

and nj fermionic number operators. This leads to [96]

logTrρnA =
∞∑
j=0

log
(
1 + e−2jnε)− ∞∑

j=0
n log

(
1 + e−2jε) , (C.28)
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which implies

SA = −∂n
[
logTrρnA

]∣∣
n=1 =

∞∑
j=0

[ 2εj
e2εj + 1 + log

(
1 + e−2εj) ] . (C.29)

As for the capacity of entanglement, by applying the definition (1.3) to (C.28), we find

CA = ∂2
n

[
logTrρnA

]∣∣
n=1 =

∞∑
j=0

[
jε

cosh(jε)

]2
. (C.30)

Thus, the results for capacity of entanglement and entanglement entropy are different in
the XXZ chain, like in the harmonic chain considered in section 3.1.

The critical regime for this model corresponds to ∆→ 1, where the system approaches
its gapless phase. In terms of ε defined in (C.27), this limit is ε→ 0. The relation between
the correlation length of the model and ε is [131]

log ξ ' π2

2ε +O(1) , (C.31)

that gives ξ � 1 when ε→ 0, as expected. In this regime, by using the Poisson resumma-
tion formula, the critical limit of logTrρnA gives [96]

logTrρnA = π2

24ε

( 1
n
− n

)
+ (1− n) log 2

2 +O(ε) , (C.32)

which gives the entanglement entropy [76]

SA = −∂n
[
logTrρnA

]∣∣
n=1 = π2

12ε + log 2
2 +O(ε) = 1

6 log ξ + log 2
2 + . . . , (C.33)

and the capacity of entanglement

CA = ∂2
n

[
logTrρnA

]∣∣
n=1 = π2

12ε +O(ε) = 1
6 log ξ + . . . , (C.34)

where in the last step of (C.33) and (C.34) the relation (C.31) has been exploited. Thus,
SA and CA have the same leading term in the critical regime, similarly to harmonic chain
(see the appendix C.3).

In the continuum limit, the critical XXZ chain is described by a compact free bosonic
field theory with central charge c = 1, where the compactification radius is related to the
parameter ∆ of the lattice model [132]. Comparing (C.34) with (C.25) with c = 1, we
have that CA in the critical limit of this lattice model matches the result expected from
the underlying massive field theory.
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