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Entanglement temperatures (ET) are a generalization of Unruh temperatures valid for states reduced to
any region of space. They encode in a thermal fashion the high-energy behavior of the state around a point.
These temperatures are determined by an eikonal equation in Euclidean space. We show that the real-time
continuation of these equations implies ballistic propagation. For theories with a free UV fixed point, the
ET determines the state at a large modular temperature. In particular, we show that the n → 0 limit of Rényi
entropies Sn can be computed from the ET. This establishes a formula for these Rényi entropies for any
region in terms of solutions of the eikonal equations. In the n → 0 limit, the relevant high-temperature state
propagation is determined by a free relativistic Boltzmann equation, with an infinite tower of conserved
currents. For the special case of states and regions with a conformal Killing symmetry, these equations
coincide with the ones of a perfect fluid.
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I. INTRODUCTION

In quantum field theory (QFT) there is a natural notion of
subsystems labeled by regions V of the space. There is an
algebra of operators corresponding to any of these regions.
Understanding the properties of the vacuum state reduced
to these algebras has been of much recent interest. In
particular, much attention has been given to statistical
measures such as the entanglement entropy and Rényi
entropies. One feature that is general to all QFTs is that
these reduced states display local thermal-like properties at
high energies. To be more precise, if in the subsystem V we
compute the relative entropy between the vacuum ω and
another state σ given by a high-energy localized excitation
around a point x, we get a linear dependence with the
energy E of the excitation

SðσjωÞ ∼ βðx; p̂ÞE; ð1:1Þ

where p̂ is the direction of the excitation momentum [1].
This follows from the monotonicity of relative entropy and
the known form of the vacuum state for a Rindler wedge
(where V is one-half of the space divided by a plane). The
coefficient βðx; p̂Þ can be thought of as a position and

direction-dependent inverse temperature determining the
Boltzmann damping factor of the state at high energies
around x. We will call βðx; p̂Þ−1 entanglement temperatures
(ET) because they are produced by entanglement with the
complement of V. For free fields βðx; p̂Þ gives the structure
of the local terms in the modular Hamiltonian.
Equation (1.1) is a generalization of Unruh temperatures

that hold for the Rindler wedge, and of Hawking temper-
ature for an evaporating black hole. Temperature is a
concept associated with equilibrium. For a system that is
out of equilibrium temperature can only be an approximate
notion. For a radiating hot body, for example, black body
factors will not allow the extraction of a temperature from
the spectrum at low energies, and at arbitrarily large
energies we do not expect to get a precise Boltzmann
damping. However, if the space is nondynamical, the
rigidity of space localization produces such a precise notion
of high-energy thermal behavior. This is clear from
Hawking’s calculation of the radiation from a black hole
evaporating in the vacuum. The same example shows the
necessity that the ET should be direction-dependent since
in the asymptotic region such temperatures can only be
nonzero in the direction of the black hole.
For the case of free fields, or, more generally theories

with a free UV fixed point, and a static geometry, the ET
were shown to be universal. Their value follows from the
geometric data from the solutions of a system of nonlinear
partial differential equations in Euclidean space (eikonal
equations) [2]. In this paper we first make further progress
in understanding the structure of these equations, showing
that the ET are invariant under certain canonical trans-
formations of the eikonal equations. Then, we compute
how the ET propagates in real time and in nonstatic
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situations. This allows us to compute them in the black hole
evaporation scenario from simple geometric considerations.
The ET then gives a glimpse at the high-energy behavior

of the reduced density matrices. A different way to access
this behavior is provided by the Rényi entropies. These are
defined as

Sn ¼
1

1 − n
log trρn: ð1:2Þ

If we write ρ ¼ ce−K , with K the modular Hamiltonian, we
see the index n acts as inverse modular temperature for a
state proportional to ρn. The limit n → 0 corresponds to the
limit of large modular temperature. For theories with a free
UV fixed point, we compute the n → 0 limit of the Rényi
entropy in terms of the ET. This gives these Rényi entropies
in terms of a solution to a problem on partial differential
equations. We check this relation for the cases where both
the ET and the Rényi entropies are known independently.
In contrast to the entanglement entropy, which measures

correlations in the vacuum, the n → 0 limit of the Rényi
entropy, which for simplicity we will call Rényi-0, is a
quantity related to a highly excited state. For UV-free
theories, this state can be understood in terms of the ET. It
obeys a relativistic free Boltzmann equation. Besides
having a conserved entropy current and stress tensor, it
has an infinite tower of further conserved higher spin
currents. For the cases where there is a conformal sym-
metry of the reduced state this excited state can be
described by the equations of a perfect fluid, but this is
not true for other cases. In the Euclidean formulation, the
description is in terms of a stationary fluid with vortexlike
boundary conditions. We end by briefly discussing the
expectations for the corresponding behavior of nonfree
conformal field theories (CFT) in this n → 0 limit.

II. STRUCTURE OF THE DENSITY
MATRIX AT HIGH ENERGIES

For a free field, the vacuum is a Gaussian state. In
consequence, the modular Hamiltonian K corresponding to
a spatial region V is quadratic in the field. This quadratic
expression can be diagonalized by a Bogoliubov trans-
formation,

K ¼
Z

dλ
Z

dsð2πsÞa†s;λas;λ; ð2:1Þ

giving to the density matrix ρ ∼ e−K the form of a
decoupled set of thermalized oscillators. The parameter s
gives the “modular energy” of the modes while λ are
additional degeneracies. The mode operators as;λ are linear
combinations of the fields in V. The expression for these
modes follows by solving the free field equation in
Euclidean space where multiplicative boundary conditions
are imposed on the region V at x0 ¼ 0. See [2] for details.

For example, for a massless scalar, we have to solve

□ϕ ¼ 0; ϕþðx⃗Þ ¼ e−2πsϕ−ðx⃗Þ; x0 ¼ 0; x⃗∈V:

ð2:2Þ

Here ϕ� are the boundary values of the field as we
approach V from positive and negative x0. These same
boundary values are used to construct the eigenmodes ofK.

A. Euclidean eikonal equations

If we are interested in the large eigenvalue limit jsj ≫ 1
we can use an eikonal approximation to (2.2). Writing

ϕðxÞ ¼ fðxÞesαðxÞ; ð2:3Þ

where fðxÞ is a slowly varying function, we get in the large
jsj limit the Euclidean eikonal equation

ð∇αÞ2 ¼ 0: ð2:4Þ

α is a complex-valued function having a cut at
x0 ¼ 0; x⃗∈V, where boundary conditions

αþ ¼ α− − 2π ð2:5Þ

are imposed on the limit values α� of α on the two sides of
the cut. It is useful to separate the real and imaginary parts

α ¼ aþ ib; ð2:6Þ

and define

A ¼ ∇a; B ¼ ∇b: ð2:7Þ

With this, we can alternatively write the eikonal equation as
one of two closed real one-forms in Rd − ∂V such that

d ∧ A ¼ 0; d ∧ B ¼ 0; A2 ¼ B2; A · B ¼ 0;

ð2:8Þ
I
Γ
A · dx ¼ 2π;

I
Γ
B · dx ¼ 0; ð2:9Þ

where Γ is any curve simply linked with ∂V. Equation (2.9)
is fixed so that the circulation of A around Γ going through
V in the positive time direction is 2π.
The orthogonal vectors A, B are singular on ∂V, where

they have a vortexlike singularity, but they are nonsingular
elsewhere. By symmetry, it follows that on the plane x0 ¼ 0
we can take

AðxÞ ¼ fA0ðx⃗Þ; 0g; A0ðx⃗Þ > 0;

BðxÞ ¼ f0; B⃗ðx⃗Þg; x⃗∈V: ð2:10Þ
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These eikonal equations for the large eigenvalues of the
modular Hamiltonian are the same for all free fields
independently of the spin and mass. The mass is irrelevant
in this limit of high gradient solutions of the form (2.3).

B. Entanglement temperatures and
high-energy density matrix

For each x⃗∈V and each direction p̂ at this point, there is
a solution of the eikonal equations such that B̂ðx⃗Þ ¼ p̂.
Using this, we can define an entanglement temperature1

Tðx⃗; p̂Þ, that depends on the point x⃗∈V and direction p̂, as

Tðx⃗; p̂Þ ¼ jAðx⃗Þj
2π

¼ jBðx⃗Þj
2π

; p̂ ¼ B̂ðx⃗Þ; x⃗∈V:

ð2:11Þ
We will call

βðx⃗; p̂Þ ¼ Tðx⃗; p̂Þ−1 ð2:12Þ
to the inverse temperature.
The direction p̂ selects the particular eikonal solution we

have to use in (2.11). Coming back to the expression of the
density matrix (2.1), it follows that the “high-energy”
contribution of the large eigenvalues is of the form [2]

KHE ¼
Z
V
dd−1x

Z
dd−1pβðx⃗; p̂Þjp⃗ja†p⃗;x⃗ap⃗;x⃗: ð2:13Þ

Here the creation and annihilation operators are the ones
coming from the decomposition of the field into localized
high-energy wave packets. The integrals in phase space are
to be thought of as discrete sums where there are
ð2πÞ−ðd−1Þdd−1xdd−1p independent, canonically normal-
ized modes per volume element of phase space. The same
expression holds for fermions and bosons, and spin labels
have to be added for fields with spin. The expression (2.13)
gives a high-energy sector of the reduced density matrix
that is locally a thermal state with a direction-dependent
inverse temperature βðx⃗; p̂Þ. This temperature follows
directly from the solutions of the eikonal equations.
Equation (2.13) generalizes Unruh temperature for

regions of arbitrary shapes provided we look at high-energy
localized excitations. These are angle-dependent Unruh
temperatures. To make this idea precise, we can use the
relative entropy. Consider a high-energy localized excitation
at a point x⃗∈V, with momentum p ¼ fp0; p⃗g, with
p0 ∼ jp⃗j, in the limit of large p0. The relative entropy Srel ¼
SðσjωÞ in V between the excited state σ and the vacuum state
ω is dominated by the expectation value of the modular
Hamiltonian and results [1]

Srel ∼ βðx⃗; p̂Þp0: ð2:14Þ

This is the same as the relative entropy of the excitation with
a truly thermal state with the same β. Equation (2.14) gives a
precise meaning to the entanglement temperatures.
Though it is not evident from the eikonal equations, it

follows from monotonicity of relative entropy that βðx⃗; p̂Þ,
for fixed x⃗; p̂, increases when changing the region V to a
larger one W, V ⊆ W. The temperatures, produced by
entanglement with the complementary region, decrease as
the boundaries of the regions get farther away.

C. Canonical transformations

The Euclidean eikonal equation ð∇αÞ2 ¼ 0 for complex
α is a cousin of the corresponding eikonal equation for real
time. This later is a particular case of the Hamilton-Jacobi
equation, namely, the one for free relativistic particles. We
should have a complete set of solutions αðx; kÞ, where k are
parameters. In the present problem, the set k has d − 2

dimensions, allowing a solution for each direction B̂ðx⃗Þ ¼
p̂ for a fixed point x⃗∈V. As in the Hamilton-Jacobi
equation, these solutions can be used to produce more
solutions by “canonical transformations” in the following
way, see e.g. [3]. We write

α̃ðx; kÞ ¼ αðx; kÞ þ fðkÞ; ð2:15Þ

for an arbitrary function f. Then we demand

∇kα̃ðx; kÞ ¼ 0: ð2:16Þ

Solving algebraically for kðxÞ from this equation, the new
solutions of the eikonal equation are

˜̃αðxÞ ¼ α̃ðx; kðxÞÞ: ð2:17Þ

It follows that

∇ ˜̃αðxÞ ¼ ∇xαðx; kÞjk¼kðxÞ þ ∂ki α̃ðx; kÞjk¼kðxÞ∇xkiðxÞ
¼ ∇xαðx; kÞjk¼kðxÞ: ð2:18Þ

It is immediate that the function ˜̃α will also satisfy ð∇ ˜̃αÞ2 ¼
0 and is a solution of the eikonal equation. Notice that as
αðx; kÞ satisfies the same additive jump boundary condition
(2.5) for all k,∇kαðx; kÞ does not have jumps, and the same
boundary condition will hold for ˜̃αðxÞ.
In consequence, complete sets of solutions are generally

not unique, and the particular set of eikonal solutions one
chooses does not have physical significance.2 However, the
important point is that the entanglement temperatures are
invariant under these transformations. This follows directly
from (2.18). This equation implies that the gradient of the

1The entanglement temperatures were previously called null
temperatures or local temperatures [1,2]. We prefer the present
name since it refers more properly to their origin from entangle-
ment. 2This was misstated in [2].
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function at a point x coincides with the gradient of a
particular solution in the original set of solutions [the one
with k ¼ kðxÞ], at the same point x. The entanglement
temperatures and their directions are precisely given by
these gradients, Eq. (2.11). A simple example of the ET of
Rindler space is presented in the Appendix.

D. Sources and metric

Entanglement temperatures can be computed in an
analogous manner for states created by sources in the
Euclidean Lagrangian. Sources can be placed at x0 ≤ 0 to
create a state different from the vacuum at x0 ¼ 0. The
problem then contains the reflected sources at x0 > 0 in the
description of the density matrix by the path integral in
the Euclidean plane. Then suppose we have a Lagrangian

L ¼ 1

2
ð∂ϕÞ2 þ JðxÞOðxÞ; ð2:19Þ

where the new term is symmetric under time reflections. If
O has dimension Δ > d the path integral is ill-defined. For
relevant operators, Δ < d, the new terms appear in the
equation of motion but will produce subleading corrections
in the modular parameter s for large s. Then, these terms
will not affect the entanglement temperatures or the form of
the high-energy density matrix. For example, this is the
case of the vacuum for massive fields, or more generally
superrenormalizable theories, or coherent states. All these
states share the same entanglement temperatures. For
marginal operators Δ ¼ d the applicability of the eikonal
equations presumably depends on where the theory is
asymptotically free. A clear case is when the perturbations
source the stress tensor. In that case, it is natural to think of
the source as the metric tensor. It is clear that the eikonal
equations are turned to the generally covariant ones

gμνð∂μαÞð∂ναÞ ¼ 0: ð2:20Þ

This can indeed change the local temperatures. The metric
can be nontrivial even at x0 ¼ 0 provided we have time
reflection symmetry. The same holds for changes in the
topology of the space. An example is a global thermal state
where the topology is the one of a cylinder with periodic
time direction.
In the case of a nontrivial metric, ∂0α ¼ A0 at x0 ¼ 0 gets

combined as 2π
A2 A0P0 in the local density matrix. In terms of

particle creation operators and momentum at a local inertial
system Eq. (2.13) remains the same but we have to
understand the inverse temperature as

βðx⃗; p̂Þ ¼ g1=200 ðx⃗Þ 2π

A0ðx⃗Þ
¼ 2π

jAðx⃗Þj ¼
2π

jBðx⃗Þj : ð2:21Þ

It picks up a dependence on the metric analogous to
Ehrenfest-Tolman effect β ∼ g1=200 for a thermal equilibrium

state in a static metric. The origin of this factor is the same,
since β settles the rate between proper time and modular
time, as in the Ehrenfest-Tolman effect [4].

E. Conformal invariance

Solutions to (2.8) and (2.9), or, equivalently (2.20), are
invariant under Weyl transformations of the metric
g → g̃ ¼ Ω2g. So the same solutions of ∂μα hold for both
metrics. The entanglement temperatures (with respect to
local inertial system excitations) change according to the
scale factor as implied by (2.21),

β̃ ¼ Ωβ; T̃ ¼ Ω−1T: ð2:22Þ
This new temperature corresponds to the conformally
transformed state for the new metric. The relative entropy
for the transformed state and the transformed excitation is
invariant because the energy of the excitation gets an
opposite compensating factor in (2.14). This is expected
since the conformal transformation can be thought of as just
a change of the coordinates in the description of a
conformal theory, that cannot change the relations between
algebras and states when properly identified.
Therefore, the problem of understanding the high-energy

density matrix only depends on the conformal class
determined by the metric, the region, and the UV conformal
fix point of the theory.

F. Lorentzian eikonal equations and propagation of ET

The eikonal equations give the ET in vacuum at x0 ¼ 0

for a region V based at x0. However, we would like to
understand the high-energy terms in the modular
Hamiltonian written at different Cauchy surfaces. This is
also relevant to compute relative entropies with localized
excitations at different spacetime points in the causal
development of V.
To understand the ET at t ≠ 0 we need to extend the

solutions of the wave equations determining the eigenvec-
tors of the modular Hamiltonian from the Euclidean plane
to the Minkowski one. This can be accomplished by gluing
Euclidean space and Minkowski space at x0 ¼ 0. The
equation for a massless scalar ϕ in the Minkowski region
is again □ϕ ¼ 0 but with the Minkowski metric. In the
eikonal approximation ϕ ¼ esαMðxÞ, αM ¼ aM þ ibM the
eikonal equation is again ð∇αMÞ2 ¼ 0, or equivalently (2.8)
for the gradients AM ¼ ∇aM, BM ¼ ∇bM, but the scalar
products are now Lorentzian.
Let us call ϕE and ϕM to the Euclidean and Lorentzian

solutions. At x0 ¼ 0 the matching conditions between
solutions are

∇!ϕM ¼ ∇!ϕE; ∂0ϕM ¼ −i∂0ϕE: ð2:23Þ
These matching conditions give at x0 ¼ 0, taking into
account (2.10),
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AMðxÞ ¼ 0; BMðxÞ ¼ ðA0
EðxÞ; BEðxÞÞ; x0 ¼ 0:

ð2:24Þ

This eliminates the real part in αM, and as a consequence,
we have the Lorentzian eikonal equation

BM ¼ ∇bM; B2
M ¼ 0: ð2:25Þ

That is, bm is a function whose gradient is everywhere a
null vector. This null vector carries both the information of
the direction in which the temperature is taken and its value
given by

T ¼ B0
M

2π
¼ jB⃗Mj

2π
: ð2:26Þ

The Lorentzian approach allows us to understand the
covariance property of the ET in an interesting light. We
can actually define a temperature null vector as

Tμ ¼ ð2πÞ−1ðBMÞμ: ð2:27Þ

From TμTμ ¼ 0 we have

∇μðTνTνÞ ¼ Tν∇μTν ¼ Tν∇νTμ ¼ 0; ð2:28Þ

where in the last step we used the fact that Tμ is a gradient.
Therefore, we conclude that the temperature vector of a
given solution to the eikonal equations is the tangent of
affinely parametrized geodesics. In particular, it is parallel
transported along the geodesic itself. As a result T
propagates ballistically in the direction determined by
itself, i.e., it is the tangent of an affinely parametrized null
geodesic. In other words, ET are described by a choice of
affine parameter for each null geodesic. This holds in
general geometries and not only in flat space. This gives a
complete set of values for the entanglement temperature
vectors of any point in space-time in the causal develop-
ment of V. Given a point x and a direction p̂, we just
have to draw the corresponding geodesic back to the plane
x0 ¼ 0 where we can read off the value given by the
Euclidean solution, see Fig. 1. In Minkowski space the
parallel transport is trivial and we get the propagation law
for the temperature vector,

Tðxþ λTðxÞÞ ¼ TðxÞ: ð2:29Þ

On the other hand, the Lorentzian propagation by itself
does not give enough information to uniquely determine
the ET in the Lorentzian context. The reason is essentially
that the equation for the propagation does not determine the
state, and the ET could in principle be fixed to arbitrary
values on a Cauchy surface and then evolved ballistically.
To get the vacuum ETwe should select the vacuum state by

continuing the manifold with an Euclidean section. The
data at x0 ¼ 0 is then selected in this way.
Using the temperature vector, the relative entropy with a

localized null excitation takes a remarkable expression. The
momentum of the excitation and the temperature vector
have to be taken in the same direction. The factor between
the two null vectors turns out to be precisely the relative
entropy, generalizing Eq. (2.14):

pμ ¼ SrelTμ: ð2:30Þ

As pμ is also an affinely parametrized tangent to the
geodesic, Srel is kept constant along the geodesic and
has the interpretation of the ratio between affine parame-
ters. The relative entropy is necessarily kept constant along
the particle trajectory, because it is the relative entropy
between two states, which cannot depend on the Cauchy
surface where we choose to evaluate it [1].
With the eikonal solutions extended to real time, it is

possible to obtain the large modular energy part of the
modular Hamiltonian written in an arbitrary Cauchy sur-
face Σ for the causal development of V. It also follows
directly using (2.30) to calibrate the local terms:

KHE ¼
Z
Σ
dσ

Z
dd−1p

p · n̂
Tðp̂Þ · n̂ a

†
p⃗;x⃗ap⃗;x⃗; ð2:31Þ

where n̂ is the unit normal to the surface and the mode’s
spatial momentum and creation operators correspond to
quantization in a local inertial system with spatial direc-
tions parallel to Σ.
For special cases, the modular Hamiltonian is fully local

(e.g., vacuum state for the Rindler wedge or a sphere in a
CFT in Minkowski space), and has the expression

K ¼
Z
Σ
dσ n̂μ Tμν ξ

ν; ð2:32Þ

FIG. 1. The ET propagates ballistically from the x0 ¼ 0 surface
where it is determined by the Euclidean eikonal equations. For
example, the black dots correspond to directions in which the ET
at x diverges. This is the universal Rindler-like behavior of ET at
the boundary of a system.
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where ξν is a timelike future-directed conformal Killing
vector. In this case, the relative entropy with a localized null
excitation has the form

Srel ¼ −pμξ
μ; ð2:33Þ

and ξμ the interpretation of an inverse temperature vector.
From this expression, it follows that the temperature vectors
are given in this case by

Tμ ¼ pμ

−p · ξ
; ð2:34Þ

where pμ is any null vector determining the direction on the
null cone. Plugging this expression in (2.31) we can see the
compatibility with (2.32). Furthermore, one can check that
this temperature vector satisfies the ballistic propagation
(2.28) which follows from the conformal Killing equations:

∇μξν þ∇νξμ ¼
2

d
gμν∇ρξ

ρ: ð2:35Þ

It is worth noting that in the general case the high-energy
part of the modular Hamiltonian (2.31) cannot be expressed
by the integral of a field operator but its expression in terms
of fields contains bilocal kernels [1].

G. Example: Entanglement temperature
for Hawking radiation

As an example of ET propagation, we compute ET for
black hole formation and evaporation geometry described
by a Vaidya metric

ds2 ¼ −
�
1 −

rs
r
θðv − 2rsÞ

�
dv2 þ 2dvdrþ r2dΩ2:

ð2:36Þ

The collapsing shell of radiation forms a null surface Σ
located at v ¼ 2rs. The Penrose diagram is shown in Fig. 2.
We take the region as the complement of the double cone
rþ jt − rsj < rs, with t ¼ v − r, in the Minkowski region.
The origin of the Minkowski coordinates is the tip of the
black hole. This double cone is the part of the black hole
that is inside the Minkowski region. The ET on the
Minkowski region is given by the formula (2.34), where
ξ is a conformal Killing vector keeping the double cone in
itself. On the surface Σ this conformal Killing vector is

ξ ¼ πuMðuM − 2rsÞ=rs∂uM ¼ −2πrðr − rsÞ=rs∂r; ð2:37Þ

where uM ¼ t − r is the null Minkowski coordinate in the
Minkowski region. Then, for any point x on the exterior of
the black hole and any null direction p at this point, the ET
vector is given by

Tμ ¼ pμ

−pΣ · ξ
; ð2:38Þ

where pΣ is the parallel transport along the null geodesic
determined by x and p back to the surface Σ. On the other
hand, p · ξt, where ξt ¼ ∂v is the time translation Killing
field of the Schwarzchild geometry, is a constant along
geodesics. Then we can write

Tμ ¼ −
�
pΣ · ξt
pΣ · ξ

�
Σ

�
pμ

p · ξt

�
x
: ð2:39Þ

For radial geodesics and points x far away from the black
hole this is

T ¼ rs
4πr2Σ

p̂; ð2:40Þ

with p̂μ ≡ ð1; 1; 0; 0Þ in the coordinates ft; r; θ;φg, and rΣ
is given by the formula

uBH ¼ 2rs − 2

�
rΣ þ rs log

�
rΣ
rs

− 1

��
; ð2:41Þ

where uBH ¼ t − r in the coordinates of x, for r ≫ rs. Very
fast after the formation of the black hole, uBH ≫ rs, we
have rΣ → rs, and (2.40) converges to a constant value
given by the Hawking temperature

FIG. 2. Penrose diagram of the Vaidya metric. The entangle-
ment temperature at a point x in the asymptotic region is
computed by first propagation back to the v ¼ 2rs surface. There
the ET is evaluated using the Killing vector corresponding to the
modular Hamiltonian of vacuum in flat space corresponding to
the light-blue region. The red dot marks xΣ, where p̂Σ is found by
shooting a past null geodesic from x in direction p̂.
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T ¼ 1

4πrs
p̂: ð2:42Þ

For x in this asymptotic regime t; r → ∞, u ≫ rs, only
geodesics starting at Σ for r − rs ≪ rs can reach x. Then
define the impact parameter

b ¼
���� ξφ · pξt · p

����; ð2:43Þ

where ξφ ¼ ∂φ is the Killing field of rotations. This is
conserved on geodesics. Starting from the shell, as is well

known, only geodesics with b < 3
ffiffi
3

p
2
rs will reach infinity.

Geodesics for other values of b will fall into the black hole.
These geodesics start at Σ being nearly radial geodesics, so
the ET is the same one as for the radial case. In
consequence, in the asymptotic limit, the only nonzero
temperatures are for geodesics pointing in the black hole

direction with an impact parameter less than 3
ffiffi
3

p
2
rs, and all

have the same ET given by Hawking temperature (2.42).
We can also explore what happens if the region is the

complement of a smaller double cone inside the Minkowski
region of the black hole. As the region increases the
temperature has to decrease. If we move the edge of the
double cone away from the black hole horizon the ET in
the asymptotic region will vanish because the inverse ET
kΣ · ξ produced by the double cone on Σ has a nonzero limit
for r → rs, while the redshift factor kΣ · ξt vanishes for late
times. On the other hand, if we choose a double cone with
the same past tip coinciding with the tip of the black hole,
and a size ΔuBH ¼ l∈ ð0; 2rsÞ, the inverse temperature
conformal Killing vector produced by the double cone on Σ
near the horizon is

ξ ¼ −2πðr − rsÞ∂r þ 2π
2rs
l
ð2rs − lÞ∂v: ð2:44Þ

The result for asymptotic observers is again a uniform

temperature on the disk of b < 3
ffiffi
3

p
2
rs, but with a smaller

temperature

T ¼ 1

4πrs

l
2rs

p̂: ð2:45Þ

III. RÉNYI-0 AND ENTANGLEMENT
TEMPERATURES

The vacuum density matrix, by definition, gives vacuum
expectation values for the operators. Therefore it is not
possible to test the high-energy thermal-like behavior by
simply studying operator expectation values. On the other
hand, as we recalled in the last section, the relative entropy
with a localized excitation goes directly to examine this
aspect of the reduced density matrix.

Another way in which the reduced density matrix will
display its high-energy sector is by considering powers or,
equivalently, by considering states at different dimension-
less temperatures with respect to the modular Hamiltonian,

ρn ¼
ρn

trρn
¼ e−nK

tre−nK
: ð3:1Þ

This state now contains real excitations and a nonzero
energy density. It gives a state that is singular at the
boundary of the region. However, the expectation values of
operators inside the region are well defined, nontrivial, and
can be studied. In the limit of high modular temperature,
n → 0, this density matrix will indeed reveal a highly
excited gas of particles which is determined locally by the
approximate high-energy modular Hamiltonian (2.13), that
is completely determined by the ET. In the next section we
will find this “fluid” obeys a relativistic Boltzmann
equation with conserved current and stress tensor.
Information quantities can be computed in this limit from

the knowledge of the ET. In particular, the Rényi entropy is

Sn ¼
1

1 − n
log trρn ¼ 1

1 − n

�
logZðnÞ − n logZð1Þ

�
;

ð3:2Þ

with the free energy

logZðnÞ ¼ tre−nK: ð3:3Þ

The limit of n → 0 the Rényi entropy coincides with the
free energy

Sn ∼ logZðnÞ; n ≪ 1: ð3:4Þ

Wewill be expressing the results in terms of the n → 0 limit
of the Rényi entropy of the original vacuum density
matrix.3 It is also worth remarking that the geometric
dependence of this quantity has the same general features
as any other Rényi entropy, in particular, the entanglement
entropy. That is, we have divergent area terms and sub-
leading terms, and universal parts that can be isolated in
different ways by understanding the geometric dependence
of the divergent pieces. In particular, mutual Rényi entro-
pies are always universal.
For an ordinary thermal state in a flat space and a CFT,

the free energy has the form

3For finite systems this limit of the Rényi entropy is called the
“Hartley entropy” or “max entropy,” and it measures the rank of
the density matrix. This is not applicable to the case of a QFT
since this rank is always divergent, and in fact, we will find the
limit of the Rényi entropy diverges for n → 0. Hence, we prefer to
use the term Rényi-0 instead of Hartley entropy.
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βF≡ logZðβÞ ¼ σ
V

βd−1
; ð3:5Þ

where σ is a dimensionless coefficient that depends on the
CFT, and V is the volume. It is simply related to the thermal
energy density (Stefan-Boltzmann law) or the thermal
entropy density. For a free boson and fermion fields (per
field degree of freedom) it is

σB ¼ volðSd−2Þ
ð2πÞd−1

Z
∞

0

dχ χd−2ð−Þ logð1 − e−χÞ

¼ ζðdÞΓðd=2Þ
πd=2

; ð3:6Þ

σF ¼ volðSd−2Þ
ð2πÞd−1

Z
∞

0

dχ χd−2 logð1þ e−χÞ

¼ ζðdÞΓðd=2Þ
πd=2

�
1 − 21−d

�
: ð3:7Þ

The conjecture we would like to put forward is the
following: The Rényi entropy for any QFT and a given
spatial region A in the n → 0 limit is proportional to n−ðd−1Þ
and the Stefan-Boltzmann constant σ, as would be the case
of the thermal entropy for a temperature ∼n−1.
Furthermore, it is proportional to a function gðAÞ of the
geometry of the region that characterizes the UV fixed
point and is universal for spheres. In summary, the
conjecture states

SnðAÞ ∼
σ

nd−1
gðAÞ; for n → 0: ð3:8Þ

For free UV fixed points, we can provide a physical
derivation of the above conjecture which allows us to find
an explicit form for gðAÞ, as follows. First, we are interested
in computing the following partition function

ZAðnÞ ¼ trρnA ¼ trenKA ð3:9Þ

in the n → 0 limit. This is a high-temperature limit, and
thus this partition function can be approximated by the
semiclassical phase space integral with the associated
occupation number formula for a free bosonic or fermionic
theory (depending on the corresponding free theory in the
UV) and taken as its energy its local modular energy. Such
local modular energies were studied in [2], where the
authors studied the local structure of the modular
Hamiltonian in free QFTs and showed that for states with
a large and localized energy excitation jx; p⃗i, the expect-
ation value of the ground state modular Hamiltonian scale
with the energy of the excitation in a position- and
direction-dependent way. That is, at high energies the
modular Hamiltonian around a point x is approximately
given by, cf. (2.31),

KAðxÞ ≈
Z

dd−1p βðx; p̂Þjp⃗ja†pðxÞapðxÞ: ð3:10Þ

In writing the above expression we used the ultrarelativistic
approximation E ≈ jp⃗j since the energies involved in this
regime are assumed to be much larger than the particle
masses. The partition function ZAðnÞ in the n → 0 limit is
thus given

logZAðnÞ ¼
Z
A
dd−1x

Z
dd−1p
ð2πÞd−1 ð�Þ log

�
1� e−nβðx;p̂Þjp⃗j

�
;

ð3:11Þ

where the sign (�) depends on whether the free constitu-
ents are either fermions (þ) or bosons (−). By appropriately
rescaling the momentum integral, namely making χ →
nβðx; p̂Þjp⃗j the above expression can be rewritten as

logZAðnÞ ¼
1

nd−1

Z
A
dd−1x

Z
dd−2Ω

βd−1ðx; Ω̂Þ

×
Z

∞

0

dχ χd−2

ð2πÞd−1 ð�Þ log ð1� e−χÞ: ð3:12Þ

After one identifies the associated Stefan-Boltzmann coef-
ficient, we arrive at the form (3.8)

SnðAÞ ≈
σ

nd−1
gðAÞ with

gðAÞ ¼ 1

volðSd−2Þ
Z
A
dd−1x

Z
dd−2Ω

βd−1ðx; Ω̂Þ ; ð3:13Þ

where gðAÞ is a coefficient that depends on the geometry A
and the ET. These in turn are obtained by solving a purely
geometric problem. We will compute gðAÞ for various
different geometries in the next subsections.
A property that follows from (3.13) is the positivity of

the Rényi-0 mutual information,

InðA;BÞ ¼ SnðAÞ þ SnðBÞ − SnðA ∪ BÞ ≥ 0; n ≪ 1:

ð3:14Þ

This is a known general property of this limit in finite
systems [5]. Here it nicely follows from the monotonicity
of relative entropy that implies βðx; p̂Þ is a monotonically
increasing function under increasing regions.
In what follows, we will test the formula (3.13) in a series

of different geometries where both, the local temperatures
and the limit n → 0 of the Rényi entropies associated with
those geometries, are known. In this way, via the explicit
formulas for gðAÞ in (3.13) we provide a series of nontrivial
checks of this formula.
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A. Spheres

For a spherical entangling region of radius R, the
entanglement temperatures are well known and given by

βðrÞ ¼ 2π
ðR2 − r2Þ

2R
: ð3:15Þ

As the above formula indicates, the local temperatures
inherit the spherical symmetry from the geometry and are
independent of the direction of the local excitation. The
evaluation of the geometric factor gðAÞ for the calculation
of the Rényi-0 is straightforward:

gðAÞ¼
Z
A

dd−1x
βd−1ðxÞ¼

volðSd−2Þ
πd−1

Z
1−ϵ=R

0

ξd−2dξ
ð1−ξ2Þd−1 ; ð3:16Þ

where we have rescaled the radial coordinate as ξ → r=R
and put a cutoff to control the area divergences. As usual,
the explicitly divergent terms give rise to nonuniversal
contributions to the Rényi-0 and then, we are interested in
the universal logarithmic or finite piece contributions which
are universal. The above integral can be expressed in terms
of a Gauss hypergeometric function, but in order to
extract such universal information we find it convenient
to massage it further by making the following change of
coordinates:

arctanhu¼ 2ξ

1þ ξ2
; with umax ¼ arctanh

0
B@ 2

�
1− ϵ

R

�
1þ

�
1− ϵ

R

�
2

1
CA

≈− log

�
ϵ

R

�
: ð3:17Þ

In these coordinates, the coefficient gðAÞ becomes

gðAÞ ¼ volðSd−2Þ
ð2πÞd−1

Z
umax

0

sinhd−2u du ¼ volregðHd−1Þ
ð2πÞd−1 ;

ð3:18Þ

where in the last line we have identified the integral with the
volume integral of hyperbolic space. Thus, we can use well-
known results for the universal terms in the regularized
volume of hyperbolic space to extract the universal part of
the geometric coefficient. For instance collecting results
from [6] we have

volregðHd−1Þ ¼ πd=2

Γðd=2Þ×
8<
: ð−Þd2−1 2

π log ð2R=ϵÞ for even d;

ð−Þd−12 for odd d;

ð3:19Þ

and from this, we get a final formula for the universal
contribution to the Rényi-0 for spherical regions

lim
n→0

Sn ¼
σ

nd−1
volregðHd−1Þ
ð2πÞd−1 : ð3:20Þ

For free theories, we can evaluate the Rényi-0 using the
Stefan-Boltzmann coefficients (3.6) and (3.7). The results
obtained in this way are in perfect agreement with the
results of [7,8], for free bosons and fermions. One can read
them off explicitly from Eqs. (5.37)–(5.39) of [6], using the
fact that the Rényi capacitance Cn is related to the Rényi
entropy via Sn ¼ dðd − 1ÞCn, when n → 0.
In fact, (3.8) holds for general CFT for spheres, giving

(3.20). The coefficient gðAÞ is universal across CFTs for
spheres because of the relation of the sphere density matrix
with the thermal states in hyperbolic space [9]. At high
temperatures, the curvature in hyperbolic space gives a
subleading contribution to the thermal entropy, and this
later is proportional to the flat space constant σ. We can
check this result in holographic theories. In this case, we
need the value of the Stefan-Boltzmann coefficient in a
holographic theory. For a d-dimensional CFT dual to
Einstein gravity in dþ 1 we can extract this information,
following standard thermodynamic relations in the holo-
graphic dual of a finite temperature CFT state. The
procedure is standard,4 and leads to the relation

σholo ¼
Ld−1

4GNd

�
4π

d

�
d−1

: ð3:24Þ

With this result in hand, we can write down the Rényi-0 in a
holographic theory

lim
n→0

Sn ¼
1

nd−1

�
2

d

�
d−1 Ld−1

4GNd
volregðHd−1Þ: ð3:25Þ

4Let us consider a holographic CFT at a finite temperature
which is dual to a BH in an asymptotically AdS spacetime. The
free energy of such a thermal state at high temperatures obeys the
Stefan-Boltzmann law

F ¼ −σholoVTd or logZðTÞ ¼ σholoVTd−1: ð3:21Þ
This implies that the thermal entropy as a function of the
temperature will have the form

S ¼ −
�
∂F
∂T

�
¼ σholodVTd−1: ð3:22Þ

This quantity is easy to calculate in a holographic CFT as it is
given by the entropy of its dual AdS black hole

S ¼ Ld−1

4GN

�
4π

d

�
d−1

VTd−1: ð3:23Þ

Comparing the above result with (3.22) allows us to deduce the
value of the Stefan-Boltzmann coefficient in theories of Einstein
gravity (3.24).
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As expected, this result is in perfect agreement with the
Rényi computations of [10] in the aforementioned limit.
From the universality of the coefficient gðAÞ for spheres

it follows the universality of gðAÞ for regions with arbitrary
boundaries on the null cone. For this type of region, the
Renyi entropies depend geometrically in a universal way on
the boundary, and the coefficient is calibrated by one of the
spheres [11].

B. Multi-intervals

Let us consider the ground state of a 2d QFT reduced
onto N disjoint intervals, say ∪N

i¼1 Ii with Ii ¼ ½li; ri�. The
local temperatures associated with this geometry are known
and were studied in [1,2]. The eikonal equations for the
vector fields A ¼ ∇a and B ¼ ∇b characterizing the
entanglement temperatures, see (2.7), adopt the form

ð∂xaÞ2þð∂yaÞ2¼ð∂xbÞ2þð∂ybÞ2; ∂xa∂xbþ∂ya∂yb¼0;

ð3:26Þ

where α ¼ aþ ib. These equations are equivalent to the
Cauchy-Riemann equations:

∂xa ¼ �∂yb;

∂ya ¼ ∓ ∂xb; ð3:27Þ

whose solutions are arbitrary holomorphic and antiholo-
morphic functions on the complex plane. The boundary
conditions (2.5) on a and b across the cuts, together with
regularity at infinity, fix the solutions to

αðzÞ ¼ i log

�YN
i¼1

z − li
ri − z

�
¼ aðx; yÞ þ ibðx; yÞ; ð3:28Þ

and αðz̄Þ its complex conjugate. The local temperatures are
computed on the tE ¼ y ¼ 0 slice which is identified with
the associated local temperatures in Minkowski signature
on tM ¼ 0 and are given by

βðxÞ ¼ 2π

j∇aðx;0Þj ¼ 2π

�XN
i¼1

�
1

x− li
þ 1

ri− x

	�−1

: ð3:29Þ

We can compute the Rényi-0 from the local temperatures of
an arbitrary number of intervals, namely A ¼∪i Ii and
Ii ¼ ½li; ri�. For a region at t ¼ 0 in d ¼ 2 the local
temperatures do not depend on the direction of the probing
localized perturbation, and thus the formulas for the geo-
metric factor gðAÞ, (3.13) reduces to5

gðAÞ ¼
Z
A

dx
βd−1ðxÞ ¼

1

2π

XN
i¼1

Z
A

�
dx

x − li
þ dx
ri − x

�
:

ð3:30Þ

For each ith term, we separate the integral over A into the
piece that contains that region and the rest. The integral on
Ii needs a regulator, thus

gðAÞ ¼ 1

2π

XN
i¼1

Z
ri−ϵ

liþϵ

�
dx

x − li
þ dx
ri − x

�

¼ 1

π

�X
ij

log jrj − lij −
X
i<j

log jrj − rij

−
X
i<j

log jlj − lij − N log ϵ

�
: ð3:31Þ

The Rényi-0 is

SnðAÞ ≈
σ

nπ

�X
ij

log jrj − lij −
X
i<j

log jrj − rij

−
X
i<j

log jlj − lij − N log ϵ

�
: ð3:32Þ

For free fermions in d ¼ 2, σf ¼ π=6 and the above
formula reduces to the n → 0 limit of the Rényi entropy
formula for free fermions; see for example Eq. (177) of
[12]. It is plausible that this formula should apply to any 2d
CFT because the ET are universal. A similar general check
cannot be carried out for the free scalar since their Rényi
entropies are not known for an arbitrary number of
intervals. However, they are known for two intervals.
Let us then consider a chiral scalar field and the case of

two disjoint intervals of lengths lA and lB separated by a
distance D. From (3.32) we can compute the associated
Rényi-0 mutual information between the intervals, which is
given by

IsnðA;BÞ ∼ −
1

12n
log ð1 − ηÞ; η ¼ lAlB

ðDþ lAÞðDþ lBÞ
;

ð3:33Þ

where η is the cross ratio obtained from the endpoints of the
intervals. Notice that we have used σf ¼ σs ¼ π=12 and
multiplied by an additional factor 1=2 since we are
considering only one chirality. The Rényi mutual informa-
tion of two intervals in this theory is given by [13]

IsnðηÞ ¼ −
nþ 1

12n
log ð1 − ηÞ þUnðηÞ ð3:34Þ

where the function UnðηÞ is

5One can see that (3.13) reduces to (3.30) by putting d ¼ 2.
That is, the angular integral reduces to two terms corresponding
to the left and right directions, and the volume of a 0-sphere
equals 2, i.e. volðS0Þ≡ 2.
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UnðηÞ ¼
i

2ðn − 1Þ
Z þ∞

0

ds½cothðπsÞ − cothðπs=nÞ� log

×

�
2F1ð1þ i sn ;−i

s
n ; 1; ηÞ

2F1ð1 − i sn ; i
s
n ; 1; ηÞ

�
: ð3:35Þ

This expression is hard to analyze for arbitrary values of n.
In particular, the n → 1 limit was considered in [13] where
the expected long-distance behavior for the mutual infor-
mation was recovered. Here, we are interested in studying
the n → 0 limit of UnðηÞ. First, let us notice that the
integrand is well defined everywhere on the half-real line.
In particular, the apparent pole at s ¼ 0 in the hyperbolic
cotangents is cancelled by a simple zero in the log function.
The integrand is everywhere bounded and decays expo-
nentially at s → ∞.
To carry out the above integral, we separate it into two

pieces as

UnðηÞ ¼ U<s0
n ðηÞ þ U>s0

n ðηÞ: ð3:36Þ

For concreteness, let us take s0 ∼Oð1Þ and estimate first
the contribution of the lower part of the integral

U<s0
n ðηÞ ¼ in

2ðn − 1Þ
Z

ns0

0

ds½cothðnπsÞ − cothðπsÞ� log

×

�
2F1ð1þ is;−is; 1; ηÞ
2F1ð1 − is; is; 1; ηÞ

�
; ð3:37Þ

where we have rescaled the integral by the change of
variable s → ns. In this form, the new integration variable
runs over a small region 0 < s < ns0 in the n → 0 regime.
Since the above integrand is bounded and differentiable at
s ¼ 0, we conclude that U<s0

n ðηÞ → 0 as n → 0.
The upper part of the integral is now

U>s0
n ðηÞ ¼ i

2ðn − 1Þ
Z þ∞

s0

ds½cothðπsÞ − cothðπs=nÞ� log

×

�
2F1ð1þ i sn ;−i

s
n ; 1; ηÞ

2F1ð1 − i sn ; i
s
n ; 1; ηÞ

�
: ð3:38Þ

In this region the integration variable s0 < s < ∞, since
s0 ∼Oð1Þ, the ratio s=n → ∞ when n → 0 for all s. In that
regime, the argument of the above log function simplifies
drastically. The relevant asymptotic behavior can be
derived from the integral representation of the Gaussian
hypergeometric functions, by using the stationary phase
approximation. This was done in [13], where the authors
found

lim
s=n→∞

i log

�
2F1ð1þ i sn ;−i

s
n ; 1; ηÞ

2F1ð1 − i sn ; i
s
n ; 1; ηÞ

�

¼ i log ð1 − 2ηþ i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
Þ ¼ − arccos ð1 − 2ηÞ:

Likewise, we can replace cothðπs=nÞ → 1. These approx-
imations are exact in the n → 0 limit, but for finite n they
are still useful as they provide an upper bound for U>s0

n ðηÞ
due to the monotonicity properties of the approximated
functions. We thus have

U>s0
n ðηÞ ¼ 1

2
arccos ð1 − 2ηÞ

�
s0 þ log

�
1

2
cschðπs0Þ

��
;

ð3:39Þ

where we have safely taken the n → 0 limit. The coefficient
that depends on s0 is finite and small for s0 ∼ 1 as was our
choice, and therefore, the Rényi-0 mutual information is
dominated by the first term in (3.34). We conclude that in
the n → 0 limit we recover the correct result (3.33) as
expected, i.e.

IsnðηÞ ¼ −
1

12n
log ð1 − ηÞ: ð3:40Þ

1. Long-distance limit

In the long-distance limit, the mutual information sim-
plifies and can be computed exactly. However, the long-
distance limit of Rényi entropies and the n → 0 limit do not
commute. This has to be so because the long-distance limit
is dominated by the model-dependent lowest dimensional
operator, while the n → 0 limit is determined by the
universal ET.
Let us consider an explicit instance of these noncom-

mutative limits in the example above. Consider again
(3.35). For fixed arbitrary n, we can take the long-distance
η ≪ 1 limit inside the integrand. In that case, we have

log

�
2F1ð1þ i sn ;−i

s
n ;1;ηÞ

2F1ð1− i sn ; i
s
n ;1;ηÞ

�
≈−2i

s
n
η− i

�
s
n
−
s3

n3

�
η2þ�� � :

ð3:41Þ

Notice, that this expansion comes with polynomials in the
ratio s=n, and therefore after integration one should be
careful that the resulting series expansion is well defined
for the values of nwe are considering. In fact, the series in η
can be integrated term by term leading to

UnðηÞ ¼ −
ðnþ 1Þ
12n

η−
ðnþ 1Þð9n2 − 1Þ

240n3
η2 þOðη3Þ þ � � � :

ð3:42Þ

In this expression, we can see explicitly the failure of the
expansion in the n → 0 limit, as each term will have a larger
and larger divergence in 1=n for a small but fixed η.
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C. Strip

The strip geometry is another example in which the
Rényi entropies have been computed exactly for all non-
integer values of the Rényi parameter for free fields. This
geometry is characterized by its width l and transverse area,
which although infinite in size we regularized to a large but
finite value A⊥, see Fig. 3. The Rényi entropies for this
geometry have the form

Sn ∼ αn
A⊥
ϵd−2

− κn
A⊥
ld−2

; ð3:43Þ

where the first term is cutoff dependent and thus nonuni-
versal, while the second term is universal. For free fields
this was obtained by dimensional reduction in [12,14]. In
the next subsection, we will review this calculation as
applied to the n → 0 limit.

1. Direct computation of Rényi-0

The calculation of Sn presented in [12,14] is done using
the replica trick. In this setup one is interested in computing
the partition function of n copies of the theory with some
nontrivial monodromy around the boundaries of the entan-
gling region. For free fields, one can choose a basis of free
fields that diagonalizes the monodromy into a simple
multiplicative boundary condition ei2πk=n where k labels
the different copies. Thus, the Rényi entropy becomes a
sum over the different diagonalized copies. For scalars we
have

Sn ¼
1

1 − n

Xn−1
k¼0

logZðei2πknÞ; ð3:44Þ

where logZðei2πknÞ is the free energy associated with each
diagonalizing free field (with the plane free energy sub-
tracted). The partition function associated with a strip

geometry for a free field can be obtained by dimensional
reduction from the partition function of a massive field in
one interval in d ¼ 2. In this way, one gets [12]

κn ¼ hðdÞ
Z

∞

0

dyyd−3cnðyÞ; hðdÞ−1 ¼ ð4πÞd−22 Γðd=2Þ:

ð3:45Þ
Here cnðyÞ ¼ R dSn

dR , where Sn is the Rényi entropy of an
interval of size R in d ¼ 2 and a free massive field, and
y ¼ mR. In the same way as (3.44) for the higher dimen-
sional case, one has a sum over copies for the d ¼ 2 fields,

cnðyÞ ¼
1

1 − n

Xn−1
k¼1

wk
n
ðyÞ; ωaðyÞ ¼ R

d
dR

logZðei2πaÞ:

ð3:46Þ
The functions cnðyÞ can be obtained by integrating sol-
utions of a Painlevé equation [12,14].
For the scalar, the problem chooses naturally a∈ ð0; 1Þ,

and ω0ðyÞ ¼ ω1ðyÞ ¼ 0. There is a symmetry a → 1 − a in
ωaðyÞ. In order to continue (3.46) analytically for all n > 0
we use a residue formula

cnðyÞ ¼
ð2πiÞ−1
1 − n

Z
dz

Xn−1
k¼1

1

z − ei2πk=n

ωlog z
2πi
ðyÞ ¼ ð2πiÞ−1

1 − n

Z
dz n

zn−1

zn − 1
ωlog z

2πi
ðyÞ:

The contour encloses the unit circle where all poles for n
integer appear but has to enclose also the real negative axis,
where there is a cut of the integrand, in order to be an
analytic continuation for noninteger n; see Fig. 4 of [12].
For n ≤ 1 there are no more poles on the unit circle and
only the cut around the real negative axis remains; ωlog z

2πi
ðyÞ

has no problems around this line. Changing the integration
variable from z → b, via log z

2πi ¼ 1
2
þ ib, where the negative

real line on the z plane corresponds to real b, and taking
into account the symmetry b → −b, we get

cnðyÞ¼
1

n−1

Z
∞

0

db
nsinðnπÞ

cosðnπÞ−coshð2bnπÞω̃bðyÞ; n<1:

ð3:47Þ
We have defined ω̃bðyÞ ¼ −ω1=2þibðyÞ. The function ω̃bðyÞ
is given by the equations

ω̃bðyÞ ¼
Z

∞

y
dt t u2bðtÞ; ð3:48Þ

u00b þ
1

t
u0b ¼

ub
1þ u2b

ðu0bÞ2 þ ubð1þ u2bÞ −
4b2

t2
ub

1þ u2b
;

ð3:49Þ

FIG. 3. The strip for general d consists of two parallel walls
located at x ¼ �l=2 that extend all over the perpendicular
coordinates represented collectively by y in the figure. The time
coordinate points outwards from the figure. The θ angle is
defined for any point as the angle between p̂ and x. The ϵ
regulators at x ¼ �ðl=2 − ϵÞ are also shown.
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ubðtÞ →
2

π
coshðπbÞKi2bðtÞ; t → ∞: ð3:50Þ

In particular, the entanglement entropy n → 1 is given by
the known formula

c1ðyÞ ¼
Z

∞

0

db
π

2 cosh2ðbπÞ ω̃bðyÞ; ð3:51Þ

and all Rényi entropies for n < 1 depend upon the same
functions ω̃bðtÞ.
The n → 0 limit should be taken carefully. For arbitrary

n > 0, we can change the integration variable in (3.47) to
b̃ ¼ nb, which gives

cnðyÞ ∼
Z

∞

0

db̃
nπ

2 sinh2ðπb̃Þ ω̃b̃=nðyÞ: ð3:52Þ

In the n → 0 limit, and for any finite b̃, we are looking at
ω̃bðyÞ built out of the asymptotic large b ¼ b̃=n solutions to
(3.49) in (3.48). The differential equation (3.49) has a
closed simple solution at large bwhich is naturally obtained
after rescaling t → bt̃. This was studied in [2], where it was
found that

lim
b→∞

ubðbt̃Þ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffi
2
t̃ − 1

q
for t̃ > 2

0 for t̃ > 2:
ð3:53Þ

Therefore, in the large b regime, we have from (3.48)
and (3.53)

ω̃bðyÞ ∼ b2
Z

∞

y=b
dt̃ t̃ u2bðbt̃Þ ¼ b2

Z
2

y=b
dt̃ t̃

�
2

t̃
− 1

�
Θ
�
2−

y
b

	

¼ 2

�
b−

y
2

�
2

Θ
�
2−

y
b

	
; ð3:54Þ

where Θ½x� is the step function, which equals 1 for a
positive argument and 0 otherwise. With this result we can
evaluate κsn using (3.52), and (3.45)

κsn∼hðdÞ
Z

∞

0

dyyd−3
Z

∞

0

db̃
nπ

sinh2ðπb̃Þ

�
b̃
n
−
y
2

�
2

Θ
�
2−

yn

b̃

	

ð3:55Þ

∼
hðdÞ
nd−1

Z
∞

0

db̃
πb̃d

sinhðπb̃Þ2
Z

∞

0

dỹ ỹd−3
�
1 −

ỹ
2

�
Θ½2 − ỹ�;

ð3:56Þ

where in the last line, we rescaled the y integral as
y → b̃ ỹ =n. This expression has the expected behavior
∼n−ðd−1Þ. Carrying out the above integrals, one gets

κsn ∼
1

nd−1
Γ
�
d−1
2

�
ζðdÞ

ðd − 2Þπ3d−1
2

: ð3:57Þ

For the fermion a similar calculation holds. The for-
mula (3.47) is now

cnðyÞ¼
1

1−n

Z
∞

0

db
nsinðnπÞ

cosðnπÞþcoshð2bnπÞω̃bðyÞ; n<1:

ð3:58Þ

The function ω̃bðyÞ satisfies the same differential equa-
tions (3.48), (3.49), but now ubðtÞ has a different boundary
condition

ubðtÞ →
2

π
sinhðπbÞKi2bðtÞ; t → ∞: ð3:59Þ

In the large b, t limit, however, we have the same limit as
the ub function for the scalar. The only difference with the
scalar is that now the small n limit gives

κfn∼
hðdÞ
nd−1

π2d−1

dðd2−3dþ2Þ
Z

∞

0

db̃
b̃d

coshðπb̃Þ2¼
�
1−

1

2d−1

�
κsn:

ð3:60Þ

We see that, as expected, the ratio between the universal
coefficients of the Rényi entropies in the n → 0 limit for
bosons and fermions is the same as the one between (3.6)
and (3.7) for the Stefan-Boltzmann constants.

2. Rényi-0 from local temperatures

Let us take a strip defined to lie within the interval
jxj ≤ 1=2, and extend without bound along the extra
dimensions say, fyig, with i∈ f1;…; d − 2g. The local
temperatures are homogeneous and isotropic with respect to
fyig and thus, they can only depend on x and the azimuthal
angle θ, with respect to the positive x direction. The local
temperatures for the strip were studied in detail in
[2] and as shown there, they have a rich structure that
interpolates between two limiting cases, the Rindler-like, and
the interval-like which are separated by the critical curve

sin θ ¼ 1 − 2jxj: ð3:61Þ

The ET for the strip are

βðx; p̂Þ≡
8<
:

πð1 − 2jxjÞ for sin θ > 1 − 2jxj
π
2
cos2θ−4x2
1−j sin θj for sin θ < 1 − 2jxj ; ð3:62Þ

i.e. the region sin θ > 1 − 2jxj has the same local temper-
atures as Rindler, and sin θ < 1–2jxj has local temperatures
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which are described by a different function that reduces to
the ones of the interval when θ → 0 and characterizes the
nontrivial geometric dependence of the strip. Formula (3.62)
differs slightly from the one presented in [2] but agrees
exactly within sin θ < 1–2jxj.
Given the explicit formulas for β we can now proceed to

calculate the geometric coefficient gðAÞ where A is a strip.
This requires computing

gðAÞ ¼ 1

volðSd−2Þ
Z
A
dd−1x

Z
dd−2Ω

βd−1ðx; Ω̂Þ : ð3:63Þ

The integral over A separates between the coordinates
parallel and perpendicular to the strip. The local temper-
atures depend only on the azimuthal angle which we
denoted as θ; therefore,

gðAÞ ¼ A⊥
volðSd−2Þ

Z
1
2

−1
2

dx
Z

π

0

dθ sind−3 θ
Z
Sd−3

dd−3Ω
βd−1ðx; θÞ

¼ volðSd−3ÞA⊥
volðSd−2Þ

Z
1
2

−1
2

dx
Z

π

0

sind−3 θ
βd−1ðx; θÞ dθ: ð3:64Þ

We will start by evaluating the finite contribution that
comes from the part of the strip whose local temperature
equals the one of Rindler, which is delimited by
sin θ < 1–2jxj. In this region, the integrand is independent
of θ and thus, it is convenient to carry out the integral over
x first

gRðAÞ ¼
4volðSd−3ÞA⊥
volðSd−2Þ

Z
π=2

arcsinð2ϵÞ
dθ sind−3 θ

Z
1
2
−ϵ

1−sin θ
2

dx
βd−1R ðxÞ ;

ð3:65Þ

where the factor of 4 comes from the separation of the
integration region into four parts which are related by
symmetry. We put a regulator on the x integral which also
regulates the angular integral through the curve which
delineates the Rindler region. The integral over x gives

Z 1
2
−ϵ

1−sin θ
2

dx
βd−1R ðxÞ ¼

1

2ðd − 2Þπd−1
�

1

ð2ϵÞd−2 −
1

sind−2 θ

�
;

ð3:66Þ

and for the full integral we obtain

gRðAÞ ¼
2

ðd− 2Þð2πÞd−1
A⊥
ϵd−2

þ
Γ
�
d−1
2

�
Γðd

2
Þπd−1

2

A⊥
ld−2

× log

�
2ϵ

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 4ϵ2

p
�

−
Γ
�

d−1
2

�

ðd− 2ÞΓ
�

d
2

�
πd−

1
2

A⊥
ld−2 2

F1

�
1

2
;
d− 2

2
;
d
2
;4

�
ϵ

l

�
2
	
;

ð3:67Þ

where we have recovered the length scale of the strip l. Let
us analyze the divergent structure of this contribution. The
first term gives the expected nonuniversal area law diver-
gent piece. The second term gives a logðϵ=lÞ divergent
finite piece contribution in the ϵ=l → 0 limit. We know this
universal contribution should be cancelled by the contri-
bution of the other solution. The final term, the term
proportional to the hypergeometric function, gives a con-
stant universal contribution in the ϵ=l → 0 limit.
Next, we evaluate the contribution that comes from the

part of the strip whose local temperatures are given by (3.62).
Integrating first over the angles the resulting integral is

gSðAÞ ¼
4volðSd−3ÞA⊥
volðSd−2Þ

Z 1
2
−ϵ

0

dx
Z

arcsinð1−2xÞ

0

dθ
sind−3 θ
βd−1S ðx; θÞ ;

ð3:68Þ

where once again the factor of 4 comes from the separation
of the integral into four regions which contributes the same
to gSðAÞ. This integral can be computed analytically for
individual integer values of d from which one can derive the
general formula to be

gSðAÞ ¼ −
Γ
�
d−1
2

�
Γðd

2
Þπd−1

2

A⊥
ld−2

log

�
2ϵ

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 4ϵ2

p
�
þOðϵÞ;

ð3:69Þ

up to terms that go to zero as ϵ goes to zero.
Adding the results of both contributing regions (3.67)

and (3.69) we find

gðAÞ ¼ 2

ðd − 2Þð2πÞd−1
A⊥
ϵd−2

−
Γ
�
d−1
2

�
ðd − 2ÞΓðd

2
Þπd−1

2

A⊥
ld−2

:

ð3:70Þ

From our conjectured formula we can thus evaluate the
Rényi-0 for a free scalar and a free fermion using the
associated Stefan-Boltzmann constants
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SnðAÞ ¼
σB=F
nd−1

�
2

ðd−2Þð2πÞd−1
A⊥
ϵd−2

−
Γ
�
d−1
2

�
ðd−2ÞΓðd

2
Þπd−1

2

A⊥
ld−2

	
:

ð3:71Þ

From this formula, it is easy to compute the constants
defined in the previous subsection which were computed
using exact methods

κs=fn ðdÞ ¼ σB=F
nd−1

Γ
�
d−1
2

�
ðd − 2ÞΓðd

2
Þπd−1

2

: ð3:72Þ

These coefficients agree exactly with (3.57) and (3.60) after
replacing the values of σB=F for the scalar (3.6) and the
fermion (3.7) respectively.

IV. STATE PROPAGATION AND
ENTROPY CURRENT

In this section, we study the characterization of the state
at large modular temperatures in terms of their ET. This is a
high-temperature thermal ensemble described as a gas of
relativistic (massless) particles with thermal distribution.
The description is in terms of a free relativistic Boltzmann
equation, that is reviewed below. The Boltzmann distribu-
tion function ψðx; pÞ contains the information on the ET.
The statistical system under study can be alternatively
described by an infinite tower of conserved currents, whose
conservation follows from the ballistic propagation of the
ET described in Sec. II F. When a conformal Killing vector
is present, we obtain this tower of conserved currents
explicitly. The example of the strip geometry in which there
is no Killing vector, but the ETare known, is also presented.

A. Free relativistic Boltzmann equation

Consider a general QFT in d dimensions with a free UV
fixed point on a manifold with metric gμν. In this setup, the
high-energy physics is described by ultrarelativistic colli-
sionless particles that travel at the speed of light with
adequate spin statistics corresponding to the fundamental
UV fields. These particles travel along null geodesics with
momenta pμ, with p2 ¼ 0. One can define a Lorentz
invariant distribution function ψðx; pÞ for the number of
particles dNΣ that traverse a d − 1 volume element Σ with
momentum pμ. The surface Σ itself is defined as normal to
an observer with a world-line tangent to the unitary timelike
vector n̂μ. The energy of a particle of momentum pμ

measured by this observer is pμn̂μ.
In the literature, see e.g. [15–17], there is more than one

presentation of ψ depending on which variables are thought
of as fundamental. The standard presentation is to take a
function of xμ and pi, i.e. only the spacelike momenta,
where the on-shell constraint on p2 is already taken into
account and p0 must be regarded as a function of the other

variables p0 ¼ p0ðx; piÞ. There is also another presentation
using xμ and pi, i.e. using the dual spacelike momenta. In
this work, we will be more interested in a manifestly
covariant presentation of ψ . That is, we define ψðx; pÞ as an
off-shell function of the complete contravariant vectors
fxμ; pνg but whose physical information is extracted upon
projecting on-shell, i.e. p2 ¼ 0 in our scenario.
Our Boltzmann function ψðx; pÞ is thus defined by the

relation

dNΣ ≡ ψðx; pÞðn̂ · pÞ dΣ dΠ; ð4:1Þ

where we have defined the covariant volume elements

dΣ≡ ffiffiffiffiffiffiffiffi
−gΣ

p Yd−1
i¼1

dxi; dΠ≡ ffiffiffiffiffiffi
−g

p
δðp2Þ2θðn̂ ·pÞ

Q
d−1
α¼0dp

α

ð2πÞd−1 ;

ð4:2Þ

where
ffiffiffiffiffiffiffiffi−gΣ

p
is the induced metric on Σ. Since dNΣ, dΣ,

dΠ, and ðn̂μpμÞ are Lorentz invariant, we have that ψðx; pÞ
is itself a Lorentz invariant probability density. This is also
independent of the observed direction n̂ because dΣðn̂ · pÞ
is independent of n̂.
The Boltzmann equation is derived by demanding dNΣ

to be invariant under an infinitesimal evolution on the
proper time λ of all particles. Then, the geodesic equations

dxμ

dλ
≡ pμ;

d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ

¼ dpμ

dλ
þ Γμ

αβp
αpβ ¼ pα∇αpμ ¼ 0 ð4:3Þ

impose nonlinear transformations for space and momenta,

dxμ ¼ pμdλ; dpμ ¼ −Γμ
αβp

αpβdλ: ð4:4Þ

One can explicitly check that dΠ and ðdΣðn̂ · pÞÞ are
invariant on their own under these transformations [16,17],
so that we must impose ψðx; pÞ to be invariant under (4.4).
To do this, one must regard ψðx; pÞ as a function only on
the proper time λ and demand

dψðxðλÞ; pðλÞÞ
dλ

¼ ∂ψðx; pÞ
∂xμ

pμ −
∂ψðx; pÞ
∂pμ Γμ

αβp
αpβ ¼ 0;

ð4:5Þ

where (4.4) was used. The last equation is the covariant
version of the Boltzmann equation on curved manifolds,
which imposes an evolution equation for the invariant
phase space density function. This should be comple-
mented with the on-shell constraint, i.e. p2 ¼ 0.
For the state in the limit n → 0 the density of states is the

occupation number corresponding to the ET
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ψðx; pÞ≡ 1

enSrelðx;pÞ ∓ 1
: ð4:6Þ

From (2.14), we know that the relative entropy, in our regime
of interest, is a homogeneous function of the momentum
variable, that is, for λ > 0, we have Srelðx; λpÞ ¼ λSrelðx; pÞ.
Therefore, choosing λ ¼ −ðn̂ · pÞ−1, with n̂ an arbitrary
future oriented timelike unit vector, we get

Srelðx;pÞ ¼−ðn̂ ·pÞSrel
�
x;−

p
ðn̂ ·pÞ

�

≡−ðn̂ ·pÞβðx; p̂Þ; where p̂μ≡−
pμ

ðn̂ ·pÞ : ð4:7Þ

This equation provides the proper generalization of the
notion of local temperatures (2.14). The above relation is
understood on-shell, but it is harmlessly extended off-shell in
an arbitrary way just for simplicity of the notation.
Now, one can see that Eqs. (4.5) and (4.6) imply that

Srelðx; pÞ itself has to meet the Boltzmann equation (4.5).
This in fact follows from our discussion in Sec. II F using
the analytic extension of the Euclidean eikonal analysis of
[1,2]. One can see that Eqs. (2.28) and (2.30) also impose a
differential equation for Srelðx; pÞ under geodesic transport
(4.3). We now show that these equations lead to the
Boltzmann equation for Srelðx; pÞ. By extending all quan-
tities off-shell we get under the flow of particles

Tμ ¼ pμ

Srelðx; pÞ
⇒ Tα∇αTμ

¼ 1

Srel
pα∇αpμ −

pμ

S2rel
pα∇αSrelðx; pÞ ¼ 0: ð4:8Þ

By using Eq. (4.3) one can see that the first term vanishes.
The second term can also be manipulated using the
geodesic equation to obtain

pα∇αSrelðx; pÞ ¼ pα
∂αSrelðx; pÞ ¼

dxα

dλ
dSrelðx; pÞ

dxα

¼ dSrelðx; pÞ
dλ

¼ 0; ð4:9Þ

which is exactly (4.5). More generally, any scalar function
of Srelðx; pÞ will also meet (4.5). We emphasize that once
written as in the right-hand side of (4.5), the Boltzmann
equation holds as a partial differential equation on fxμ; pνg
regardless of the geodesic motion (4.3) we used to derive it.

B. A tower of conserved currents

The Boltzmann equation (4.5) in turn implies the con-
servation of an infinite number of currents [16]. Consider for
example the particle number current, defined as

NμðxÞ≡
Z

dΠpμψðx; pÞ

¼
Z

ddp
ð2πÞd−1

ffiffiffiffiffiffi
−g

p
2θðp0Þδðp2Þpμψðx; pÞ: ð4:10Þ

We now want to show that this current is conserved. We
begin by taking an ordinary spatial derivative. Notice first
that the momentum and coordinate variables are independent
of each other,6 so that (4.3) does not apply, but the partial
derivative version of (4.5) does. We have

∂μNμ ¼
Z

ddp
ð2πÞd−1 2θðp

0Þ ffiffiffiffiffiffi
−g

p �
1ffiffiffiffiffiffi−gp ∂

ffiffiffiffiffiffi−gp
∂xμ

δðp2Þ

þ δ0ðp2Þ ∂gαβ
∂xμ

pαpβ

	
pμψðx; pÞ

þ
Z

ddp
ð2πÞd−1

ffiffiffiffiffiffi
−g

p
2θðp0Þδðp2Þpμ ∂ψðx; pÞ

∂xμ
:

ð4:11Þ

In order to connect to the Boltzmann equation, wewould like
to find the term

Γμ
αβp

αpβδðp2Þ ∂ψðx; pÞ
∂pμ : ð4:12Þ

We do so by adding a total momenta derivative of the form

∂

∂pμ ½Γμ
αβp

αpβδðp2Þψðx; pÞ�

¼ 2Γμ
μαpαδðp2Þψðx; pÞ þ Γμ

αβp
αpβ ∂δðp2Þ

∂pμ ψðx; pÞ

þ Γμ
αβp

αpβδðp2Þ ∂ψðx; pÞ
∂pμ : ð4:13Þ

Interestingly, the second term in the integrand of (4.11)
coincides exactly with the second term of the right-hand side
of (4.13) after using the following identities:

∂δðp2Þ
∂pμ ¼ 2δ0ðp2−m2Þpμ; pαpβpμ

∂gαβ
∂xμ

¼ 2Γμ
αβp

αpβpμ:

ð4:14Þ

In this way Eq. (4.11) reduces to

6This is not necessary, if one considers the deformation of the
tangent space under an infinitesimal displacement in (4.10); one
can show that these contributions cancel by themselves [15], in
agreement with our statement.
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∂μNμ ¼
Z

ddp
ð2πÞd−1

ffiffiffiffiffiffi
−g

p
2θðp0Þδðp2Þ

��
pμ ∂ψðx; pÞ

∂xμ
− Γμ

αβp
αpβ ∂ψðx; pÞ

∂pμ

�
− Γα

αμpμψðx; pÞ
	

þ
Z

ddp
ð2πÞd−1

ffiffiffiffiffiffi
−g

p
2θðp0Þ ∂

∂pμ

h
Γμ
αβp

αpβδðp2Þψðx; pÞ
i
; ð4:15Þ

where we also use the well-known identity ∂μ
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi−gp Γα

αμ. The integral in the second line leads to a boundary term that
vanishes by the assumption that ψðx; pÞ decays faster than any power of the momentum. By completing the covariant
divergence ofNμ using the last term in the first line above, we find that the Boltzmann equation implies the conservation ofNμ:

∇μNμ ¼
Z

ddp
ð2πÞd−1

ffiffiffiffiffiffi
−g

p
2θðp0Þδðp2Þ

�
pμ ∂ψðx; pÞ

∂xμ
− Γμ

αβp
αpβ ∂ψðx; pÞ

∂pμ

	
¼ 0; ð4:16Þ

as we wanted to prove.
In the same way one can build an infinite tower of conserved currents of the form

Tμν ¼
Z

dΠpμ pν ψðx; pÞ; Fμ1…μmðxÞ≡
Z

dΠ
�Ym

i¼1

pμi

�
ψðx; pÞ; ð4:17Þ

where we have singled out the stress-energy tensor of the system. All of these currents can be shown to be conserved in any
of its indices in an identical fashion as with Nμ by virtue of the Boltzmann equation (4.5). Furthermore, they are symmetric
in all of their indices by construction and traceless under any contraction.

C. Conserved currents in terms of the ET

Consider a general current in a scenario where ψðx; pÞ ¼ ψ ½nβðx; p̂Þð−n̂ · pÞ�, where we remind the reader that
p̂ ¼ p=ð−n̂ · pÞ. We have

Fμ1…μmðxÞ ¼
Z

dΠ
�Ym

i¼1

pμi

�
ψ ½nβðx; p̂Þð−n̂ · pÞ�:

Now, let us consider a local change of coordinates x ¼ fðx̃Þ which takes gμνðxÞ at x ¼ q into ημν at x̃ ¼ f−1ðqÞ, namely

gμνðxÞ
∂xμ

∂x̃α
∂xν

∂x̃β

����
x¼q

¼ ηαβ: ð4:18Þ

This change of coordinates will induce a corresponding change of coordinates in the momentum from pμ to p̃ν where the
latter lives in flat space

pμ ¼ ∂xμ

∂x̃ν
p̃ν: ð4:19Þ

This results in

Fμ1…μmðxÞ ¼
Ym
i¼1

�
∂xμi

∂x̃νi

�Z
dΠ̃

�Ym
i¼1

p̃νi

�
ψ

�
nβ

�
x;

�
∂xμ

∂x̃ν

�
p̃ν

ð− ˆ̃n · p̃Þ

�
ð− ˆ̃n · p̃Þ

	
:

The momentum integral in the tilde coordinates is in flat space, and thus we can use spherical coordinates to carry out the
integral on j ⃗p̃j. Notice that p̃0 ¼ p̃0 ¼ j ⃗p̃j; thus, if we chose ˆ̃nμ ¼ δμ0, we have ˆ̃pμ ¼ p̃μ=p̃0 and
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Fμ1…μmðxÞ ¼
Ym
i¼1

�
∂xμi

∂x̃νi

�Z
dΩ̃d−2

ð2πÞd−1
Z

∞

0

dj ⃗p̃jj ⃗p̃jd−3þm

�Ym
i¼1

ˆ̃pνi

�
ψ

�
nj ⃗p̃jβ

�
x;

�
∂xμ

∂x̃ν

�
ˆ̃pν

�	

¼
Ym
i¼1

�
∂xμi

∂x̃νi

�
1

nd−2þm

Z
dΩ̃d−2

ð2πÞd−1
Q

m
i¼1

ˆ̃pνi

β
�
x;
�
∂xμ
∂x̃ν

�
ˆ̃pν
�
d−2þm

�Z
∞

0

dl ld−3þmψ ½l�
�

≡Ym
i¼1

�
∂xμi

∂x̃νi

�
fðmÞ
nd−2þm

Z
dΩ̃d−2

Q
m
i¼1

ˆ̃pνi

β
�
x;
�
∂xμ
∂x̃ν

�
ˆ̃pν
�
d−2þm ; ð4:20Þ

where l ¼ nj ⃗p̃jβðx; ð∂xμ
∂x̃νÞ ˆ̃pνÞ and fðmÞ are “chemical”

coefficients that depend on the nature of the microscopic
components of the system. For example, for the cases of
bosons and fermions one gets,

fbðmÞ≡ ð2πÞ1−dζðd − 2þmÞΓðd − 2þmÞ;
ffðmÞ ¼ ð1 − 23−d−mÞfbðmÞ: ð4:21Þ

In general, these factors are nontrivially related to the
Stefan-Boltzmann constants except for m ¼ 2, cf. (3.6)
and (3.7),

fð2Þ ¼ ðd − 1Þ
volðSd−2Þ σ; ð4:22Þ

which is the correct normalization for Tμν to yield the
energy of the gas.
Finally, we can undo the coordinate transformation and

express everything in terms of the original coordinates and
variables as

Fμ1…μmðxÞ ¼ fðmÞ
nd−2þm

Z
dΩ̃d−2

Q
m
i¼1 p̂

νi

βðx; p̂νÞd−2þm ; ð4:23Þ

where

p̂μ ¼
�
∂xμ

∂x̃ν

�
ˆ̃pν and gμνðxÞ

∂xμ

∂x̃α
∂xν

∂x̃β

����
x¼q

¼ ηαβ; ð4:24Þ

where ˆ̃p0 ¼ p̃0=ð−ñ · p̃Þ ¼ 1. In (4.23), one must keep in
mind that the angular integral is characterizing the direction
of the flat space momentum variables, p̃μ. A key conclusion
of this analysis, see (4.23) and (4.24), is that the conserved
currents we define contain the information of all moments
of βðx; p̂Þ−1 distribution and thus knowing all conserved
currents in spacetime formally contains the same informa-
tion as βðx; p̂Þ.
A comment on covariance and normalization is due.

Notice first that the conservation of the currents is inde-
pendent of its normalization. In particular, Nμ in Eq. (4.10)
and Tμν in (4.17) are normalized to give the particle number
and energy density at each point respectively. On the other
hand, notice also that we are dealing with a single quantity

with units, βðx; p̂Þ, so that there is also a single covariant
quantity that can be defined for any given dimension,
essentially

F̃μ1…μmðxÞ ∼
Z

dΩ̃d−2

Q
m
i¼1 p̂

μi

βðx; p̂Þd−2þm ; ð4:25Þ

with p̂μ defined in (4.24). Above, we have built for m ¼ 1
in Eq. (4.10) the particle number density Nμ. However, to
make contact with our analysis in Sec. III we would rather
work with another density normalized to provide the Rényi-
0 in Eq. (3.4). The current of interest is

Jμ ≡ σ

nd−1
1

volðSd−2Þ
Z

dΩ̃d−2
p̂μ

βðx; p̂Þd−1 ⇒ SnðΣÞ

¼
Z
Σ
dΣ n̂μ JμðxÞ; ð4:26Þ

so that for unitary timelike n̂ we recover (3.13). The above
equations for a general metric are defined according
to (4.24).
We conclude that the present analysis gives an infinite

tower of symmetric traceless conserved currents (4.23) that
contains the same information as the β’s. In what follows
we compute explicitly some of these currents.

D. Examples

In this subsection, we would like to construct some
explicit realizations of the conserved currents Jμ and Tμν

discussed in the previous subsections.

1. Multi-intervals

The local temperatures at t ¼ 0 for QFTs in d ¼ 2 for N
intervals were reviewed in Sec. III B and are

βðxÞ ¼ 2π

�XN
i¼1

�
1

x − li
þ 1

ri − x

	�−1

; ð4:27Þ

where there is no momentum parameter since the two
possible directions have the same ET at t ¼ 0. The
extension to t ≠ 0 in d ¼ 2 is particularly easy as the
dΩd−2 collapses into a sum over the two rays x� t, i.e.
β�ðx; tÞ≡ βðx ∓ tÞ and volðS0Þ≡ 2; see footnote 5. Thus
the current can be computed as
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Jμðx; tÞ ¼
σ

2n

�
pþ
μ

βþðx; tÞ
þ p−

μ

β−ðx; tÞ
�

¼ σuμ

nβðx; tÞ ; ð4:28Þ

where p�
μ ¼ f1;�1g,

βðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βþðx; tÞβ−ðx; tÞ

p
; ð4:29Þ

and we have defined a velocity uμ, u2 ¼ −1, given by

uμ ¼ t̂μ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−ðx; tÞ
βþðx; tÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βþðx; tÞ
β−ðx; tÞ

s 	

þ x̂μ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−ðx; tÞ
βþðx; tÞ

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βþðx; tÞ
β−ðx; tÞ

s 	
: ð4:30Þ

The stress-energy tensor can also be built in a similar
fashion, yielding

Tμνðx; tÞ ¼
σ

2n2

�
pþ
μ pþ

ν

βþðx; tÞ2
þ p−

μp−
ν

β−ðx; tÞ2
�
¼ P
n2

ð2uμuνþ ημνÞ;

ð4:31Þ

where P ¼ σ=βðx; tÞ2. Notice that the system has the
current and stress tensor of a perfect fluid with fluid
velocity uμ, pressure P, and energy density ρ ¼ P. We
will see that the perfect fluid structure only holds in cases
where a Killing vector is present.

2. Rindler

For Rindler, the local temperatures on the t ¼ 0 slice are
given by

βðx; p̂Þ ¼ 2πx; ð4:32Þ

where x is the coordinate orthogonal to the boundary. For
concreteness, we evaluate the currents for d ¼ 3, since the
general d result is a straightforward generalization.
Given the initial data at t ¼ 0, the Lorentizian eikonal

equations (2.28) tell us how to propagate that data to t ≥ 0.
Given a point ðt; xÞ with 0 < t < x, and a direction p̂, the
local temperature βðx; t; p̂Þ can be obtained by propagating
backward this data to the t ¼ 0 surface, namely

βðx; t; p̂Þ ¼ 2πðx − t cos θÞ; ð4:33Þ

where the direction of p̂ðθÞ ¼ f1; cos θ; sin θg is given by
the angle θ between the momentum spacial direction p̂ and
x. We find

Jμ ¼ σ

2πn2

Z
2π

0

dθ
p̂μ

βðx; t; p̂Þ2

¼ σ

ðnβRÞ2
�
x̂

tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − t2

p þ t̂
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − t2
p

�
μ ≡ σ

ðnβRÞ2
uμ;

with βR ≡ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − t2

p
, uμ a velocity, and

Tμν ¼ σ

πn3

Z
2π

0

dθ
p̂μp̂ν

βðx; t; p̂Þ3 ¼
σ

ðnβRÞ3
ð3uμuν þ ημνÞ:

ð4:34Þ

For general dimensions, the expressions can be readily
generalized to

Jμ ¼ σ

ðnβRÞd−1
uμ; Tμν ¼ σ

ðnβRÞd−2
ðd uμ uν þ ημνÞ;

ðd − 1ÞJμ ¼ uμTμν; ð4:35Þ

where uμ is completed with trivial entries in all dimensions
other than ft; xg.

3. ET given by a conformal Killing vector

The previous examples are all cases where the ET can be
defined in terms of a conformal Killing vector, ξ. As
reviewed in Sec. II F, in such cases, the modular
Hamiltonian adopts the simple local form (2.32) which
leads to the closed formula (2.34) for the temperature vector
Tμ. From these results, the general formulas for the
conserved currents (4.23) can be integrated exactly. For
instance, for Jμ and Tμν we have

Jμ ¼ σ

nd−1
1

volðSd−2Þ
Z

dΩ̃d−2
p̂μ

ð−p̂ · ξÞd−1 ¼
σ

nd−1
ξμ

ð−ξ2Þd2 ;

ð4:36Þ

Tμν ¼ σ

nd
ðd − 1Þ
volðSd−2Þ

Z
dΩ̃d−2

p̂μp̂ν

ð−p̂ · ξÞd

¼ σ

nd
d

ð−ξ2Þdþ2
2

�
ξμξν −

1

d
gμνξ2

�
; ð4:37Þ

where we used the relation βðx; p̂Þ ¼ −p̂ · ξ which follows
from (2.34), (2.31), and (3.10). This pair of current energy-
momentum tensor has the form of a perfect fluid with
velocity vector uμ and density ρ ¼ P given by

uμ ¼ ξμ

ð−ξ2Þ12 ; ρ ¼ σ

ð−ξ2Þd2 : ð4:38Þ

Similar formulas can be obtained for the higher index
generalizations (4.23), which can be alternatively derived
from general considerations. For instance (4.36), (4.37) are
the only vector and two-index traceless symmetric tensors
that can be built out of ξμ and ημν with the appropriate
scaling dimension up to an overall dimensionless factor.
For the three-index tensor following this prescription
one gets
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Fμνρ ¼ c3
ndþ1

1

ð−ξ2Þdþ4
2

×

�
ξμξνξρ −

1

dþ 2
ðξμgνρ þ ξνgμρ þ ξρgμνÞξ2

	
:

ð4:39Þ

where the coefficient c3 can be fixed from (4.23) to be

c3 ¼ fð3Þ
�
dþ 2

d − 1

�
volðSd−2Þ: ð4:40Þ

The general formula (4.23), which in this context takes the
form

Jμ1���μmm ¼ fðmÞ
nd−2þm

Z
dΩ̃d−2

p̂μ1 � � � p̂μm

ð−p̂ · ξÞd−2þm ; ð4:41Þ

provides useful relations between the currents. For
instance,

ξμmJ
μ1���μm
m ¼ −

1

n
fðmÞ

fðm − 1Þ J
μ1���μm−1
m−1 ð4:42Þ

follows easily from it. This equation gives a recursive way
to obtain all the lower index currents from the higher ones.
Another interesting relation

∇μ1Jμ2���μnm−1 ¼ nðdþm − 3Þ
d

fðm − 1Þ
fðmÞ ð∇ · ξÞJμ1μ2���μnm

ð4:43Þ

connects the covariant derivative of Jm−1 and Jm. This
equation follows from (4.41) and (2.35). Contracting
indices, one gets a relation between the conservation of
Jm−1 and the zero trace condition of Jm. Finally, one can
construct higher index currents from the lower ones; this is
the converse of (4.42) as

Jμ1���μm−1μm
m ¼ 1

n
cm

ð−ξ2Þ

×

�
Jðμ1���μm−1
m−1 ξμmÞ − κmξσJ

σðμ1���μm−2
m−1 gμm−1μmÞ

	
;

ð4:44Þ

where κm is determined from the zero trace condition, and
cm from (4.41)

κm ¼ m− 1

dþ 2ðm− 2Þ ; cm ¼ dþ 2ðm− 2Þ
dþm− 3

�
fðmÞ

fðm− 1Þ
�
:

ð4:45Þ

Formula (4.44) provides an explicit construction of all the
associated conserved currents.

4. Strip

We now present a final example of this formalism in
which a conformal Killing vector is not present. The ET for
the strip were found in [2] for any dimension. Here we
present a simplified analytic expression for the ET; we
repeat here (3.62) for reference,

βðx; p̂Þ≡
8<
:

πð1 − 2jxjÞ for sin θ > 1 − 2jxj
π
2
cos2θ−4x2
1−j sin θj for sin θ < 1 − 2jxj :

These are the ET at t ¼ 0 for a strip whose walls sit at
x ¼ �1=2. Notice the j sin θj in the denominator. Notice
also that 1 − j sin θj ≠ 0 is the domain where the expression
is valid. We will work once again with d ¼ 3, where a
single angle θ∈ ½0; 2πÞ parametrizes the ET. We will
present results for the currents at t ¼ 0. This will already
reveal that not all systems described in this fashion meet the
structure of an ideal fluid. A complete analytic expression
for t ≠ 0 seems to be out of reach.
For Jμ in d ¼ 3 we get

Jμðx; t ¼ 0Þ ¼ σ

2πn2

Z
2π

0

dθ
p̂μ

βðx; p̂Þ2 ; ð4:46Þ

which for 0 < x < 1=2 and t ¼ 0 yields

Jtðx; 0Þ ¼ σ

π3x3n2

�
2x3cos−1ð1 − 2xÞ

ð1 − 2xÞ2 þ
2x
�
1 − ð1þ xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞxp �

ð1 − 4x2Þ − tanh−1ð2xÞ

þtanh−1
� ffiffiffi

x
pffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
�
−

ð1 − 6x2Þ
ð1 − 4x2Þ3=2 tanh

−1
� ffiffiffi

x
p ð1 − 2xÞffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
��

;

Jxðx; t ¼ 0Þ ¼ Jyðx; t ¼ 0Þ ¼ 0: ð4:47Þ
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The solution is symmetric in x → −x. This analytic
expression does not hold beyond jxj > 1=2. The spatial
pieces Jxðx; t ¼ 0Þ and Jyðx; t ¼ 0Þ are zero by time
reflection symmetry. The conservation of the current is
guaranteed by definition.
A numerical analysis of Tμν in d ¼ 3 reveals that the

stress tensor no longer has the form of an ideal fluid, i.e.

TμνðxÞ ¼ σ

πn3

Z
2π

0

dθ
p̂μp̂ν

βðx; p̂Þ3 ¼ Diagfρ;Px;P⊥g; t¼ 0;

ð4:48Þ

where Px and P⊥, with Px > P⊥, are the longitudinal and
perpendicular pressures with respect to x respectively, and
ρ is the energy density. For higher dimensions, the stress
tensor is seen to remain diagonal, extended with identical
P⊥ on all dimensions orthogonal to x. The tracelesness of
Tμν imposes ρ ¼ Px þ ðd − 2ÞP⊥. This is often called an
anisotropic fluid. Albeit anisotropic fluids can still be
modeled by a combination of noninteracting perfect fluids,
see e.g. [18], we actually expect that for general (less
symmetric) regions the tower of conserved currents cannot
be interpreted as any particular family of fluid equations.
The description of the system in terms of the tower of
Lorentzian conserved currents is still valid for any region.

V. SUMMARY AND CONCLUSIONS

Entanglement temperatures [1,2] are generalizations of
Unruh temperatures associated with a point and a particular
direction in a subsystem, and generated by entanglement
with the rest of the global state. In [1,2], the ET were
defined from the leading term in the relative entropy
between the state in a subsystem excited with a high-
energy and localized unitary and the state without the
excitation; see Eq. (1.1). These entanglement temperatures
follow from the solutions of a nonlinear differential geo-
metric problem involving complex vectors in Euclidean
space. Analytic solutions of these equations, however, are
in general out of reach at present, except for some highly
symmetric examples. On the other hand, ET appear to be
highly universal quantities. In particular, these were shown
to be the same for fermions and bosons, massive or
massless [2].
In this work, we have continued the study of ET. In

particular, we find that there are an infinite number of ways
of parametrizing the Euclidean solutions to the eikonal
equations that define the local temperatures. We find no
apparent preference for any representative of the family,
since they all give place to the same ET. By considering
deformations to free theories, we conclude that ET depend
only on the conformal class determined by the metric, the
region, and the UV conformal fixed point. All free UV
fixed points share the same ET for a fixed geometry. For a
general nonfree UV fixed point, where a particlelike

description of the UV physics is absent, we still lack a
robust framework to compute ET. In this sense, it would be
interesting to understand if there is a simple way to
compute these temperatures for holographic theories. It
is possible that ET arising from the eikonal equations could
be completely universal, and valid even for interact-
ing CFTs.
We have also studied the real-time propagation of the ET,

which follows lightlike geodesics and travels without
interacting with each other at different times. In other
words, the ET follow a ballistic propagation as a conse-
quence of their “eikonal” nature. A temperature covariant
vector Tμ can be defined as a lightlike vector. Taking a
high-energy excitation with lightlike momentum pμ, such
that pμ and Tμ are parallel, the proportionality factor
between these vectors is precisely the relative entropy of
the excitation with respect to the vacuum. On the other
hand, the Lorentzian problem by itself does not give
enough information to uniquely determine the ET, it only
determines their ballistic propagation. To find the initial
condition for the problem we still rely on solutions to the
Euclidean version of the problem. An example of local
temperatures for a Vaidya metric was presented, in which
the black hole temperature is recovered, and shown to
change according to the considered subsystem.
Our main result in this work is the relationship between

the ET and the limit of large modular temperature in the
subsystem. This is described by the n → 0 limit of the
Rényi entropies, Rényi-0 for short. This connection is
nontrivial, in the sense that the original definition for ETare
associated with highly energetic and localized excitations
and not as quantities obtained from high-temperature
systems. The Rényi-0 is obtained as an average of the
ET in momenta and spacetime presented in (3.13). The
Renyi entropies in the n → 0 limit are then computed as
functions of the ET. This gives a universality for the Renyi-
0 entropies. They are proportional to a geometric factor
depending on the region and are computable from the ET.
We reproduce several known results for this limit of the
Renyi entropies by computing them in terms of ET.
Finally, using this high-temperature gas perspective, we

review the derivation of the free relativistic Boltzmann
equation and show its natural connection with ET for
theories with a free UV fixed point. The ballistic propa-
gation of the ET in turn implies the conservation of an
infinite tower of currents, defined as all possible weighted
averages (moments in the sense of a distribution function)
of the ET of the system, (4.17). This is to say that the full
tower of conserved currents contains in principle the same
information as the ET. We explicitly built the tower of
currents for a couple of examples. In the presence of a
Killing vector in the geometry, the system of currents can
be rewritten as the equations of a perfect fluid.
Furthermore, given a single current in a scenario with a
Killing vector, one can rebuild the full tower by symmetry
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arguments as shown in Sec. IV D 3. This description fails
for less symmetric systems.
It would be very interesting to recast the (highly non-

linear) problem of finding the ET for a given region into a
(hopefully simpler) problem of finding an adequate set of
conserved currents in Euclidean spacetime. To this end, one
could propose a Wick rotation of the Lorentzian tower of
currents (4.17), which should have vanishing divergence.
A set of boundary conditions near the boundaries of the
system and at infinity can also be extrapolated from the
ones of the ET. However, much like a fluid, unless an
adequate number of relations between currents or con-
straints are imposed (the constitutive equations) the system
would not be well posed on itself. We would like to explore
this problem further in the future.
Another interesting perspective is the description of the

large modular temperature limit for nonfree CFTs. In this
case, we do not expect a connection with ET because the
large modular temperature produces high-energy excita-
tions that are now interacting. Instead, we expect to have a
description in terms of a more general relativistic fluid. In
this language, the free case corresponds to a free Boltzmann
fluid. It would be interesting to understand the nature of
these fluids for different CFTs.
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APPENDIX: CANONICAL TRANSFORMATIONS
OF EIKONAL SOLUTIONS FOR

RINDLER SPACE

Consider the case of d ¼ 3 for simplicity. A simple
solution for the eikonal equations for the case of half-space
follows from rotation and translation invariance along the
z axis [2]

α ¼ θ þ i

�
kzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2r2

p
− arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2r2

p ��
;

ðA1Þ

where r, θ are polar coordinates on the plane x0, x1, and
x3 ¼ z. The real parameter k∈ ð−∞;∞Þ gives the different
solutions. Each solution has a compact range r ≤ jkj−1 in
the plane perpendicular to the z axis. However, choosing
different k the ET for any point in the x0 ¼ 0 plane can be
computed in any direction B̂, with

∇α ¼ ðA0; iB⃗Þ; x0 ¼ 0: ðA2Þ

It follows the well-known result that β ¼ 2π=A0 ¼ 2πr,
independently of direction. This is evident in this case
because A⃗ ¼ ∇Reα ¼ ∇θ, that does not depend on k that
sets the direction of B⃗.
Now we make the canonical transformation induced by

the function fðkÞ ¼ iLk. By writing α̃ ¼ αþ iLk, the
equation ∂α̃=∂k ¼ 0 becomes

Lþ z ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2r2

p

k
⇒ k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðLþ zÞ2

q
; ðA3Þ

where the � sign is the opposite of the sign of (Lþ z).
Replacing this back in α̃ we get the new solutions

˜̃α ¼ θ � iarctanh

�
Lþ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðLþ zÞ2
p �

: ðA4Þ

This new set of solutions now has a range in the full space
but gives place to the same entanglement temperatures.
More explicitly the vectors A⃗ and B⃗ obtained from this new
family are given by

A⃗¼ θ̂

r
; B⃗¼ ∓ 1

r

� ðLþ zÞr̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðLþ zÞ2

p −
rẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðLþ zÞ2
p �

:

ðA5Þ
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