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We study the role of the Schwinger phase (SP) that appears in the propagator of a charged particle in the

presence of a static and uniform magnetic field B. We first note that this phase cannot be removed by a
gauge transformation; far from this, we show that it plays an important role in the restoration of the
symmetries of the system. Next, we analyze the effect of SPs in the one-loop corrections to charged pion
and rho meson self-energies. To carry out this analysis we consider first a simple form for the meson-quark
interactions, and then we study the z* and p' propagators within the Nambu-Jona-Lasinio model,
performing a numerical analysis of the B dependence of meson lowest energy states. For both z and p™*
mesons, we compare the numerical results arising from the full calculation—in which SPs are included in
the propagators, and meson wave functions correspond to states of definite Landau quantum number—and
those obtained within alternative schemes in which SPs are neglected (or somehow eliminated) and meson
states are described by plane waves of definite four-momentum.
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I. INTRODUCTION

The study of the behavior of charged particles in the
presence of an intense magnetic field within the framework
of relativistic quantum field theory has a long history
(see, e.g., Ref. [1] and references therein). In recent years,
the interest in this topic has been renewed in the context of
the physics of strong interactions [2—4]. The motivation
arises mostly from the realization that intense magnetic
fields might play an important role in the study of the
early Universe [5], in the analysis of high energy noncentral
heavy ion collisions [6,7], and in the description of compact
stellar objects like the magnetars [8,9]. It is well known that
magnetic fields also induce interesting phenomena like the
chiral magnetic effect [10-12], the enhancement of the
QCD quark-antiquark condensate (‘“magnetic catalysis™)
[13], and the decrease of critical temperatures for chiral
restoration and deconfinement QCD transitions [14].
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In the above context, the study of the properties of
magnetized light hadrons shows up as a very relevant task.
In fact, this subject has been addressed by several works in
the framework of various approaches to nonperturbative
QCD. These include, e.g., Nambu-Jona-Lasinio (NJL)-like
models [15-29,29-37], quark-meson models [38,39],
chiral perturbation theory [40—42], hidden local symmetry
[43], path integral Hamiltonians [44,45], and QCD sum
rules [46]. In addition, results for the 7 and p meson spectra
in the presence of background magnetic fields have been
obtained from lattice QCD (LQCD) calculations [14,47-51].

In models with explicit quark degrees of freedom,
like, e.g., the NJL model or the meson-quark model, the
determination of meson properties demands the evaluation

of quark loops. In the presence of a magnetic field B, the
calculation of these loops requires some care due to the
appearance of Schwinger phases (SPs) [52] associated with
quark propagators. These phases are not invariant under
either translational or gauge transformations. When all
external legs in the quark loop correspond to neutral
particles, SPs cancel out, and one can take the usual
momentum basis to diagonalize the corresponding loop
correction; this is the case, for example, of one-loop
corrections to neutral meson self-energies. In contrast,
when some of the external legs correspond to charged
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particles—as in the case of the one-loop correction to a
charged meson mass—Schwinger phases do not cancel,
leading to a breakdown of translational invariance that
prevents proceeding as in the neutral case. In this situation,
some existing calculations within the NJL model
[15,18,22,23,26,30,34] just neglect Schwinger phases; if
this is done, one can set meson transverse momenta to
zero, considering only the translational invariant part of
the quark propagators to determine charged meson
masses. In fact, it has even been argued [53] that this
way to proceed would be consistent with gauge invari-
ance. On the other hand, a method that fully takes into
account the translational-breaking effects introduced by
SPs has been presented in Ref. [27] for the calculation of
charged pion masses, and then it has been subsequently
extended for the determination of the charged pion masses
at finite temperature [28], for the analysis of other charged
pion properties [31], for the determination of charged
kaon [35] and rtho meson masses [37], and for the study of
diquark and nucleon masses [54]. This method, based on
the use of the eigenfunctions associated to magnetized
relativistic particles, allows one to diagonalize the charged
meson polarization functions in order to obtain the
corresponding meson masses.

The main objective of this paper is to clarify the role
played by Schwinger phases in the calculation of quark
loops associated to the determination of charged meson
properties in the presence of an external magnetic field.
One important point to be shown is that these phases cannot
be “gauged away”: if a SP does not vanish in a given gauge,
it cannot be removed by any gauge transformation. In fact,
the assumption of neglecting SPs might be considered at
best as some kind of approximation in which the polari-
zation functions are forced to be gauge invariant, instead of
gauge covariant, as they should be. To be fully consistent
and self-contained we devote the first few sections of this
paper to reviewing some properties of the SP as well as to
providing the explicit form of quantum fields and propa-
gators for particles with spin 0, 1/2, and 1. Then, we
dedicate one section to the determination of one-loop
corrections to the charged pion and rho meson self-
energies in the context of the quark-meson model, and
another section is devoted to the calculation of charged
pion and rho meson masses in the framework of the NJL
model. Throughout these calculations we focus on the role
of SPs and the preservation of gauge properties of the
involved quantities. In this way we uncover the issues that
appear when the SPs are neglected, providing further
support to the method introduced in Ref. [31]. We also
show that the assumption of neglecting SPs may have a
significant qualitative impact on the theoretical predic-
tions for the behavior of meson masses under a strong
magnetic field.

This work is organized as it follows. In Sec. II we review
the definition of the SP and state its explicit form in

commonly used gauges. Then, we show how the SP plays
an important role in the preservation of the expected
symmetries of the system—although it is not itself trans-
lational and gauge invariant—and we discuss the related
constraints on the form of the invariant part of charged
particle propagators. In Sec. III we present the explicit
form of charged particle quantum fields in the presence of
an external magnetic field. The corresponding expressions
are given in a quite general form, in terms of eigenfunc-
tions associated to the more commonly used gauges.
In Sec. IV we provide the explicit form of the charged
particle propagators; this is done in terms of both the field
eigenfunctions and the product of a SP and a gauge
invariant function obtained using the Schwinger proper
time method. Next, in Sec. V we determine the leading
order correction to the charged pion and to the charged rho
meson self-energies for some typical quark-meson inter-
action Lagrangian. In particular, we show that these
corrections are diagonal in the basis of the corresponding
meson eigenfunctions. We also show that this implies
taking into account some transverse momentum fluctua-
tions, which would have been neglected by disregarding
the SP (and considering plane wave meson wave func-
tions). In Sec. VI we extend the analysis to the calculation
of the charged pion and rho meson masses in the
framework of the NJL model. To give an idea of the
importance of properly taking into account the SP,
we perform a numerical analysis of the effect of the
magnetic field on these masses, comparing the results
obtained from the expressions that include/neglect the SP.
Finally, in Sec. VII we provide a summary of our work,
together with our main conclusions. We also include
Appendixes A—C, and D to provide some formulas related
with the formalism used throughout our work.

II. SCHWINGER PHASE AND CHARGED
PARTICLE PROPAGATORS

A. Gauge transformations and gauge fixing
for a constant magnetic field

We start by considering the electromagnetic field
strength F*¥ associated with a general electromagnetic
field A¥(x),

Frv = ot AY — 0" AH. (2.1)
Throughout this work we use the Minkowski metric
¢ = diag(1,—1,—1,—1), while for a space-time coordi-
nate four-vector x* we adopt the notation x* = (z, X), with
¥ = (x!,x2,x*). We also consider the covariant derivative
DF that appears in the field equations associated with an
electrically charged particle,

DH = o + iQA, (2.2)
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where Q is the particle electric charge. Now, under a gauge

transformation A(x) the electromagnetic field transforms as

AF = AP = A 4 A (2.3)

While the electromagnetic field strength F* is invariant

under this transformation, the operator D* transforms in a
covariant way, namely

Dt — DF = ¢~ IQMN) D IOAR), (2.4)

So far we have considered a general external electro-

magnetic field A#(x). In what follows we concentrate
on the case associated with a static and uniform magnetic

field B. The tensor F* is given in this case by

Fij = Flj = _eijkBk, FOJ == 0, (25)
with i, j = 1, 2, 3, whereas the corresponding electromag-

netic field can be written as

A (x) = %x,,F”" + oW (x), (2.6)
where ¥(x) is, in principle, an arbitrary function. For any
form of this function one obtains a particular gauge.
Without losing generality, one can now choose the axis
3 to be parallel (or antiparallel) to the magnetic field,
writing B = (0,0, B). In addition, one can take ¥(x) to
be only a function of the spatial coordinates that are
perpendicular to B, i.e., x! and x2. The reason is that only
the components F'? and F?! of the field strength tensor are
different from zero, which implies that only 9' A% and 9*.A!
are relevant. In what follows we adopt this coordinate
choice.

For the considered situation, some commonly used
gauges are

Symmetric gauge (SG),

B
¥(x) = Exlxz, A(x) = (0,-Bx%,0,0); (2.8)
Landau gauge 2 (LG2),
B
¥(x) = —Exlxz, Af(x) = (0,0.Bx'.0).  (2.9)

In what follows, we refer to them as “standard gauges.”

According to the above introduced coordinate
choice, given a four-vector V¥ we find it convenient to
distinguish between “parallel” components, V° and V3, and
“perpendicular” components, V! and V2. Thus, we intro-
duce the definitions

Vi= (v°,0,0,V?), Vi =(0,V,V2,0). (2.10)
In addition, we define the metric tensors
d"‘”:diag(l,0,0,—l), ¢\ =diag(0,-1,-1,0).  (2.11)

The scalar products of parallel and perpendicular vectors
are thus given by

VW), = V) - W) = VOWO = V33,

VAW, ==V, - W, =—(V'W' + V2W?),

VIW,, =0. (2.12)

B. Schwinger phase

We introduce here the so-called Schwinger phase, which
will be a relevant quantity throughout this work. Given a
particle P with electric charge Q,, we denote the associated
SP by ®@,(x, y); its explicit form is [52]

o) =0, [ a5, |4+ 1P -] @1

where F* is assumed to be constant, and the integration is
performed along an arbitrary path that connects x with y. In
general, the SP is found to be not invariant under either
translations or gauge transformations. On the other hand,
the integral in Eq. (2.13) is shown to be path independent;
thus, it can be evaluated using a straight line path. In this
way, using Eq. (2.6) one can obtain a closed expression for
the SP associated to a static and uniform magnetic field in
an arbitrary gauge. It reads as

@u(xy) = Ly, - 0,00 RO (214)

) 2 u v P

From Egs. (2.3) and (2.6), it is seen that under a gauge
transformation the SP transforms as

Dy (x,y) = Pp(ix,y) = Pp(x,y) = Qe[ A(x) = A(y)]-

The expressions for the SP in the particular gauges
introduced above can now be readily obtained from
Eq. (2.14). We have

(2.15)

SG: @) = - LE -yl (@l6)
LGI: @,(x,y) = —%(ﬁ N —y); (217
LG2: ®,(x, y) :%(xl FyE o). (218)

It is worth noticing that in all cases the SP includes products
that mix the coordinates of the points x* and y*. Clearly,
there is no way in which these combinations could be
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expressed in terms of the difference between a scalar
function evaluated at x* and the same function evaluated
at y*. Therefore, it follows from Eq. (2.15) that if the SP does
not vanish in a given gauge it will be nonvanishing in any
gauge. This means that the SP cannot be “gauged away.”

C. Charged particle propagators in a static
and uniform magnetic field

Let us now study the propagators of charged particles.
We start by considering the propagator of a spin zero
meson, e.g., a charged pion, which we denote as A o(x,y)
with Q = +1. The particle charge is then given by
Q. = Qe, where e denotes the proton charge.

The equation that defines the meson propagator is

(D*Dy + mz) Ao (x,y) = =6@(x —y). (2.19)
If we now perform a gauge transformation, using Eq. (2.4)
we get

(BB, + m)ei0AI A (x,y) = —e @A (x - )
(2.20)

hence, the propagator has to transform according to

Bgo(x.y) = Kya(x,y) = eTOANA o(x, y)el0sAD),
(2.21)

which is the natural extension of a gauge covariant trans-
formation for the case of a bilocal object. It is seen that the
phase difference appearing in the transformed propagator is
just the same quantity that appears in Eq. (2.15) for the
gauge-transformed SP. Therefore, one can always write the
meson propagator as

Azo(x,y) = PN A o (x, y), (2.22)

where A o(x,y) is a gauge invariant function; the gauge
dependence of the propagator is carried by the SP, which
has a well defined expression.

Since we are dealing with a system subject to a static and
uniform magnetic field, the invariance under translations in
time and space, under rotations around any axis parallel to
the magnetic field, and under boosts in directions parallel to
the magnetic field is expected to be preserved. Translations
in time, as well as translations and boosts in the direction

of B, can be treated in the same way as in the case of a free
particle, since they do not involve the axes 1 or 2. Thus, let

us focus on the translations in the plane perpendicular to B

and in the rotations around the B direction. Noticeably, the
expected invariance seems to be at odds with the fact that
the charged pion propagator is known to be not invariant
under these transformations. The aim of the following
discussion is to clarify this point and see how the invariance
implies further constraints on the form of the propagator.

Let us first consider space translations in the
perpendicular plane, i.e., a general transformation of the
form x* — x* =x* + b". From Eq. (2.6), under this
transformation one has

A () = AL ()
= ()

:Aﬂ@—%wwﬂ+awuq—wwuy (2.23)

It is rather easy to see that this is fully equivalent to a gauge
transformation
A (x) = A (x) = A (x) + A (x3 b)), (2.24)

with

1
A(xby) =P(x) —W(x) — ExﬂF/“’bJ_D. (2.25)
From Eq. (2.25) we can readily get the expressions of
A,(x;b) in the particular gauges introduced in the
previous subsections. We have

B
SG: A(xiby) = =5 (<52 =) (226)
B 2 1 1
B | 2 2
LG2: A(xiby) = =562 + 5. (228)

A similar relation between the translation x* — x* = x* + b/
and the gauge transformation in Egs. (2.24) and (2.25) can
be obtained for the Schwinger phase. Under the trans-
lation, the SP transforms as

@ 0(x,y) = @0, (x,y)
=0 o(x',y)

- %XLF””yL - 0;[¥(x) -¥(y)]. (2:29)
whereas performing the corresponding gauge transforma-
tion one gets

@ o(x,y) = Do(x,y)
=D 0(x,y) = QA (x;0 1) = Ay(y3bL)].

Taking into account the form of A,(x;b,) in Eq. (2.25)
we observe that @0 , = ® _o(x,y). Now we can turn back
to Eq. (2.19), writing the propagator as in Eq. (2.22).
From the above equations it is seen that under the
considered translation the operator (D*D, + m3) and
the factor exp[i®,o(x,y)] transform in the same way
as under the gauge transformation A,(x,b ). Together
with the requirement that Eq. (2.19) be translational

(2.30)
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invariant, this implies that the gauge invariant factor
A o(x,y) has to also be translational invariant. Thus, we
can write

Dgo(x,y) = Age(x —y), (2.31)
and it is possible to obtain a Fourier transform
Ao(vj, vy ) that satisfies

_ d*v
A”Q(x—y) = / (27[)4

Notice that in this expression we have made it explicit
that one gets in general different dependences on parallel
and perpendicular momenta.

We consider now a rotation of arbitrary angle a around

K o (v 0y). (232)

an axis parallel to the magnetic field B. The effect of such
a rotation on an arbitrary vector o* acts only on the
perpendicular component ¢/, . Choosing the axis 3 in the
direction of B, for a rotation matrix R;(a) we have
xX* = REXY, with

1 0 0 0
0 cosa —sina O
Ry =Ri(a), = . (2.33)
* 0 sina cosa O
0 0 0 1

At this point it is important to specify if we adopt an active
or a passive point of view for the rotation; here we adopt
the passive point of view and define * = R* x*, with
R = R;(—a). From Eq. (2.6), under the rotation Rj(a) the
electromagnetic field transforms as

A(x) — AL()
= Rﬂv'Ay (f/)
¥ (z)

1 _
= — RV FRx, + R,

T lz=x

Noting that R*,F¥Rs* = F**, the result in Eq. (2.34) can
be reinterpreted as a gauge transformation

A (x) = A (x) = A*(x) + *A,(x;a), (2.35)

where

A (x,a) =¥(¥) —¥(x). (2.36)
As in the case of the translations, the equivalence between
the rotation R;(a) and the gauge transformation A, (x; a) is
also obtained for the SP, i.e., one gets <I>,rgyr(x, y) =
& o(x,y). The explicit expressions for the function
A,(x;@) in the standard gauges read as

SG: A (x;a) =0 (2.37)
B
LG1: A (xa) = —Esina[2x'x2 sina + ((x')? = (x?)?) cos a}; (2.38)
B
LG2:  A(xa) = Ssina|2xlasina+ () - ()?) cosa] . (2.39)
|
Turning back once again to Eq. (2.19), and writing the Se(x,y) = ei(Df(x’Y)S_f(_x -y), (2.40)
propagator as in Eq. (2.22), we observe that under a rotation ’
Ry(a) the operator (D*D, + m2) and the factor ®2() o)
transform in the same way as under the gauge transformation
A,(x;a). This equivalence, together with the requirement o
that Eq. (2.19) be invariant under R4(a) rotations, implies Si(x—y) = / o) eI (v, v,). (2.41)

that Ao (x — y) has to be invariant under these transforma-
tions. Since, in addition, the propagator has to be invariant
under boosts along the axis 3, one can conclude that the
Fourier transform A o(vj,v,) defined in Eq. (2.32) can
depend only on the quantities vﬁ and 23 .

An entirely similar analysis can be performed for the
case of spin 1/2 and spin 1 particles. Thus, the spin 1/2
fermion propagator S;(x,y) can be written as

Here the propagator is a matrix in Dirac space that involves
products of the y# Dirac matrices. Owing to the invariance

under rotations around the axis 3 (i.e., the B axis)
and under boosts in that direction, it is easy to see that
Sy(vj,v;) has to be a function of vﬁ, v}, 7))

and ]7J_'17J_.
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In the case of a charged vector meson propagator, for
instance, a p meson propagator DZZ2 (x,y), we can write

D (x,y) = €2 DY (x — y), (2.42)
with
- dtv
ng(x—y) = /We iv(x y)Dpr(U”, UL). (243)

Similarly to the previous cases, invariance under rotations

around the axis 3 and under boosts in that direction implies

that D/, (v, v, ) will be given by a linear combination of
P2\l

tensors of order 2 built from the tensors gﬁ”, d\, F*, and
the vectors vﬁ , /| , with coefficients given by functions that
depend only on vﬁ and 02 .

Obviously, the above statements can be corroborated
by carrying out detailed calculations of the propagators.
This is sketched in Sec. IV, where the explicit forms of
Ae(v,vy), S¢(vy,vy), and D/”}’;(v”, v, ) are given.

In conclusion, we have seen that the Schwinger phase
carries all gauge, translation, and rotation noninvariance
that is present in particle propagators. In fact, this should
not be surprising, since the breakdown of translational and
rotational symmetry is precisely produced by the gauge
choice. When calculating a physical quantity we specify a
particular gauge and use propagators that, in general,
break both translational and rotational invariance; how-
ever, all these symmetries are simultaneously recovered in
the final result.

III. QUANTUM FIELDS OF CHARGED
PARTICLES IN A MAGNETIC FIELD

A. A set of basic functions

Let us consider a charged scalar particle in a static and
homogeneous magnetic field. We introduce the scalar
functions F(x, ), solutions of the eigenvalue equation

where Q is the particle electric charge, D" is the covariant
derivative defined in Eq. (2.2), and the corresponding
electromagnetic field A#(x) is of the form given by
Eq. (2.6). In Eq. (3.1), g stands for a set of four labels
that are needed to completely specify each eigenfunction.
One can be more explicit and write the eigenvalue equation
in the form

2
"9, — QB - L+~ (X x B)? | QYW F o (x, G)

= 7€' QYW T 5(x,g), (3.2)
where L* = ie;;,,x,0,,. From this equation it is seen that
while the eigenfunctions F(x,g) are gauge dependent,
the eigenvalues f; are not. As discussed in the previous
section, the magnetic field can always be taken to lie along
the axis 3, and then ¥(x) can be assumed to depend only on
the two spatial coordinates perpendicular to B, x!, and x2.
Consequently, as in the case of a free particle, the
eigenvalues of the components of the four-momentum
along the time direction, q°, and the magnetic field
direction, ¢°, can be taken as two of the labels required
to specify Fy(x, ). On the other hand, as is well known,
the eigenvalues of Eq. (3.1) are given by

fe=-1(¢")? - (2k+1)Bo-(¢)].  (33)
where By = |QB|, and k is a non-negative integer, to be
related with the so-called Landau level. This means that
the eigenvalues depend only on three of the labels included
in g. There is a degeneracy, which arises, of course, as a
consequence of gauge invariance; to fully specify the
eigenfunctions, a fourth quantum number y is required,
i.e., one has ¢ = (¢°, k., ¢°).

Although it is not strictly necessary, the quantum number
x can be conveniently chosen according to the gauge in
which the eigenvalue problem is analyzed [55]. In particu-
lar, since for the standard gauges SG, LG1, and LG2 one
has unbroken continuous symmetries, in those cases it is
natural to consider quantum numbers y associated with the

D'DFo(x.q) = feF o(x.q), (3.1) corresponding group generators. Usual choices are
|

SG: X =1, non-negative integer, associated to L3 (eigenvalue of L3: m = sign(QB)(1 —k));  (3.4)
) . . 0

LG1: r=q', real number, eigenvalue of — IF; (3.3)
X
) . .0

LG2: ¥ =q°, real number, eigenvalue of — =3 (3.6)
X
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The explicit forms of the functions Fy(x,7) for the
above standard gauges and quantum numbers y are given in
Appendix A. They are shown to satisfy the completeness
and orthogonality relations

Ifg(x, q)Foly.q) =8W(x-y). (3.7
/ d*xFo(x,q) Folx,q) = bsq- (3.8)

Here we have introduced some shorthand notation whose
explicit form depends on the chosen gauge. For SG we have

I dqo dq
2 2z 2x’

q

50 = (20)*6105,6(¢° — ¢°)8(q> - 7). (3.9)
while for LG1 (LG2) we have
Z: dq° dq' dg®
2 2x 2x’
bgq = (27)*68(q° — ¢°)8(q" — ¢")(q* — ¢°).  (3.10)

where i = 1 (i = 2). For later use we also find it convenient
to define § = (k,y.,q?), s = sign(QB), and

Z: = I%ré(qo -E

{de} q

(3.11)

It can be shown that the functions F,(x, g) satisfy the
useful relations [56]

D Fo(x.q) = —ig°Fo(x.q).
(D' £iD*)Fy(x.q)
=(Fs)[2k+1F S)BQPﬂ]:Q(X’ Jirs)s

D Fo(x,q) = =ig*Fo(x.q), (3.12)

where Gy = (¢°, k £ 5,1, ¢*). We also notice that under a
gauge transformation A(x) the functions F,(x,g) [with

q= (qo,k,)(, q3)] transform as

Folx,q) — ]:"Q(x, q) = e‘iQA(x>.7:Q(x, q). (3.13)

B. Spin 0 charged particles: The charged pions

Let us start by considering the gauged Klein-Gordon
action for a pointlike charged pion in the presence of a
static and homogeneous magnetic field. We have

Seg = - / dx 2@ (x) (DD, + m2)al(x),  (3.14)

where, as in Sec. II C, we have denoted the pion charge by
0, = Qe, with @ = £1. From the action in Eq. (3.14) one
gets the associated gauged Klein-Gordon equation, namely

(D*D, + m2)x9(x) = 0. (3.15)

We notice that, taking into account Eq. (2.4), the gauge
invariance of the gauged Klein-Gordon action requires
that under a gauge transformation A(x) the z<(x) field
transform as

72(x) = #9(x) = e71%AW) 79 (x). (3.16)

Using the notation introduced in the previous subsection,
the quantized charged pion field can be written as

72(x) =2 2(x)"

- Yo {sorewa e},

{de, }

(3.17)

Here the pion energy is given by E, =
V/m2 + (2k + 1)B, + (¢°)?, with k > 0, while the func-
tions F9(x, ) are given by

F(x.d) = Fo(x.4). (3.18)

According to Egs. (3.7) and (3.8), they satisfy the relations

Z Fo(x,q)'Foy.q) =W (x~y),  (3.19)

/ d*xFO(x, §) " Fox. ) = b9 (3.20)

On the other hand, the creation and annihilation operators
in Eq. (3.17) satisfy the commutation relations

[a2(4). az2(q)] = [a2(2)". az 2(q)']
= [a2(2).az%(7)"] = 0.
[a2(2). a2(7')'] = 2E,(27)*6106,08(q" — 47).  (3.21)

Note that according to the above definitions the operators
a2(g) and a;<9(g) turn out to have different dimensions
from the creation and annihilation operators that are usually
defined in absence of the external magnetic field.
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C. Spin 1/2 charged particles: The quarks

Let us consider the gauged Dirac action for a pointlike
quark of flavor f in the presence of a static and homo-
geneous magnetic field. We express the quark charge as
Q; = Qre, with Q, =2/3, Q, = —1/3 for f = u, d. The
gauged action is given by

So= [ dx0P -mpws0. (322)

l//;]/o and P = y,D*; the associated
gauged Dirac equation reads as

where, as usual, W=

(i —mg)w(x) = 0. (3.23)
In a similar way as in the case of the charged pion, gauge
invariance of the gauged Dirac action requires that under a
gauge transformation A(x) the field y /(x) transforms as

() = p(x) = ey (x). (3.24)
The quantized quark fields are given by
9=Y ¥ o (laavxaa)
a= 12
{qu
+dy(g.a)'V(x, g, a)}, (3.25)
where the quark energy is given by E;=

(¢°)?, with k> 0; for k=0, only the

\/m} + 2kBy + |

value a =1 in the sum over a is allowed. Once again
we use here the definitions = (¢°.k.x.q?), §=
(k.x.q%), By =|QB|, and s = sign(Q,B). The spinors
Uy and V; in Eq. (3.25) can be written as

— [EQ.f’(x q)ugf(k q3 a)

ca) =E%(x,q)v_g, (k. q’, a). (3.26)

where E% (x, 7) and E~%/(x, §) are Ritus functions [57].
Their explicit forms are

%r.q) = Y THFy(x.q).
A==+
E2(x.q) = Y 'F_o(x.q.0)".

A=+

(3.27)

with ' = (1 + 8%)/2, §* = iy'y? being the three compo-
nent of the spin operator in the spin one half representation.
We have also used the definition g, = (¢°, k. x, ¢°), with
kyr = k— (1 F s5)/2. The explicit form of the spinors
ug, (k, ¢°,a) and v_g, (k, ¢’,a) in Eq. (3.26), as well
as the anticommutation relations between the fermion
creation and annihilation operators and some properties
of the functions F9(x, ) are given in Appendix B. Using
these properties it is easy to show that the spinors U, and
V; satisfy orthogonality and completeness relations,
namely [56]

/d4x Ur(x,G.a)Up(x,q, ') = 2m 8,580

/d4x Vf(x, g.a)Vs(x,q',a") = —2mf<§qq/5aa/,

/d4x Vi(=x,G.a)Us(x,q,a") = /d4x Usr(x. g, a)Vy(-x,q.d) =0

and

—,IZ Us(x. 4. a)0(x. 4. a) = Vy(~x.q.a)V (=¥ G.a)] = 8¥) (x = ).

(3.28)

(3.29)

On the right-hand side of this last equation, an identity in Dirac space is understood.

D. Spin 1 charged particles: The charged rho mesons

We consider here the gauged Proca action for a charged pointlike tho meson in the presence of a static and homogeneous
magnetic field. Expressing the tho charge as Q, = Qe, with Q = +1, we have

Sr = [ atx{= 302080 + mip R0 + 0P R 2 o2 S p (330
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where pﬂ% = ﬂp,? - DvpﬂQ. The associated gauged Proca

equation reads as

D*Dyp2 (x) + mpp(x)

with

- 2iQ,F,%pg(x) =0, (3.31)

Drp2(x) = 0. (3.32)

In the same way as in the previous cases, gauge invariance
of the gauged Proca action requires that under a gauge
transformation A(x) the rho field transforms as

pR(x) = pR(x) = 7AW R (x).

The quantized charged rho field can be written as

0= Y Yoo

{(IE,,

(3.33)

c)Wg(x.q.c)

+ ;23 ¢) W o(x.g.c)' |, (3.34)
where tho energy is given by E,=
\/ m? + (2k +1)B, + (¢°)%, and we have used the defi-

nitions of g and q 1ntroduced in the previous subsections,
together with B, = |Q,B| and s = sign(Q,B). It is impor-
tant to point out that in this case the sum over the integer
index k starts at k = —1, instead of zero.

The functions W (x, g, ¢) in Eq. (3.34) are given by

Wo(x.g.c) = R (x, g)eg, (k. ¢ ).

where, as in the case of spin 1/2 fields [see Egs. (3.26)], we
have separated the wave function into a function R that
depends on x and g and a polarization vector eg , (k, a4, c),
the index ¢ denoting the polarization state. Explicit
expressions for these vectors—dictated by the orthogon-
ality relation Eq. (3.32)—are given in Appendix C. In fact,
we note that for k = —1 there is only one possible
polarization vector; this means that the index ¢ can only
take the value ¢ = 1 in this case. For k = 0 two polarization
vectors can be constructed; thus in that case ¢ can take
values of 1 and 2, while for k > 1 the sum over c¢ in
Eq. (3.34) runs over the full set of values ¢ =1, 2, 3.

The functions R2# are given by

= Y Fo (x,q)YY,

A=-1,0,1

(3.35)

RO (x, G) (3.36)

where g, = (¢°, k — 54, y, ¢*) (notice that this definition of
g, is different from the one used in the case of charged
fermions). There are various possible choices for the
tensors T4"; here we use

v v v 1 v v
g TR =S ES, (3)

where $5° = i(8#,8", — 8",6"}) is the three component of the
spin operator in the spin one representation. Orthogonality
and completeness relations for the functions R4 as well as
other useful relations involving these functions and the Y%"
tensors, are given in Appendix C. In that Appendix we also
quote the commutation relations between the creation and
annihilation operators for the charged rho fields.

As discussed in Appendix C, for k > 0 an additional
vector, orthogonal to the physical polarization vectors,
can be introduced [see Eq. (C18)]. We keep for this new
vector the notation €4 (k, ¢°, ¢), taking for the polarization
index the value ¢ =0, and we refer to the associated
polarization as “longitudinal.” If we extend the set of
charged tho meson wave functions W (x, ¢, ¢) by includ-
ing the corresponding “longitudinal” wave function
W5 (x.G.0) = RO (x, §)eg, (k. ¢>.0), we get for these
functions orthogonality and completeness relations, namely

/d“xW”Q(x, g,V Wo,(x.g.c) = ~L ;50,0  (3.38)

and

I 3 CWhLr 4.0 Wyl i) = 5 (r=),

(3.39)

In these equations the coefficients . are defined as {, = —1,

¢y =&, =¢3 =1, while ¢, and ¢, are given by
1 ifk=-1

, Cmx =4 2 ifk=0
3ifk>1

1 ifk=-

Cmin = . (340)
0 if k>0

IV. EXPLICIT FORM OF THE CHARGED
PARTICLE PROPAGATORS
A. The spin 0 charged particle propagator

As discussed above, the charged pion propagator
A,o(x,y) satisfies Eq. (2.19), and its behavior under a
gauge transformation is given by Eq. (2.21). Using the
functions F<(x, §) defined in Eq. (3.18) and the properties
of the functions F(x, ) discussed in Sec. IIT A, it can be
easily seen that A o(x,y) can be expressed as

Ao(ry) = Z:[F% DAk q)F(. 3. (4.1)
with

1
qﬁ—m%— (2k+1)B, +ie’

Ao(k,q)) = (4.2)
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In fact, from this expression of the propagator, taking
into account the gauge transformation properties of
the functions Fy(x,g) in Eq. (3.13), it is immediately
seen that it transforms in the covariant way given
by Eq. (2.21).

In addition, as is well known, an alternative form for
the charged pion propagator can be obtained using the
|

This expression can also be obtained starting from
Eq. (4.1), as shown, e.g., in Appendix D of Ref. [3].
Notice that, as expected from the discussion in Sec. I C,
Azo(vy. vy) depends only on vf and v3.

B. The spin 1/2 charged particle propagator

The spin 1/2 charged particle propagator S,(x,y)
satisfies the equation

(i —mp)Sy(x.y) =W (x—y).

In terms of the Ritus functions in Eq. (3.27), it can be
expressed as

(4.5)

S;(xy) = ZjE%, )3,k aE (7. q).

q
where

ﬁs + mf
qﬁ —m7 —2kB; + i€’

Sf'(k,Q\\) =

[ 1 ) _, tan(6B;) .
A”Q(/U,/I]J_):—l\/o damexp{—w<m%—vﬁ—I—UiTBﬂ—w)}

Schwinger proper time method. If A o(x, y) is written as in
Egs. (2.22) and (2.32), i.e.,

d*v
(2n)*

Ao(x,y) = @05 / A o(v.0)). (4.3)

one gets

(4.4)

|
with the definitions IT} = (¢°,0,-s,/2kB;,¢%) and
E% (v, q) = yY’"E% (y.4)"y’. The above expression can
be obtained using the relations in Appendix B.
Moreover, taking into account the gauge transformation
properties of these functions [see Eq. (3.13)], from Eq. (4.6)
it is easy to see that under a gauge transformation A(x) the
propagator transforms, as it should, in the covariant way

Sf(x, y) = §f(x, y) = e—iQfA(X)Sf(x’ y)eiQfMy)_ (4.8)

As in the case of spin 0 particles, an alternative form
of this propagator can be obtained using the Schwinger
proper time method. If S;(x, y) is written as in Egs. (2.40)
and (2.41), i.e.,

© tan(oB
Se(vp.vy) = —i/ do exp{—io(m}—vz—f—ﬁiﬁ—ieﬂ
0

X {(v cy+mp)(1 = sy'y*tan(cB;)) —

. d*v . _
Sf(x,y)=elq)f(x’y)/(ZT)“e_W(x_y)Sf(”’”L)v (4.9)
one gets
O'Bf
Iy
L | 4.10
cosz(an)] (4.10)

The derivation of this expression starting from Eq. (4.6) can be found, e.g., in Ref. [58]. We note that S ;( p|» p1) satisfies

the constraints imposed by the invariance under rotations around the axis 3 (i.e., the B axis) and under boosts in that

direction discussed in Sec. II C.

C. The spin 1 charged particle propagator

The spin 1 charged particle propagator DZYQ (x,y) satisfies the equation

[(D*Dy + m}) gy, = DD, + 2iQ,F o] DV (x,y) = 5,769 (x - y);

(4.11)
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it can be expressed as

D) = YR 9D, kg RO (1.3
q

(4.12)
with

—Yap + (1 _5k—1)Ha(k,Q\\)Hﬁ(k’%\)*/mg
qﬁ—mz—(2k+l)Bp+i€ .

D/)Q,a/i(k’ q| )) =
(4.13)

Here we have introduced the four-vector H”(k,qH),
given by

(k. q)) = (qo,i\/—B:Ji(\/k_—&—_Q—\/E),

- M/ﬂ(\/m+ \/§),q3>. (4.14)
|

do

This vector, which is defined only for £ > 0, plays in some
cases a role equivalent to the one played by the four-
momentum vector for B = 0. It is easy to see that

10, (k.q)) TF (k.q)) = (¢°)? = (2k+ 1)Bo = (¢°)*.  (4.15)

which is equal to m3 for ¢ = E,,.

Taking into account the properties of R<# functions

quoted in Appendix C, it can be shown that D"/ (x,y),
p

expressed as in Eq. (4.12), satisfies Eq. (4.11). Moreover,
using the gauge transformation properties of the functions
Fo(x,q) [see Eq. (3.13)] it is easy to see that, as in the case
of spin 0 and spin 1/2 particles, the propagator transforms
in a covariant way under a gauge transformation.

As in the previous cases, an alternative form for the
charged p meson propagator can be obtained using the
Schwinger proper time method. If DZ o(x,y) is written as in

Eqgs. (2.42) and (2.43), i.e.,

d*v

We_iv<x_y)Dtj2(UH s UL), (416)

D (ey)=ee) [

one gets

® tan(cB,)
=1 - : 2 2 =) p .
ng (v, v1) zA cos(oB,) exp [—m(mp -+ EJ‘TP - 16)]

22

2

v . v . B v
X {@*1’ (v) — [2s1n2(oB/,) -1 +m—l2tan2(oB,,) + is £ tan(aB/,)] 05 (v)

P
72

. v iB 5
+ i[sm(ZaBp) + m—étan(aBp) + 7’;} O (v) +

P
where

o (1) = g,

04 (v) = v/ o4 %,

0y (v) =4\,

O (v) = iQ,[FF* v v + vﬁvla*F“”]/Bp.

This expression can be obtained from Eq. (4.11) using the
same methods as in the previous cases. In fact, an
equivalent result has been obtained for the W boson
propagator in Ref. [59]. Once again, it is found that

Dtj o(py.p1) satisfies the constraints imposed by the

invariance under rotations around the axis 3 (i.e., the B
axis) and under boosts in that direction discussed in
Sec. IIC.

HY [ Mo
05 (v) = v o)™ + o't ”,

p ny,

— s [05(0) + (1 + (0B, )0 (0) + O o)

itan(cB y
3 #@’7‘ (v)}, (4.17)
iz P
05 (v) = vﬁvﬁ*,
@lé”(,u) = _iQ/)FIw/B/n
(4.18)

|

V. MESON-QUARK INTERACTIONS AND

ONE-LOOP CORRECTIONS TO CHARGED
MESON TWO-POINT CORRELATORS

In the previous section we have considered charged
noninteracting boson and fermion fields in the presence of
an external magnetic field; let us now analyze the situation
in which these particles interact with each other. The type
of interactions to be considered here are quite generic.
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In fact, they can be found in several effective approaches
for low energy strong interactions, such as, e.g., meson-
quark models in hadronic physics and meson-nucleon
models in nuclear physics. As simple but relevant issues,
in this section we discuss the one-loop corrections to the
charged pion and rho meson two-point correlators. It is
worth mentioning that in the presence of an external
magnetic field these mesons turn out to get mixed. Since
in this paper we are mainly concerned about the role played
by the Schwinger phase in this type of calculation, these
mixing terms will be neglected; i.e., the corrections to spin
0 and spin 1 meson self-energies will be treated separately.

A. Pion-quark interactions and one-loop correction
to the charged pion two-point correlator

Let us consider the quark-pion interaction Lagrangian

L) = 90 (x)irsty ()F(x). (5.1)
Here, y(x) stands for a fermion field doublet; for definite-
ness, we take it to be

Wa(x)
w(x) = ( )
wa(x)
where the fields l//f(x), with f = u, d, are associated to u
and d quarks. Using the same notation as in previous
sections, we have Q, =2e/3, Q, = —e/3, e being the
proton charge. As usual, 7; are the Pauli matrices, and pion
charge and isospin states are related by 7 = (7, F i)/ /2,
7% = 7. The gauge transformation properties for charged
fields given in the previous section guarantee that the
interaction Lagrangian in Eq. (5.1) is gauge invariant.
We analyze now the leading order correction (LOC) to
the two-point 7z correlator. One has

(5.2)

A(Loc) (

i y.y')

i2
:E/ d'x db (O[Tt ()7 () L (1) L (+)][0),

(5.3)

where the contributions that lead to vacuum-vacuum
subdiagrams have been omitted [60]. Considering the

relevant terms in Emt we have

AFY ()

= —ig?/d4xd4x’A,,+(y,x)Jﬂ+(x,x’)A,,+(x’,y’),
(5.4)

where J .+ (x, x’
space,

) is the polarization function in coordinate

I (x,x') = =2N trp [iS,, (x, X' )iys5iSqy(x', x)iys],  (5.5)

trp denoting trace in Dirac space.
We also introduce the 7z polarization function in g space
(or Ritus space), J,+(q, ¢'), defined by

J+(q,.q) = /d“xd“x’[F*(x, q) I (x, X)FH (X, ).
(5.6)

This equation can be inverted using the completeness
relation for the functions F,(x, ) [Eq. (3.19)], obtaining

Ty (x.) —j_fwx, DI (0. 7). 7).

= =t

4.9

(5.7)

From this last relation, together with Eq. (4.1) and the
orthogonality relation Eq. (3.20), the leading order correc-
tion to the #* propagator can be written as

OC . - A .
ALY (y.y) = —tg?i[“(y, @Az (k. q)I2+(q-9)

= =

7.4
x Ape (K. g )FH (. 7)", (58)
where A (k, q|) is given by Eq. (4.2).

Note that none of the functions appearing in the rhs of
Eq. (5.6) is by itself an invariant quantity. However, being

Ei(f) (x) gauge invariant, so must be J,+ (g, ¢'). In fact, on
the basis of gauge, translational, and rotational symmetries,
we expect J,(q,q) to be of the form J.(q,q) =
Sq—qrjﬂ+ (k, q)). In the following we will see how this comes
out by explicit calculation.

We start by considering Eq. (5.5), writing the quark
propagators in the form given by Egs. (2.40) and (2.41).
In this way we get

Jor (0, X)) = P T (x = X)), (5.9)
where
- d*
I (x = x7) 20 ——— e " (v, vy),  (5.10)
with
Tt (v”,m)

tpliS“(p) . p1)irsiS*(py. p1)irs)-

_2N/

(5.11)
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Here we have used the definition pff =p,xv,/2. In
addition, in Eq. (5.9) we have made use of the relation

D (x,x') + q)Qd(_x/’x> = (I)QLA_Qd<x7x,) = P2+ (x,x).
(5.12)

We see from the above equations that J,+(x,x’) can be
written as the product of a SP and a function J - (x — x’),
which is both gauge and translational invariant. Thus, under
a gauge transformation the polarization function transforms
in the same way as the SP. On the other hand, as in the case
of a bare charged pion propagator, invariance under
rotations around the axis 3 (i.e., the B axis) and under
boosts in that direction imply that J,+ (v, v ) has to be a
function of vﬁ and »7 ; this is indeed corroborated by the
explicit form given below.

Replacing Eq. (5.9) in Eq. (5.6), and taking into account
Eq. (3.18), we get

_ d*v _ -
o @)= [ e @0 00)Te (og02). (513

where

hP(Q_’ q_l’ vl UJ_)
_ /d“xd“x’fgp (x7 q)*]_—QP (x/’ q/)eitbp(x,x’)e—iv(x—x’)'
(5.14)
It is easy to see that h,(q,q’, v, v, ) is gauge invariant,
given the gauge transformation properties of the SP and the
functions F (x, 7). One can carry out its explicit calcu-

lation in any of the standard gauges, SG, LG1, and LG2,
obtaining

he(@,q vy v1) = Syphe(ks g K gl v v). (5.15)

Here 6, stands for 6,4, 8(¢' — ¢'') and 6(¢* — ¢"*) for SG,
LG1l, and LG2, respectively, while the function
ﬁp(k,qu,k’,qm, V| v, ) is given by
ho(k. q). K, q)- vy v1)

= (2n)*8 (g — 611|)(2”)25(2)(6I|| —v)fie(vL),

(5.16)
with
dn(=) [k 2PN\ (27
, LAY N A Bl Lk—k 7L
Jiw(v1) By K1\ Bp K \ Bp
x e~ 71/Bp gis(k=K)p. (5.17)

We have used here the definition Bp = |BQ,| and intro-
duced the angle ¢, given by v, = |V, |(cos¢,,sing ).
Note that in the present case Bp = B, = ¢|B| and
s = sign(B).

As stated, J+ (v, v,) is found to be a function of 7

[see Eq. (5.24) below]. Performing the integral over ¢,
one arrives at the expected form

T (3.@) = 65070 (k. q)), (5.18)

where

jn*(k’LI):A dv, PTe (qp.v)pe(@). (5.19)

with

. . DL 27?2
pii) = Glenm, (32). 6a0)

y V2

It is worth recalling that, due to the presence of the
nonvanishing Schwinger phase ®%: (x,x’), the polariza-
tion function J - (x, x') is not just a function of x — x’, and
therefore it cannot be diagonalized by a Fourier transform
into momentum space. Instead, one can obtain a diagonal,
gauge invariant function J,(q,q) = SqqrAﬁ (k. q)
through the above described transformation into § space.
As shown by Eq. (5.19), the Fourier transform J ,+ (qH, V)
of the translational invariant part of J,:(x,x’) does not
coincide with j,,+ (k, qH); in fact, the latter can be obtained
from the integration of J .+ (q”, v ) over the perpendicular
momentum v |, weighted by the function p; (7% ) given by
Eq. (5.20). On the other hand, in the absence of the SP in
Eq. (5.14) one could replace the functions F, (x,g) by
plane waves, and the function /,+ in Eq. (5.13) would be
simply given by (27)%*) (g —¢' )6 (q—v); this is,
indeed, what is done in the case of neutral mesons.

Given that J,+(g,q’) is diagonal in ¢ space, from
Eq. (5.4) the LOC to the propagator can be written as

AL (y,y) = I[F* 0. DAL (k. g FH (v G)".

q

(5.21)
where
ALk, q)) = Ay (ko q)Ser (k qp)Age (koqy).  (5.22)
with
3. (ko q)) = —ighd (k. q)). (5.23)

To get the final form of J .+ (k, q)) from Eq. (5.19) we
need the explicit expression of J,+ (v, v, ). The latter can
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be readily obtained from Eq. (5.11), taking into account the
invariant part of the quark propagators given in Eq. (4.10).
One has

T (0 0.) = — o / / 92 gmebtx) -3 2)7 4

x{[mumﬁzm_x%](l_tu,d)

ES (1-2)%(1—&)(1—@)},

(5.24)

where we have used the definition

Bl v3) = (m2 + m2)/2 = x(m? = m3)/2 - (1= )03 /4,
(5.25)
as well as
t, = tanh [(1 — x)zB, /2],
ty =tanh [(1 4 x)zB4/2],
ty =t,/B, £ t;/By,. (5.26)

Replacing this expression in Eq. (5.19) and performing the
integral over v, we finally obtain

N, b, 1 _
! / dx / dz &™) < )
a, \a,

x { [mumd +%+ (1 —xz)(ﬂ (1 = t,ty)
Lotk —ay)

Jor (k. q))

(1-2)1 —rﬁ)},

a o_
(5.27)
where we have defined a . as
q Iy 14 u td
="+ *+B,—~-~=t +B, . (5.28
R TR0 Tt UL Al

The integral on the rhs of Eq. (5.27) is divergent, so it has
to be regularized. This can be done, e.g., by subtracting the

|
- dr d*s d*t .
ALOC) (o — 2/ A
/4 (y y) lgs (2”)4 (27[)4 (27[)4 ya

thus, we can write

— d41)
LOC
y’y/> Afﬁ >(y y/) /( 4

B = 0 contribution, leaving a finite B-dependent piece. In
addition, an analytical extension of the function J+ (k, q|)
can be performed for large positive values of qﬁ.

We end this subsection by noting that AI(TILOC) (y,y') can
be expressed in an alternative way. By looking at
Egs. (2.22) and (2.31) for the bare propagator together
with Eq. (5.9) for the polarization function, one can foresee
that the translational noninvariance of the dressed propa-
gator will be carried by Schwinger phases at any order of
the calculation. On this basis, we explicitly separate the
corresponding SP in the LOC to the propagator, writing

LOC i® .+ (') A (LOC
A9y ) = e 0 R1OO (3 vy,

xt 7

(5.29)

Then we can use Eqs. (2.22), (2.31), (5.4), and (5.9) to
obtain

Ay, y) = —ig? / i d T )

X A_;ﬁ (y - x)jﬂ+ (x - )C/)A_ﬂ:+ (x/ - y/)’

where

p(y—x.x-y)
=@, (y,x) + P (x,X) + D (X, y') + Dps (V2 y)
0,

—(y/t - xit)Flw(xu - yi/)

> (5.31)

It is worth noticing that the phase ¢(y —x/,x — ') is in
general nonvanishing for nonzero B. Moreover, it is
invariant under gauge transformations, translations, rota-
tions around the direction of E, and boosts in that direction.

This implies that once the SP has been extracted, the

remaining factor A_S;OC) (y,Y') should have all the associ-

ated invariance properties in particular, one should be able

to write A( (y, y) = AiLioc) (y —'). Indeed, using the
Fourier transforrns defined in Egs. (2.32) and (5.10), and
changing variables x and x' to z=y—x" and 7 = x -y’

we obtain

+(,,H’,,J_)jﬂ (SH,SJ_) (t”,tJ_) t(r—s+t)(y_y/)/d4zd4z/ei(p(z,z’) i(r—s) el i(1—s)z. :

(5.32)

et A () 1y ), (5.33)

2r)
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Now, noting that ¢(z,z') depends only on the perpendicular components of z and 7/, we get

£(LOC) o [ A dPry o . _
A (v, vy) = —ig; 22)? (22)? Ape (v r ) (o ry + 1 —v ) A (v, 1)

% / dZZl dZZ’Leif/’(ZMl)e—i(ﬁrﬁ)‘fle—i(fl—ﬂ)'i, (534)
and finally we can perform the integrals over z; and 7/, and make the change of variables
/B, /B,
L=Vl I =v; — 7143_, (5.35)
obtaining
2 i Fu
B0 v,) = =i (2%)2 / du  du)e o VE )
b4

_ B - B - B
x A+ (U,UJ_ - 1/7”MJ_>J,,+ (v,vl - \ljﬂ(uj_ —‘FMJ_))AH# (U”,UJ_ - Ujﬂuﬁ_) (5.36)

At this point we can remark on the important role played by the Schwinger phase, which is responsible for the existence of
the phase (p(\/BZu’L, \/Bzu 1) [see Eq. (5.31)]. As shown in Eq. (5.36), the latter drives the fluctuation of transverse

momenta suffered by the charged particles when they propagate in the presence of the magnetic field. Were the phase
¢(z,,7,) omitted in Eq. (5.34), one would directly obtain

losing any transverse momentum fluctuation.

AL (v, v)) = —igRA g (0], 0, ) (0], 01 ) A (0, 0,

(5.37)

A final comment on the B — 0 limit of Eq. (5.36) is pertinent. It is easy to see that in this limit the integral over u#, and u’

only affects the phase ¢( \/BZ“/L \/Bzu ). To regulate the oscillatory integrals one can introduce factors e~el'l e=el"l with

i =1, 2, and then take ¢ — 0%, obtaining

lim A9 (
B—0 Ll

This is the expected result. If there is no magnetic field,
there is no fluctuation of transverse momenta; this is a
consequence of translation invariance, which implies the
conservation of the four components of the momentum.
On the contrary, in the presence of a static and uniform
magnetic field the situation is different. As we have seen in
Sec. 11, in that case translation invariance in the transverse
direction is realized in a nontrivial way, being related to
gauge transformations. In addition, in Sec. III we have seen
that the wave functions associated to charged particles
depend on the chosen gauge, and cannot be written in terms
of definite four-momentum states. In fact, this leads to a

v, vy) = —ig; [}}_%A_ﬁ(vp UJ_):| {g_ff(l)jﬂ(v, M)] [}}E&A_ﬂ(i’, M)]'

(5.38)

fluctuation in the transverse spatial directions that is
translated into a fluctuation in the transverse directions
of the momentum. Our result in Eq. (5.36) shows how these
fluctuations affect the evaluation of the LOC to the pion
propagator, in particular, the part of the propagator that is
invariant under gauge transformations, translations, rota-
tions around the B axis, and boosts in the spatial direction
parallel to the magnetic field.

On the basis of charge conservation, it is not difficult to
realize that the appearance of a SP as in Eq. (5.29) will be
valid at any order of correction, and, therefore, it also
applies to the full propagator.
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B. Rho meson-quark interactions and one-loop correction to the charged rho meson two-point correlator

Let us consider the rho meson-quark interaction Lagrangian

LYY = 9,5, () (x)r* Ty (x). (5.39)

As usual, p charge states are related to isospin states by p; = (p;, F ip2,)/V2 and p) = p3 .
The leading order correction to the two-point p* correlator is given by

2
LOC 0 7
i) 0) =5 [ @ 0T1p) (i 0 L4 L5 )0, (5.40)
Considering the relevant terms in £mt we have
D\ (y.y) = —ig} / d*x d*X' Dy (3. X)I% (x.X) Dy (X ¥). (5.41)

3 . .. . . .
where JZﬁ (x,x") is the polarization function in coordinate space,

Jgﬁ(x x') = =2N. trp[iS, (x, X' )yPiS 4 (x', x)y). (5.42)

As in the charged pion case, we introduce the polarization function in § space (or Ritus space), J;‘:i’/(cj, q'), given by

J/‘jf (q.9) = /d4x X REH (x, §)* T e (. X )RV (X, 7). (5.43)

Using the completeness relation, Eq. (C5), one gets

7 5) = YR 01t (0. 0)R ) (5.44)

5 =t

9.9

Then, from Eq. (4.12) and the orthogonality relation [Eq. (C4)], the LOC to the propagator can be written as

LOC . —\ Aad NN 7} A
DO (y.y) = —zg%Z‘,RL(» QD% (k.q)) ]y ap (3. )DL (K q R (. G (5.45)

One can also take into account the explicit form of the functions R/, in Eq. (3.36) to write Jf)‘i/ (q,q) as

+1
FGq) = Y (rer / Prd Y Fo (0. 4,) Fo (V.00 . X), (5.46)

AN ==1

where ¢; = (¢°, k. x.4°), k; = k — 54, s = sign(Q,+ B) = sign(B).
Proceeding as in the 7t case, we go back to Eq. (5.42) and write the quark propagators in the form given by Egs. (2.40)
and (2.41). This leads to

JH

pt

i® 4 (xx) d*v —iv(x—x") JHV
(x,x") = %™ 207 e S (v vL), (5.47)

27) o

where

T (v, v1) = =2N, / trD tS (P pDr i (pj. pl)r"} (5.48)
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with p;- = pff + v,/2. Replacing these equations into Eq. (5.46) we get

o A « o
I3, ) _/<— SO Ty (W) 0L ) s (3527 - 0 01). (5.49)

271-)4 AN ==1

where the function £, is given by Eq. (5.14). As in the case of the charged pion, in the standard gauges one can carry out
explicit calculations that lead to

dz’l)J_

J%(q.q) = 2x)*6¥ (¢ —
P [ (2ﬂ.’)2 P

(A Y5 T e (g v 1) f, K, (v1), (5.50)

~ 45y

where f (v, ) is given by Eq. (5.17) and §,, stands for 6, 8(¢' —¢'') and 6(¢*> — ¢*) for SG, LGl, and LG2,
respectively.

To proceed further, one can carry out the calculation of J_Z “(vj, v, ) from Eq. (5.48). As expected from symmetry
arguments, the explicit calculation shows that one can write

th U||’UJ_ (),

~

UH’”J_

(5.51)

where O/ (v) are the operators defined in Eq. (4.18) and ¢, (v, v, ) are scalar functions that depend on vﬁ and 2% . Then one
has

d|v
12%(q.q) = 2x)*6D (q) - q}) MZ/ | l' cilqy. vy)Z8 (kK v%), (5.52)

where

Zaa’kk/ 2\ e
1 (kK v1) =

0 A
(5.53)

By performing the above integral for each one of the
operators O, , (v), it is seen that Zf‘d(k, K, vi) « Sy, and
consequently JZ“’(q, g') can be written as

(5.54)

The expression for jZf (k,q)) can be obtained taking into
account the Schwinger form of the translational invariant

part of quark propagators; see Eq. (4.10). In this way, for
k > 0 we obtain

7

Zd, (k, g)) 0% (IT),

j(m/

where I1#(k, q||) is the four-vector defined in Eq. (4.14).
The explicit expressions of the functions di(k,qH) are
given in Appendix D. As one can see from Egs. (D2),
for the particular case k = —1 (where IT# is not defined),

dqﬁLZ(T’j“ TW@IW( )fklk;,(vL)~

|
we get dy(—1,q)) =ds(=1,q)), while the remaining
coefficients are zero. In this case one has .7;’)‘3'(—1, q|) «
05 4 0% =27,

From Eq. (5.45), we see now that the one-loop correction
to the charged rho meson two-point correlator can be
expressed as

oC ~ (LOC)aa! 1\
D 05') = Y Riar D (ke RS 0 )
q

(5.56)

with

D;LOCW (k.q)) = Zf(/@ a1)%, gy (k. 61||) “(k,q)),
(5.57)

2,+(k,q) being the one-loop p*™ meson self-energy,
related to the polarization function J,+(k, q) by
£ (k. q)) = ~igi T (k. q)). (5.58)

For the description of physical p™ meson states, it is also
useful to project J »+(k, q|) on the polarization state basis.
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In this way, one can define a matrix J;ﬁ/(k, q|) given by

Je' (k,q)) = €4 alk g, €) T8 (kg e (ko g ),
(5.59)
where € (k, ¢*, ¢) are the polarization vectors introduced in

Eq. (3.35). In the case k = —1, i.e., the lowest Landau level,
only ¢ =1 is allowed. One has

/dx/ dz e 04

V(1 +1y) 1
Xw[mmdﬁ_ 4+ —
ay

/)

1—x2
4 9i |

(5.60)

where ¢(x, qﬁ) tr, and a™ have been defined in Egs. (5.25),
(5.26), and (5.28), respectively. As in the case of the
charged pion [see Eq. (5.27) for J .+ (k, q)], this expression
is divergent and has to be regularized. Again, this can
be done by subtracting the B = 0 contribution, leaving a
well-defined B-dependent piece. In addition, the function
J ,+(k,q)) can be analytically extended for large positive
values of qﬁ.

VI. MAGNETIZED CHARGED PION AND RHO
MASSES IN THE NAMBU-JONA-LASINIO MODEL

In this section we consider an extended NJL model in the
presence of an external magnetic field. The corresponding
Lagrangian reads as

=i =mo)y+ G, | (i) + (Fiysin?| = G, oy, 7

(6.1)

where y(x) is the u — d quark doublet defined in Eq. (5.2)
and D¥ is the covariant derivative in Eq. (2.2). Models
like the one described by Eq. (6.1) have often been used
to study the influence of an external magnetic field on
meson masses. In fact, the NJL model was introduced
more than 60 years ago for the description of spontaneous
chiral symmetry breaking and dynamical mass generation
[61,62]; then, during the late 80s and earlier 90s, the
approach was reinterpreted as an effective model for low
energy QCD [63-65]. For a large enough value of the
coupling constant Gy, it is seen that the model describes
adequately the breakdown of chiral symmetry, and leads
to a phenomenologically reasonable value for the chiral
quark-antiquark condensate at the mean field level. In
turn, this implies that the quarks acquire an effective
dynamical mass M ; =~ 300-400 MeV > my. In the simple
model given by Eq. (6.1), it turns out that M,, = M, even
in the presence of an external magnetic field; however, the
magnetic field can break this degeneracy if more general

flavor mixing interactions are included (for details see,
e.g., Ref. [36]).

In the above framework, mesons can be described as
quantum fluctuations in the large N . approximation (which,
in this context, is equivalent to the well known random phase
approximation); i.e., they can be introduced via the summa-
tion of an infinite number of quark loops. Here we are
particularly interested in the masses of the charged pion
(lightest charged meson in the absence of the external
magnetic field) and the charged rho meson. Concerning
the latter, we recall that there has been some discussion about
the possibility that the presence of a strong magnetic field
may induce p* condensation. Our interest here is not to
perform a detailed analysis of meson masses in the presence
of the magnetic field but to study the effect of Schwinger
phases, showing how the results get modified if SPs are
neglected. Therefore, as done in Sec. V, we study here P
and p* masses separately. A full analysis, in which z+ — p*
mixing is explicitly considered, can be found in Ref. [37].

Let us first take G,, = 0 in Eq. (6.1) and concentrate just
on the charged pion mass. Following Ref. [66] we
introduce the charged pseudoscalar currents

o (0) = V20, (x)irsya(x),  J-(x) = V2 a(x)ivsy,(x).
(6.2)

Next, we define the two-point function ITp+ (x,x") as the
two-point correlator between these two currents. To zeroth
order in G, we have

n? (x,x') =

P OIT[j-(x)j+ (X)]0) = Jz+ (x, X),

where J+(x,x") is given by Eq. (5.5). The full two-point
function in the large N, approximation is obtained as

(6.3)

Ip+ (x,x)

=J (%, %) —|—2iG_Y/d4zJ,,+ (x,2)J (2, %))

+ (2iGy)? / d*zd*7 T (x,2) o (2.2 (2. X)) + ...

(6.4)
Then from Egs. (5.7) and (3.20) one readily gets
M () = Y (5.0 (k)
q
+ 2iGT - (ko g + ...}[F+(x', )
= Y Fr(x. @) (k. g KF (¥, 9, (6.5)
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where we have defined

Kﬂ+(k,qH) =1- 2lG.’]ﬂ+<k’qH),

(6.6)

and J -+ (k, q|) is the function given by Eq. (5.27), in which we have replaced the quark masses m by the dynamical masses
M. Thus, one can obtain the 7z pole mass for each Landau level k by solving the equation

+ | 2 2
T =m
K

~0. (6.7)

Charged pion masses were determined for the first time in this way in Refs. [27,31]. For the lowest Landau level £ = 0 one

obtains

T.+(0.q)

In the derivation of Eq. (6.5), it is worth paying attention
to Egs. (5.7) and (5.18), which show that J +(x,x") is
diagonal in the basis of eigenstates of the Klein-Gordon
operator in Eq. (3.15). In usual quantum field theory,
particle states are given at zero order in perturbation theory
by plane waves (i.e., they have definite four-momentum).
In contrast, in our case there is an external static and
uniform magnetic field that plays the role of a background;
consequently, as discussed in Sec. III, the zero order
charged particle states correspond to wave functions
expressed in terms of the functions F,(x, §).

Tracing back the derivation of Eq. (6.5), we can see what
happens if the SP is neglected. The diagonal condition in
Eq. (5.18) arises in fact from Egs. (5.13) and (5.14); if one
intends to make an approximation in which the SP in
Eq. (5.14) is removed, one should also replace the wave
functions by plane waves, F (x,7) — exp(—igx), in order
to guarantee translational invariance. Thus, we denote this
procedure as “plane wave approximation” (PWA). Within
this approximation, the two-interacting quark state—or the
pion, in the context discussed in Sec. V—is no longer
specified by the set of quantum numbers ¢ = (¢°, k, y, ¢°)
but by the four-momentum ¢* = (¢°, ¢', ¢*, ¢°). In this way
one obtains

Zal

= (21)*6W(g - ¢')8W (g —v).  (6.9)

9.4 v)
losing the effect of the magnetic field in this part of the
calculation. After a trivial integration over v, according to
Eq. (5.13) one gets

iN, [T [ 1 1 9 !
JPWA(qH’O) _ __/ldx[) dzt_e 2 ~,‘12>{ [MuMd—f—g—i- (1 —xz)Z” (1=t,ty) +—
- +

472

/dx/ z—e *4>{[MMd+1+(1 )4” (1—rtd)+al+(1—tg)(1—r§)}. (6.8)

JPWA (

(27)*6W (g — ¢")TYA(q).q1).  (6.10)

q.q9') =
where

(6.11)

j,EYVA(QH, q.) = J_n+(61||,6u)7

with J,+(g.q,) given by Eq. (5.24) [notice that the
calculation of J_,,+(qH,q 1) only involves the translational
invariant part of quark propagators; hence it is not affected
by Schwinger phases].

We notice that, in some sense, the result in Eq. (6.10) can
be misleading. Given that the magnetic field is assumed to
be uniform, one would expect the system to be invariant
under translations in space-time, and this seems to be
confirmed by the conservation of four-momentum arising
from Eq. (6.10). Nevertheless, in the presence of the
magnetic field it is found that translational invariance (in

the plane perpendicular to E) is realized in a nontrivial way,
related to gauge transformations. We refer here to Sec. 1, in
which this issue has been discussed in detail.

From the above results it is easy to see that within the
PWA one can define a z pole mass (taking ¢, = 0) as the
solution of the equation

PWA

K.: |qH =1 ZiG.AIZY"A(qH,O) =0, (6.12)

lg2=n2,
where, according to Eq. (5.24),

2

(1-2)(1 —tg)}. (6.13)

Ly
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Comparing Eq. (6.13) with our result in Eq. (6.8), it is seen
that the PWA expression can be obtained from the full
result by the replacement a, — ¢, in the integrand. We
also note that Eq. (6.13) is consistent with Eq. (80) of
Ref. [53], where an alternative method has been used to
evaluate the effects of the magnetic field on charged pion
masses. The difference between Eqgs. (6.13) and (6.8)
shows that the approach in Ref. [53] does not fully take
into account the effects arising from the presence of the
Schwinger phase.

An important point to be stressed is the fact that within
the PWA the two-quark state has zero total transverse
momentum. One can see, however, that this cannot be
possible: the two-quark state, as a whole, has to behave as a
charged bound system immersed in a magnetic field, whose
quantum ground state—which must have some nonvanish-
ing zero-point energy—cannot be described by a particle at
rest. In fact, the charged meson state cannot have any
definite momentum in the plane perpendicular to the
magnetic field. The situation can be better understood
by looking at Eq. (5.19), which shows that our result for
T (k, g))) arises from the convolution of J,+ (g, v, ) with
the function p;(73) given in Eq. (5.20). In fact, this
function describes the total transverse momentum distri-
bution due to the vibration of the two-quark quantum state

|

in the presence of the external magnetic field. Notice that,
expressed in this way, the plane wave approximation would
correspond to a distribution pPWA (%3 ) = 5(|7 > — |G, |?).

Let us consider now the rho meson sector. As mentioned
above, for simplicity we analyze the situation in which the
pT — 't mixing is neglected. The study of the p* meson in
this simplified scenario can be performed by eliminating
the pseudoscalar-pseudoscalar coupling (yiys7y)? in
Eq. (6.1). To proceed we introduce the charged vector
currents

J4(x) = V24(x) 7w, (x).
(6.14)

Ji ()C) = \/Zpu (x)yﬂl//d(x)’

and define the two-point function IT, (x,x’) as the two-
point correlator between both currents. To zero order in G,
we have

0)uv . ™ _ quv
TP (x. ') = (O[T (x) 4% (x)][0) = T (x.x').  (6.15)
where J/ " (x,x') is given by Eq. (5.42). Now, as in the case

of the #*, we can evaluate the full vector two-point function
in the large N_. approximation,

I (5, = S () (<206 [ 20 . 2)gp 2. )

+ (=2iGy)? / d*z d4z’JZf(x, z)gaafJZ;/}/(z,z’)gﬁ/ﬂJﬁi (& x) + ...

Using Eq. (5.44) together with Eqgs. (C4) and (5.54), and
resumming the loop contributions, we obtain

I (x.) = YR (), o) (K3

= =t

9.9

x RH(x', §)", (6.17)

where

o a . yop
K (k. q)) = g% +2iGy T (k. q)).

s

(6.18)

In this way, taking ¢ = 0, the charged rho pole masses m,
can be obtained for each Landau level by solving the
equation

det K, =0 (6.19)

for ¢ = (E,.,0,0,0), Ej = mj + (2k + 1)B,.
In the limit B — 0, it can be seen from the coefficients
di(k,q) in Appendix D that j;ff(k, q|) can be written in

(6.16)

|

terms of O +0Y = ¢ and OY(I1) + O (1) +
0% (1) = N°TIP*, where I1* - (¢°,0,0, ¢*). In this limit
the p* meson can be taken to be at rest, and one gets three
degenerate masses that correspond to the p™ polarization
states. On the other hand, for nonzero B the mass states
depend on the value of k. For the lowest Landau level
k = —1, which corresponds to the lightest charged p state,
from the results in Appendix D it is seen that
d>(—1,q) = ds(~1, q)), while the remaining coefficients
d;(—1, qH) are zero. In addition, according to the definitions
in Appendix C, one has

1 Q Q Q

=t (=1, 1) (-1.43. 1), (6.20)

SO we can write

A

I (=1, q)) = =2dy(=1,q))es (=1, ¢* 1) (=1, 4%, 1)".
(6.21)
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Hence, it is found that for the lowest Landau level there is only one mass eigenstate, which corresponds to ¢ = 1 in the
polarization state basis. From the expressions in Appendix D the coefficient on the right-hand side of Eq. (6.21) is given by

N 1 [ —eh(xd?
—2d,(-1,q)) = —i—;/ dx/ dz e
dr -1 0

=3 (=1.q)).

consistently with the result found in Sec. V B; see
Eq. (5.60) (here the quark masses have been replaced by
the effective masses M, and M ;). We see that the p™ state is
in this case also an eigenstate of the spin operator Sz, with
eigenvalue s; = s = sg(Q,B). From Eq. (6.19), the mass
of this state can be obtained as the solution of
1-2iGyJ)t (—1.q)) = 0. (6.23)
As in the charged pion case, it is interesting to see
how the results get modified if the plane wave approxi-
mation is used. As stated, in the PWA the Schwinger
phase ®,:(x,x") is neglected, and one should replace
Fo,(x.q) = exp(—igx), which leads to R =
exp(—igx) >, Ti" = exp(—igx)g". In this way, from
Eqgs. (5.44) and (5.47) one gets

PWA v AR d4q d4q/ —igx pua JPWA N ,ig'x wad
J e (xx') = (2;;)4(2,1)46 g N (a.q)e ™ g

d47) —iv(x—=x") JHv
:/ TR

and consequently

(6.24)

IV (g, ) = (27)*69 (¢ = ¢)T% (q.q1),  (625)
where J_;’f'(q“,q 1) is the quark loop function given by
Eq. (5.48). Notice that Eq. (6.25) can also be obtained from
Eq. (5.49), taking into account the PWA result in Eq. (6.9).
Within the PWA approximation the lowest energy p*
states correspond to the situation in which the meson is at
rest. It is easy to see that the pole masses for the different
polarization states can be obtained as the solutions of

det KPWA =0, (6.26)

where

K = g7 +2iGy Tl (g).0).  (6.27)

p

with ¢* = 0. We can compare the PWA result with the full
result for the lowest Landau level £k = —1 by taking the

projection of J;’f (), 0) onto the polarization state s3 = s,

i.e., taking the piece of J_Zf(qH,O) proportional to —Y%.

y (L +12,)(1+14) 1 1-x,

MM, +-+——q
a, Z 4

(6.22)

|
The explicit calculation of the quark loop leads to the

equation

1=2iGyJ "™ (¢),0) =0, (6.28)

where

jli.PWA(q”,O)

P

— i Ne / L / ® 1z o=t (L 1) (1 1)
4z )1 0 ' ty

11—
x {MuMd+E+—xq2|].

i (6.29)

Hence, in the same way as in the case of the charged pion,
the mass of the lowest p* state within the PWA can be
obtained from the full result in Eq. (6.22) by replacing the
factor 1/a, by 1/t in the integrand. It can be seen that the
expressions in Eqgs. (6.28) and (6.29) are consistent with
Eq. (24) of Ref. [30], which shows that the method used in
that reference turns out to be equivalent to the PWA.

To complete this section, we find it worth estimating the
importance of taking into account Schwinger phases in the
calculation of charged meson properties as functions of
the magnetic field. Therefore, in what follows we analyze
the B dependence of z™ and p™ masses, comparing the
results obtained from Egs. (6.7) and (6.23) with those found
within the plane wave approximation, i.e., those obtained
from Eqgs. (6.12) and (6.28).

We recall that the above expressions for the quark loop
integrals are divergent and have to be regularized. Here,
as done, e.g., in Refs. [30,37,53], we use the so-called
magnetic field independent regularization, in which we
subtract from the integrals the corresponding expressions in
the B — 0 limit, and then we add them in a regularized
form. In fact, as noticed in Ref. [30], to properly regularize
the function j}}i’PWA(q”, 0) in Eq. (6.29) it is necessary to
introduce a modification of the method, considering not
only the B — 0 limit but also a linear term in B. To perform
the numerical calculations, for definiteness we choose here
the same set of model parameters as in Ref. [37], viz.
my = 5.833 MeV, A =587.9 MeV, and G,A’> = 2.44,
where A is a 3D cutoff parameter that is introduced to
regularize the ultraviolet divergent quark loops in the B = 0
limit. For vanishing external field, this parametrization
leads to an effective quark mass M, =400 MeV and a
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quark-antiquark condensate (y ;7)o = —(241 MeV)?; in
addition, one obtains the empirical values of the pion mass
and decay constant in vacuum, namely m,, = 138 MeV
and f,o = 92.4 MeV. Regarding the vector couplings, we
take G,A* = 2.651, which leads to m,o = 770 MeV for
B = 0. It is worth mentioning that we have checked that
our results remain basically unchanged if one uses other
standard parameters, like, e.g., those considered in
Refs. [30,53].

In Figs. 1 and 2 we display our numerical results for
the charged pion and charged rho mesons, respectively.
The curves show the values of the ratio Ep/mp, where
P =n",p", as functions of eB. Here mp is the particle
mass at B = 0, while Ep stands for the energy of the P

meson in its lowest state, i.e., E .+ = 4/ mi+ + B, and
E, = q/m/%+ —B,, where mp is the meson mass for

nonzero B. We stress that to determine the mass of the
lowest energy state from our full calculation one has to take
¢*=0 and k=0 (k= —1) for the pion (rho meson),
whereas within the PWA one has to take g = 0.

From Fig. 1 it is seen that, for the whole considered range
of values of e¢B, the PWA leads to values of the ratio
E .+ /m, that are larger than those obtained from the full
calculation, in which the SP is properly taken into account.
In turn, the latter are larger than those obtained within the
“pointlike approximation” (PLA), in which the meson is
considered as a particle with no internal structure (in this

pointlike limit, one has EPX* = /m2 | + eB). On the other
hand, the results can be compared with the values arising

10 T T T T T T S T
8 4
2 -7
B _- -
£ 61 - .
~ _-
Y e
L _-
44 Ry g
.* " 7
.-','.// —— Full calculation 1
S PWA
21 - - - Pointlike §
T T T T
0.0 0.2 0.4 0.6 0.8 1.0
eB [GeV?]
FIG. 1. Ratio E,+/m, as a function of eB. Here E .+ stands for

the energy of the lowest z" state (corresponding to the Landau
level k = 0), while m,  is the charged pion mass at vanishing
external magnetic field.

12 T T T T
1.0 '\—/
™~ |
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*. ~
0.8 - N i
2 SN
£ 06 -"'-\\
+O. " N
N
w . \
0.4 N i
N
. \
—— Full calculation ™
0.2 4 © i
....... PWA . \
- — - Pointlike \
0.0 . . L .
0.0 0.2 0.4 0.6 0.8 1.0
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FIG.2. Ratio E,+/m, as a function of eB. Here E,,+ stands for
the energy of the lowest p* state (corresponding to the Landau
level k = —1), while m, is the charged rho mass at vanishing
external magnetic field.

from LQCD calculations [50,51]. These are found to be
close to or even lower than those corresponding to the PLA,
which implies that the proper treatment of Schwinger
phases improves the agreement between LQCD results
and NJL model predictions for the dependence of E,+ with
the magnetic field. It is also worth mentioning that, as
shown in Ref. [37], p™ —z" mixing effects (which have
been neglected in the calculations shown in Fig. 1) tend to
bring NJL results even closer to LQCD values.

Now, as can be seen from Fig. 2, the effect of taking into
account the SP is even more striking in the case of the
charged rho meson energy. Indeed, the results from PWA
and PLA approximations (dotted and dashed lines in the
figure) seem to indicate that E,+ vanishes at some critical
magnetic field—driving in this way a possible p* meson
condensation—while this is not what comes out from the
full calculation, in which the SP is properly included (full
line in Fig. 2). Regarding LQCD calculations, in this case it
is found [45,50,67] that the ratio E,-/m,, shows some
decrease for low values of eB, while for eB > 0.7 GeV? it
tends to stabilize at a value of about 0.7; hence, no p™
meson condensation is expected from these results. In fact,
values consistent with the behavior predicted by LQCD can
be obtained within the NJL. model—taking into account the
effect of the SP—by considering B-dependent couplings
[37]. We recall that these results correspond to the Landau
level k = —1, for which there is no mixing between the p™
and the charged pion.

VII. CONCLUSIONS

In this paper we have studied the role of the Schwinger
phases appearing in the propagators of charged particles
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in the presence of a static and uniform magnetic field B.
These propagators are not gauge invariant objects; if
one performs a gauge transformation, they transform in
a well defined covariant way. In fact, it is seen that the
noninvariance can be isolated in a Schwinger phase ®@p, in
such a way that the propagator can be written as exp(i®p)
times a gauge invariant function. As a first result we
have shown that the SP cannot be removed by a
gauge transformation; far from this, we have seen that
it plays an important role in the restoration of the
symmetries of the system.

The presence of a static and uniform magnetic field
does not alter the homogeneity of space-time, although it
does break space isotropy. Still, isotropy is preserved in

transverse directions, taking the direction of B as a
symmetry axis. Therefore, the studied system has to be
invariant under translations, under rotations around the

direction of ? and under boost transformations in this
direction. As a consequence of the existence of this set of
symmetries, for any Lorentz tensor one should distinguish
between “longitudinal” components (time components

and spatial components in the direction of B) and
“perpendicular components” (spatial components in the

direction perpendicular to I§), which in general will show
different behaviors.

The equations that describe the dynamics of a charged
particle in a static and uniform magnetic field involve the
electromagnetic field A#. Even if one assumes that the
physical system has the above stated symmetries, it has to
be taken into account that both the homogeneity and the
transverse isotropy of space become broken when one
chooses a specific gauge to set A¥. Looking at the
propagators of charged particles, we have shown that this
breakdown manifests itself in the SP, whereas the part of
the propagators that is invariant under gauge transforma-
tions is found to be also invariant under translations and

rotations around the direction of B. Additionally, we have
seen that a translation in a direction perpendicular to B, as

well as a rotation around the direction of B, are equivalent
to gauge transformations. Explicit expressions have been
given for some gauges that are usually considered in the
literature, namely the symmetric gauge and the Landau
gauges 1 and 2.

As an application to particular physical quantities, we
have analyzed the effect of the SP in the one-loop
corrections to charged pion and rho meson self-energies.
To carry out this analysis we have firstly considered
standard meson-quark interactions, and then we have
studied the =" and p* propagators within the Nambu-
Jona-Lasinio model, performing a numerical analysis of the
B dependence of meson lowest energy states. For both 7"
and p* mesons (for simplicity, z* — p* mixing has not
been considered), we have compared the numerical results
arising from the full calculation—in which SPs are

included in the propagators, and meson wave functions
correspond to states of definite Landau quantum number—
and those obtained within a plane wave approximation—in
which SPs are neglected (or simply eliminated) and meson
states are described by plane waves of definite four-
momentum.

In the case of the pion, from our analysis it is seen that
the polarization function is diagonal in the basis of z™
eigenfunctions F | (x, g), and can be written as a convo-
lution of a gauge invariant function J,+(vy,v;)—
calculated from the gauge invariant part of the polarization
function, after a transformation to momentum space—with
a function h,+ (g, q', v, v, ) given by a projection of these
eigenfunctions onto plane waves, modulated by the SP [see
Egs. (5.13) and (5.14)]. Moreover, after some integration
we have found that the polarization function can be written
as an integral of the function J,:(g.v.) over the
perpendicular momentum v | , weighted by a given function
pe(73) [see Eq. (5.19)]; i.e., the polarization function
depends on definite values of the energy ¢° and the parallel
momentum ¢> of the two-quark system as a whole, while
the perpendicular momentum has no definite value but
some distribution. This is what one would expect for a
charged particle, which must have some zero-point energy
when it is submerged in a magnetic field. In contrast, within
the PWA the polarization function can be transformed to
four-momentum space as J .+ (q)-q.), where g, would be
the perpendicular momentum of the two-quark system (the
pion, in the case of the NJL model). Formally this would
correspond to take pi (72 ) = 8(|7 . |* — |§ . |*), although the
perpendicular momentum ¢, is not a well defined quantity
for a charged particle in a magnetic field. Alternatively, the
effect of the SP on the one-loop correction to the z™
propagator can be seen from Eq. (5.36), where once again
our result shows the fluctuations of the perpendicular
momenta of the coupled two-quark system. These fluctua-
tions are due to the presence of a gauge invariant phase ¢,
which arises from a combination of Schwinger phases along
a closed path [see Eq. (5.31)]; if this phase is eliminated, the
effect of the fluctuations gets lost, as shown in Eq. (5.37).

It is worth emphasizing that even though the function
hy+(q.q', v, v, ) involves several gauge dependent quan-
tities, its explicit expression, given by Egs. (5.15)—(5.17),
is itself gauge independent. This has been checked by
performing the corresponding calculations in the three
standard gauges mentioned above. In this way, it has been
shown that the inclusion of the SP allows us to carry out a
full calculation of the polarization function, using the
proper wave functions of charged particles and preserving
both the invariance under gauge transformations and the
symmetries under translations and rotations around the
direction of B.

The above qualitative discussion applies also to the
case of the p™ meson propagator, although the explicit
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expressions are more involved due to the more complex
Lorentz structure. It is worth mentioning that we have
introduced in this case a description of spin one charged
fields in the presence of the magnetic field. As proposed by
Ritus for the case of spin 1/2 fermion fields [57], in our
formalism we have separated the meson wave functions as
a product of a tensor that carries the spatial coordinates and
a polarization vector. Then the explicit expression for the
meson propagator and the corresponding one-loop correc-
tion have been obtained.

Finally, as mentioned above, we have carried out a
numerical analysis of the B dependence of z and p*
meson masses (and lowest state energies) within the NJL
model. Using a three-momentum cutoff and a so-called
magnetic field independent regularization [30,37,53], we
have found that our full calculation leads to a B dependence
of the charged pion mass that clearly improves the agree-
ment with LQCD results, in comparison with the one
obtained using the PWA. Moreover, there is still room for
further improvement, e.g., by considering p™ — z mixing
as done in Ref. [37]. Concerning the charged rho meson,
we have found a qualitative difference between our results
and those obtained within the PWA. Indeed, our calcu-
lations show that if the presence of the SP is properly taken
into account, the p™ mass does not vanish for any
considered value of the magnetic field, a fact that can be
relevant in connection with the occurrence of p meson
condensation for strong magnetic fields. Our results are in
the same line as those obtained by LQCD analyses
[45,50,67], which indicate that the value of the energy
of the lowest p™ state tends to stabilize at E,/m,o~0.7
for eB > 0.8 GeV?. Let us recall that this state corresponds
to the Landau level k = —1, which does not mix with the
pion. We have also checked that our numerical results do
not suffer significant changes if one uses other standard
model parameters, like, e.g., those considered in
Refs. [30,53].
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APPENDIX A: THE FUNCTIONS F(x.q)
IN THE STANDARD GAUGES

We give here the expressions for the functions F ¢ (x, §),
eigenfunctions of the operator D*D,, [see Eq. (3.1)], in the
standard gauges SG, LG1, and LG2. As in the main text, we
choose the axis 3 in the direction of the magnetic field, and
use the notation B, = |QB| and s = sign(QB).

It is worth pointing out that the functions F(x, g) can
be determined up to a global phase, which in general can
depend on k. In the following expressions for SG, LG1, and
LG2 the corresponding phases have been fixed by requiring
Fo(x, q) to satisfy Egs. (5.14)—(5.16), with fp (v, ) given
by Eq. (5.17).

1. Symmetric gauge
In the SG we take y = 1, where 1 is a nonnegative integer.
Thus, the set of quantum numbers used to characterize a
given particle state is ¢ = (¢, k,1,¢?). In addition, we
introduce polar coordinates r, ¢ to denote the vector X, =
(x!', x?) that lies in the plane perpendicular to the magnetic
field. The functions F(x, g) in this gauge are given by

Folx.q)5%) = Vamemd"=) ~nU=0R, (1), (Al)

where
Ry, (r) = Ny g0 2L (), (A2)
with Z§:BQr2/2. Here we have used the definition

Ny, = (Boi!/k!)/2, L"(x) are
Laguerre polynomials.

while generalized

2. Landau gauges LG1 and LG2
For the gauges LG1 and LG2 we take y = ¢/ with j = 1

and j = 2, respectively. Thus, we have § = (¢°, k, ¢/, ¢°).
The corresponding functions F(x, ) are given by

Fo(x.§) M0 = (=is)FNye @'~ = 1y (pl) - (A3)

Folx, §)L0) = Nyemil@=e2=a)p, (1)) (A4)

where pgl) = /2By(x* + 54" /By), p§2> = /2By(x! -
5q*/By) and N, = (4xBy)"/*/\/k!. The cylindrical para-
bolic functions D;(x) in the above equations are defined as

Dy(x) = 2742~/ Hy (x/V2), (AS)

where H(x) are Hermite polynomials, with the standard
convention H_;(x) = 0.
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APPENDIX B: WAVE FUNCTION PROPERTIES
AND ANTICOMMUTATION RELATIONS
FOR SPIN 1/2 CHARGED PARTICLES IN A
UNIFORM MAGNETIC FIELD

As stated in Egs. (3.26), the fermion wave functions can
be written as
Us(x, G, a) = E% (x,q)ug, (k. ¢°, a),

Vi(x.g.a) =E"%(x.q)v_g,(k.q’.a).  (BI)

where the functions E?/(x, §) and E~%(x, §) are defined
by Egs. (3.27). It is easy to see that the matrices I'*
appearing in these definitions satisfy
[‘/lri — FA
N )
rr =,

M"r—+ =0,

Iy =y (B2)
It can be shown that the functions [E;(x) satisfy orthogon-
ality and completeness relations, namely

1

/d4x[EQf (% QE (x,§) = 6597 + 50T = I)]  (B3)
and

I[ng (x. PEY (K. q) =6W(x=x)I, (B4

where Z stands for the identity in Dirac space, and, as in
the main text, we have used the definitions Qf =Q f/ e,

s = sign(QB), and E% (x,q) = y°E% (x,7)"y°. In addi-
tion, they satisfy the useful relation
iPEY (x.§) = E¥ (x, )H,(¢°. k. ¢°).  (BS)
where I (¢°, k., ¢°) = (¢°,0,—s 2k[Q(Bl. ¢°).
On the other hand, the spinors ug [(k, ¢*,a) and

v_g, (k, ¢’,a), a =1, 2, in Eqgs. (B1) are given by

(a)

5 ¢
ug,(k,q*,a :7HSE,k,3+mZ< , B6
ok 4'.0) = (k) £ ) (1 (B6)
X 1 . X H
voolbga)=—e [P (En k) +m ) 7. ), B7
o 4%.0) = e L (B k) £, ](_W) (87)
|
where 01 = <G = (1,0) and §7 = G0 = 0.1). (). by )} = ).y 5 )} =
e use here the Weyl representation for Dirac matrices, 5 5 5 5
namely T {bs(q.a).ds(q'.a')} = {bs(q.a).ds(q'.a')"} = 0.
{b(g.a).b4(q". d')"} = {df(g.a).ds(q". a)"}

-

o

0 7
7z 0

0

- 0

-

}/:

(D) (5D

where o;, with i = 1, 2, 3, are the Pauli matrices. It can be
shown that the spinors satisfy the relations

Z MQ/(k7 q3’ a)lef(k’ q37 a) = ﬁY(Ef’ k7 ‘13) + mfI’
a=1,2

Z v_g, (k. ¢’ a)i_g (k. ¢’ a) = U (Efk.q*) —mI.
a=1,2

(B9)

We finally quote the anticommutation relations bet-
ween creation and annihilation operators in Eq. (3.25).
They read as

(B10)

APPENDIX C: WAVE FUNCTION PROPERTIES
AND COMMUTATION RELATIONS FOR
MASSIVE SPIN 1 CHARGED PARTICLES

IN A UNIFORM MAGNETIC FIELD

According to Eq. (3.35), the wave functions W/ (x, g, c)
are given by

Wi (x, g, ¢) = R (x, g)eg, (k. ¢, c),  (C1)
where R9#(x,7) is given by Egs. (3.36) and (3.37),
while eg,(k,g’,c) are the charged rho meson
polarization vectors. As in the main text, we define

Q = Sign(Qp)'
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The tensors R#* involve the functions F ,(x, §) and the
tensors Y4", defined by Eq. (3.37). The latter obey some
useful relations, namely

’r/jl’ = (TZM)* = T’iljl’ Tf{a’rl’.av = 52/1’T/1”w

> =g,

A=-1,0,1

(€2)

It is also useful to introduce the projector (P )",
defined by

(P = g = 611X = (851 + 610) X5
= TE + (1= 8,1)YG + (1= 6y — o) TH°,
(C3)
which satisfies (P )**(Pis)aw = (Pis)",. Here s=

sign(Q,B) = £1.
The functions R# are shown to satisfy orthogonality
and completeness relations, viz.

It can also be seen that

(P (RO (x, ) = RO™(x, q). (Co)
For k > 0, one can find some other useful relations that
involve the four-vector TI¥(k, q|) defined in Eq. (4.14).

These are

D,R*(x,q) = —iFo(x.g)1"(k.q))*.  (CT)
D, Fo(x,q) = —iRG (x, )1 (k, q)), (C8)
(Prs )t 1% (k, qy) = T (k, qy)- (C9)

Let us consider now the polarization vectors €, (k, ¢°, ¢).
Their form is dictated by the transversality condition
Dip2(x) =0 in Eq. (3.32), which implies that for
q" = E, one must have
D,Wh(x.4.¢) = DR (x.q)eq, (k.¢".c) = 0. (CI0)
Taking into account Eq. (C7), it is seen that the trans-
versality is trivially satisfied for k = —1, since in that case

4 Q.ua Q 5
/d xR&H (x, Q)R G (x, §)" = 059 (Prs)’,  (C4) Folx,q) is zero. For k >0, according to Eq. (C7) the
condition (C10) can be expressed as
and
I (k, CIH)*|qO:E/,€Q.M(k’ q*.c)=0. (C11)
Q.ua NAR2 (v A7) — 54 (v —
IR (x. )R (x'. ) SV (x = x),. (C5) For k > 1 there are three linearly independent vectors
q that satisfy Eq. (C11). A convenient choice is
&g 1) = ——— L (E,0,0,4°) + m2 (0,1,i5,0)]
° V2myimyy EG -
1
€MQ(k, q3, 2) - (q3» 09 O, Ep)s
1
1 1 :
3 2y + 4 3 2 :
e"g(k,q ,3) —2mpmu [H_ <EP,7,zs 5 4 ) +mj3,(0,1,—is,0)|, (C12)
|
where we have used the definitions For k = 0 two independent nontrivial transverse polari-
zation vectors can be constructed. A suitable choice is
ml:\/mﬁ—l—(Zk—l—l)Bp . 1 1 R
- é5(0.q ,1):EW(EPHJF,mJ_,LsmL,q‘HJF),
€¢5(0,¢%,2) =—(4°,0,0,E)), Cl4
M, = (k. q) + is T (k, q|) = —i\/2(k + 1)B ol0-4%.2) =27 2 (C14)
M. = -1 (k, ‘lH) —isTR(k, ‘IH 2B, (C13) where m |, m,,,I1,, and E, are understood to be evaluated

with B, = |Q,B|. Using these polarization vectors one
recovers the known expressions for a vector boson in a
constant magnetic field; see, e.g., Ref. [68].

at k = 0. It can be seen that e"Q(O q*.2) satisfies
S’;DSQJ/(O, q3, 2) =0, (CIS)

while €(0, g%, 1) is not an eigenvector of Ss.
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For k = —1, one has R%#(x, G) « Y. This leaves only
one nontrivial polarization vector, which can be conven-
iently written as

éo(=1.¢°.1) = —=(0,1,is,0). (C16)

N

As in the case of eg (0, q*,2), it is easy to see that this
vector has a definite spin projection in the direction of the
magnetic field. Indeed, one has

Steo,(-1,4%1) = sy (-1, g, 1). (C17)

Finally, for kK > 0 one can also define an additional,
“longitudinal,” polarization vector. We keep for this vector
the notation €4 (k. ¢*, c), taking for the polarization index
the value ¢ = 0. It is given by

1
Gllg’.0) =, Wika)lpr, (19

where, as stated, k > 0. For k = —1 no longitudinal vector
is introduced.

It is worth noticing that the full set of four polarization
vectors satisfies orthogonality and completeness relations,
namely

(k. . c)eguk.q* ') = = 8o (C19)

and
Y Lk g )en(kqt c) = ~(Pr).  (C20)
where {, = —1 and {; = {, = {3 = 1, while ¢, and ¢,

are given by

) 1 ifk=—
1 ifk=-1 :
Crnin = . . Cmax=4 2 ifk=0 . (C21)
0 ifk>0 .
3ifk>1

For k > 1, from Egs. (C20), (C18), and (C2) it is seen that
the sum over the physical polarizations ¢ = 1, 2, 3 satisfies

3
Z (k, q>, ceg(kq c)*

c=1
k,q [1¥ k,q *
|:?;w ( H) - ( ||) ,

n,

(C22)

where the vectors IT#(k, qH) are assumed to be “on shell,”

i.e., one has to take ¢° = E,.

As stated in the main text, one can also extend the
set of charged tho meson wave functions W% (x gd,c)
including a “longitudinal” wave function W% (x q,0)=
R (x,G)eq, (k,q*,0). In this way one gets for these
functions the orthogonality and completeness relations in
Eqgs. (3.38) and (3.39).

We conclude this Appendix by quoting the commutation

relations for the creation and annihilation operators in
Eq. (3.34). One has

[a2(3. ). a;9(q . )] = [a3(q.¢)". a;2(g'. )]
= [a2(g,¢).a,%(7. )] =0,
[a3(4. ). ad (@' )] = [a,°(q. ). a;°(g'. ¢')']
= 2E/}(2”) 5cc’5kk’5 ’5(613 )
(C23)

APPENDIX D: EXPLICIT FORM OF THE
COEFFICIENTS OF THE OPERATORS
FOR THE ONE-LOOP p* MESON
POLARIZATION FUNCTION

As stated in Sec. V B, the one-loop correction to the p*
propagator in ¢ space can be written in terms of a set of
tensors 0% (IT), with i = 1,...7. We give here the explicit
expressions for the corresponding coefficients d;(k, q),

introduced in Eq. (5.55). The latter have been obtained
taking into account the Schwinger form of quark propa-
gators in Eq. (4.10). In general they can be written in the

form
LA
/dx/ <a+) fkﬂu(x’z)’

(D1)
where qb(x,qﬁ) and o are defined in Egs. (5.25) and
(5.28), respectively. After some calculation, the functions

di(k,q)=~i

f’(::)qu (x,z) are found to be given by
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Qﬁ _a_tk(a—ay)

(1) 1 N v
Fig (x:2) = =(1 = tu14) jmymg + (1 = x7) o (1-2)1-72), k>0
2 2a 2b 2¢
fi,;u (x,2) = f;i,q”) (x,2) +f§wu) (x,2) + 2k + 1)f§€_q§(x, 2)
1
f,(j;H(X,Z) :5(1 =) (1 = 1,t4), k>0
4 l a,—a_
flgwa) =g Z == -n), k21
P -
5 Sa 5b
O (.2 = 180 (. 2) + £ (0.2,
f;f;u (x,2) = f,({z,fu) (x.2) —ffqbu) (x,2) +f§€2;? (x.2),
7 Sa 5b
f;i,;u (x,2) = _f’(<~qu) (x,2) +f§<squ) (x,2), (D2)
where
2
(2a) __lg 1 . qj B
Tig, (x,2) = Ya, (I4+12,)(1+1,) [mumd + ; +(1=x?) 4} k>—1,
2
f(Zb)(x Z):__a_""(l—t)(l—t)mm _|_l+(1_x2)ﬂ k> 1
k.qH ’ 2a_ u d u'td z 4 ’ = L
2¢ a, —o_
fw) =S 0-g)1-d), k21,
+ —_
fk,qu (x’z) 4(X+ [( -|-)C) Bu + ( )C) Bd s >0,
(56) 0 oy L t(1=t,)1-1) o ta(l—15)(1 = 13)
fk,qH (X,Z) _4(1_ |:(1+X) Bu +(1 )C) Bd , kZ 1.

Here, as in the main text, we have used the definitions 7, = tanh[(1 — x)zB, /2], t, = tanh[(1 + x)zB,/2|, with B, = |Q/B|
for f = u, d. For k = 0 and k = —1 some of the above functions vanish; therefore, for each expression we have explicitly

indicated the range of values of k to be taken into account.
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