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Abstract

We present a general framework for the problem of multi-class classification using classification functions that can be interpreted 
as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state 
discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by 
the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-
term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of 
a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future 
research.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Recent years have witnessed rapid development in quantum computers and other quantum information devices. 
Along with reports of quantum computers successfully performing tasks that are extremely challenging for classical 
computers [53,54,4,51,29], the emergence of the NISQ1 era [35] has encompassed a diverse range of firmly established 
quantum algorithms [30,11].

In parallel to these developments, several mathematical and computational techniques that were originally designed 
to study quantum systems and quantum information theory problems have been adapted to solve different computa-

E-mail address: giuseppe.sergioli@gmail.com (G. Sergioli).
1 The acronym NISQ (Noisy Intermediate Scale Quantum) refers to quantum computers with a limited number of qubits (between a few tens 

and a hundred) and significant sensitivity to environmental factors during quantum operations. These devices are intermediate in scale with respect 
to the number of qubits and lack robust error correction protocols, limiting their ability to achieve the full potential of quantum computing. NISQ 
computers are seen as a stepping stone towards building large-scale (tens of thousands of qubits), fault-tolerant quantum computers, and are 
capable of performing certain quantum algorithms that are already challenging for classical computers. The term “NISQ” was first introduced by 
John Preskill [35].
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tional problems outside the domain of quantum physics [31,33,34,12,2,8,26,43,40,39,41,36,21,22,3,32,13,17,18,45,
46,52]. The distinctive feature of the latter algorithms is that while relying on a mathematical formalism based on 
quantum theory, they can be implemented on fully classical hardware and still achieve good performance. Their 
analysis can also shed light on the differences between quantum and classical computing [3]. We refer to all these 
techniques as quantum-inspired algorithms. Thus, quantum-inspired algorithms can be added to the zoo of available 
technologies coexisting in the NISQ era.

In previous works, different quantum-inspired algorithms for the classification of classical data have been devel-
oped [43,40,39,41,36]. These algorithms are based on the idea of finding a representation of classical datasets in terms 
of quantum representatives. More specifically, each feature-vector of a dataset is encoded in a pure quantum state. This 
process is called quantum encoding. Then, using classical hardware, quantum state discrimination techniques (taken 
from quantum information theory) are applied to the quantum representatives to find a solution to the classification 
problem at issue. This is the case, for example, of the Helstrom quantum classifier (HQC), which turns out to be 
particularly beneficial in terms of accuracy for binary classification [42]. The problem, however, is that currently no 
method to extend HQC to multi-class classification is known.

To overcome this difficulty, in this work we take inspiration from the so-called Pretty Good Measurement [50] to 
define a quantum-inspired multi-class classifier. The proposed algorithm first assigns a (not necessarily projective) 
positive operator-valued measure (POVM)2 (the Pretty Good Measurement) to a given training dataset. This POVM 
is then used to assign, via Born’s rule, a probability-value to each element of the test dataset. Such a procedure allows 
one to define a function that directly classifies any object of the test dataset, without resorting to the (time consuming) 
strategies such as One-vs-One or One-vs-All) that are used for classifiers that do not natively support classification 
tasks with more than two classes.3 We refer to this algorithm as the PGM classifier. Just like the Helstrom classifier, the 
PGM classifier, being quantum-inspired, brings a concrete computational advantage when running on fully classical 
hardware. The main goal of this work is to provide a precise mathematical description of the PGM classifier algorithm.

While the PGM classifier can be fully implemented on a classical computer, in this work we show how to test 
the PGM classifier using a quantum circuit, along with numerical simulations of its performance. The comparison 
with the classical-implemented version is useful to better understand the important differences between quantum and 
quantum-inspired algorithms (see also [49,32]).

The paper is organized as follows. In Section 2, we first review the differences between Quantum Machine Learn-
ing (QML) and Quantum-inspired Machine Learning (QiML), with a special focus on the problem of classification. 
Then, in Section 3, we describe the general settings of the quantum-inspired classification algorithms. In Section 4, we 
introduce the theoretical basis of the classification algorithms inspired by quantum state discrimination. More specif-
ically, we first summarize the formal setting of the binary HQC, and then introduce the details of the PGM classifier. 
In Section 5, we describe how to test the PGM classifier using a quantum circuit. Finally, in Section 6, we draw some 
conclusions and we pose some relevant questions for future research.

2. Quantum-inspired and Quantum Machine Learning. Two different approaches

Machine learning is one of the most important subfields of artificial intelligence. It is based on the idea of program-
ming an automated device to learn from previous computations and gradually improve its performance during the 
same computational process. In what follows, we restrict ourselves to the supervised approach, where a set of a priori
known data (the training dataset) is used to make an accurate prediction about another set of data (the test dataset). 
Obviously, different strategies can produce results with different levels of accuracy. The use of quantum information 
techniques to improve classical machine learning algorithms has become a very promising area of research [37,10,38], 
and is included in the field of Quantum Machine Learning (QML). For an extended update on recent advances in this 
field, see [38].

However, QML is not the only approach to machine learning that makes use of quantum theory. An alternative 
approach that has emerged in the last years is known as Quantum-inspired Machine Learning (QiML) [17,18,45,46,
52]. This approach is very different from QML in spirit, and also in the kind of benefits it brings. The QiML approach 

2 For a detailed analysis of the close connection between POVMs and fuzzy observables, see [1].
3 A numerical comparison between these approaches is analyzed in a separate work [19].
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is based on the fact that it is possible to tackle certain machine learning problems by using theoretical tools commonly 
used in quantum theory. The main difference between QML and QiML is that the latter does not necessarily require 
the use of actual quantum devices. The idea is that by reformulating a machine learning problem as a “quantum 
problem”, it is possible to harness the power of the mathematical formalism of quantum theory to achieve remarkable 
benefits. Remarkably, these algorithms can be implemented on classical computers. The benefits do not necessarily 
give rise to a reduction in computational complexity. In some cases, improvements in other relevant elements of the 
computational process, such as accuracy, can be obtained.

In the rest of the paper we focus on a particular machine learning problem, namely the well-known classification 
problem. It has been widely studied in the standard literature and has a very wide range of applications in many 
different practical contexts [14]. In particular, we summarize the formal framework of a recent quantum-inspired 
model for classification.

2.1. Classification

Put simply, the general idea of classification is to design an algorithm that can evaluate the features of a class of 
objects and, given an unknown object, decide whether it belongs to a given class.

The choice of features considered relevant to characterize a given object depends on the application and the goals 
of the classification itself. Some common approaches to feature selection include correlation analysis, domain knowl-
edge, wrapper methods, embedded methods and filter methods [15]. In many cases, a combination of methods is 
used.

Supervised classification refers to the idea that the whole process is supervised by an “expert” who first builds a 
preliminary set of correctly classified objects (training dataset). As a result of this “training”, the algorithm is designed 
to classify new “unseen” objects (or objects from the test dataset) as accurately as possible.

Objects are described by a certain number d of features. These features are chosen as quantifiable aspects of objects 
that are relevant enough to describe them in the classification framework. For example, if we were using a database of 
different species of mammals, we could describe an individual by a vector formed by the values of its weight, width 
and length. Thus, we could associate a three-dimensional vector with the values of these quantities for each individual. 
Of course, other features could be used for different classification purposes.

More formally, each object x is associated with a vector �x (called object-vector or feature-vector) of a d-
dimensional Hilbert space Hd .4 A pattern is defined as a pair ( �xj , λj ) where �xj is a feature-vector and λj is the 
class label which denotes the class which the object is supposed to belong to. For simplicity, we identify the set L of 
all class-labels with a finite sequence (1, . . . , �) of natural numbers that are in one-to-one correspondence with the �
classes which the objects belong to. Thus, a training dataset can be represented as a set

Str := {(�x1, λ1), . . . (�xm,λm)},
where ∀j ∈ {1, . . . , m}: λj ∈ L. Given any class label i ∈ L, we can define the set S i

tr of all object-vectors whose 
associated class label is i:

S i
tr := {�xj ∈ Str : λj = i}. (1)

The cardinality of S i
tr is denoted by |S i

tr|. Clearly, 
∑�

i=1 |S i
tr| = m.

The task of supervised classification is to infer a classifier-function (simply, a classifier) from the training dataset 
that assign, as accurately as possible, a class-label to any object-vector �x.

Formally, a classifier can be defined as a map

Cl : Cd → L.

Let Str = {(�x1, λ1), · · · , (�xm, λm)} be a training dataset. In order to define a classifier (based on Str) one defines a 
map f (called “learning function”) that associates to any feature-vector �x a sequence of �-numbers belonging to the 
unit real-interval [0, 1]:

4 Unlike standard representations in machine learning, we do not exclude features that can be represented as complex numbers.
3
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f : Cd → [0,1]�.
The ith-component of f (�x) will be denoted by f (�x)i .

The interpretation of the i-th component of f (�x) depends on the intended meaning of the function f itself. For 
example, if one adopts a “fuzzy perspective”, the value f (�x)i may represent the degree of membership of the object 
x (whose object-vector is �x) to the class labeled by λi . Thus, any label i determines a fuzzy set fi : Rd → [0, 1] such 
that for any �x ∈ Rd , fi(�x) = f (�x)i . In a probabilistic framework, instead, f (�x) is assumed to be a probability-vector
(i.e. 

∑�
i=1 f (�x)i = 1) and the value f (�x)i can be interpreted as the probability that the object x (with associated 

feature-vector �x) belongs to the class labeled by i.
The classifier determined by f (or simply, the f -classifier) is the map

Clf : Cd → L

that assigns to any feature-vector �x ∈Cd the class-label that is associated to the greatest value of f (�x)i , with 1 ≤ i ≤ �.
Since it may happen that f returns more than one class-label when there are matching f (�x)i values, we pose by 

convention

Clf (�x) := min {i ∈ L : f (�x)i = max {f (�x)k : 1 ≤ k ≤ �}} . (2)

An f -classifier induced by a learning function f shows clear analogies with the defuzzification process in fuzzy set 
theory [48], which involves mapping a fuzzy set to a crisp set.

A classifier Clf is called probabilistic iff for any �x ∈ Cd we have: 
∑�

i=1 f (�x)i = 1. In other words, a classifier is 
probabilistic iff for any �x the sequence (f (�x)1, . . . , f (�x)�) is a probability-vector.

3. General setting for Quantum-inspired classification

As introduced in the previous sections, the QiML approach is based on the idea of using quantum information 
theory to improve the learning process, even without the use of a quantum computer. In the following, we will describe 
the main ingredients of the QiML approach to supervised classification.

Given a training dataset, the construction of a quantum classifier is based on three basic steps: i) applying a quantum 
feature map (or quantum encoding) to encode the object-vectors of the training dataset into quantum objects [41]; ii) 
finding a suitable learning function f that determines the quantum classifier; iii) applying the quantum classifier to a 
quantum-encoded object-vectors to obtain the labels of the classes which the objects belong to.

Let us consider a training dataset Str = {(�x1, λ1), · · · , (�xm, λm)}. A quantum encoding is a map that associates 
with any object-vector �x of Cd a pure quantum state (called object quantum-state) ρ�x of a Hilbert space Cn, whose 
dimension n depends on the number of the d-features. Given a quantum encoding �x �→ ρ�x , a quantum pattern is any 
pair (ρ �xj

, λj ). A quantum training dataset is defined as the set of all quantum patterns:

SQtr := {
(ρ�x1 , λ1), . . . , (ρ�xm

, λm)
}
.

Given any class label i ∈ L, we can also define the set S i
Qtr as the set of all object quantum-states ρ�xj

that are 

associated to the set S i
tr of all i-object-vectors:

S i
Qtr := {ρ�xj

: �xj ∈ S i
tr}. (3)

Similarly to the case of the Nearest-Mean Classifier [14] where one associates to any class of object-vectors its 
centroid, in our QiML approach, one can define the crucial notion of quantum centroid. Intuitively, the quantum 
centroid associated to the class-label i is the density operator (in an appropriate Hilbert space) that represents the 
uniform sampling of all i-object quantum states.

Definition 3.1. Let i ∈ L be a class-label. The quantum centroid associated to i (denoted by ρ(i)) is:

ρ(i) := 1

|S i
Qtr|

∑
�x ∈S i

ρ�xj
,

j tr

4
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where |S i
Qtr| is the cardinality of S i

Qtr. Clearly, |S i
Qtr| = |S i

tr|.
As one can easily realize, the � class-labels are in one-to-one correspondence with the set {ρ(1), . . . , ρ(�)} of all 

quantum centroids.
Despite they similarities, classical and quantum centroids behave in a quite different way as the following remark 

shows.

Remark 3.1. Let i be a class-label and let �C(i) = 1
|S i

tr|
∑

�xj ∈S i
tr

�xj be the (classical) centroid associated to i. As one 

can easily realize, the quantum encoding ρ �C(i)
of �C(i) does not coincide with the quantum centroid ρ(i) associated to 

the class-label i (see Definition 3.1).

Remark 3.2. In the classical case, the Nearest-Centroid classification is invariant under scalar multiplication of object-
vectors. On the contrary, it turns out that classification based on quantum centroids is no longer invariant under scalar 
multiplication. This characteristic is shown to be beneficial for classification tasks [39].

Let us consider a quantum training dataset Str = {(�x1, λ1), . . . (�xm, λm)}. How to define a possible “quantum learn-
ing function” f in terms of SQtr? As happens in the classical case, different answers are possible. In our approach we 
take the move to interpret the set of all class-labels as possible outcomes of a measurement. Let us briefly recall the 
notion of (quantum) measurement.

Let B(H)+ be the set of all positive semidefinite operators acting on a finite dimensional Hilbert space H. A 
measurement is defined as a map M from a finite non-empty set O (representing a set of possible outcomes of a 
physical quantity) into B(H)+ such that 

∑
i∈MO(i) = I. A measurement is said to be a von Neumann measurement

iff every M(i) is a projection, i.e., M(i)∗ =M(i)M(i) = M(i), where M(i)∗ is the adjoint of M(i).
A quantum classifier is a classifier Clf , where the function f is determined by a measurement M : L → B(H)+

(see [50], Definition 2.34).
More precisely, the notion of quantum classifier is defined as follows.

Definition 3.2. A quantum classifier is a classifier Clf (see Equation (2)) such that the learning function f : Cd →
[0, 1]� satisfies the following condition: there exists a measurement M : L → B(H)+ such that

∀�x ∈ Cd : f (�x)i = tr(M(i)ρ�x),

where tr is the trace of a matrix.

By definition of measurement, it turns out that 
∑�

i=1 tr(M(i)ρ�x) = 1. Therefore, a quantum classifier is always 
probabilistic.

Intuitively, the i-th component f (�x)i of the learning function f represents the probability that the object encoded 
by ρ�x belongs to the class i.

An interesting question is whether classification accuracy can be improved by increasing the dimension of the state 
space where the object quantum-states live.

As well known, one of the most powerful technique of (classical) machine learning is represented by kernel method
[44], where the possibly non-linearly separable classes of a dataset become “more separable” by mapping the object-
vectors into a higher dimensional feature space. The question naturally arises whether also in our approach one may 
hope to improve the performance of a quantum-inspired classifier by mapping the object quantum-states into a higher 
dimensional Hilbert space. Although computation in a larger feature space generally increases runtime, the expected 
improvement in prediction accuracy is crucial in certain machine learning applications, such as those specialized in 
medical diagnosis.

In our case, the dimensional increasing of the feature space is obtained by encoding any object-vector �x as a 
tensor product ρ�x ⊗ . . .⊗︸ ︷︷ ︸

n-times

ρ�x of the object quantum-states ρ�x . Accordingly, the set of all object quantum-states that are 

associated to the n-copies of all i-objects is defined by tensorizing the object quantum-states in S i :
Qtr

5
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S i(n)

Qtr := {ρ�xj
⊗ . . .⊗︸ ︷︷ ︸
n-times

ρ�xj
: �xj ∈ S i

tr}.

Accordingly, the n-copy quantum centroid of S i(n)

Qtr can be defined as follows:

ρ
(n)
(i) := 1

|S i
Qtr|

∑
�xj ∈S i

tr

ρ�xj
⊗ . . .⊗︸ ︷︷ ︸
n-times

ρ�xj
. (4)

It should be noticed that, in general, ρ(n)
(i)


= ρ(i) ⊗ . . . ⊗ ρ(i)︸ ︷︷ ︸
n-times

.

The ⊗n-generalization of the quantum classifier introduced in Definition 3.2 can now be naturally defined as a 
function f : Cdn → [0, 1]� determined by a measurement M : L → B(⊗nCd)+. As we will show in the sequel, this 
procedure turns out to be advantageous in improving classification accuracy.

4. Classification inspired by quantum state discrimination

Since feature-vectors are encoded as quantum states and quantum centroids are quantum states it is natural to 
apply measurement techniques developed in the context of quantum state discrimination ([5,24,6,50]) to the classifi-
cation problem. We can conceptualize the machine learning task as finding a quantum measurement that distinguishes 
quantum centroids in an optimal (or sub-optimal) way, which, as we will see, allows us to obtain highly performing 
classifiers.

The task of discriminating quantum states is a fundamental problem in quantum information theory, with deep 
implications in quantum cryptography and quantum error correction [9]. The problem of quantum state discrimination 
can be summarized as follows. Let us suppose that Alice wishes to send a message to Bob by using a quantum channel. 
To do this, Alice selects a state ρi with an a priori probability pi from a given set of possible states in the Hilbert space 
Cd . We indicate the ensemble R of these possible states with their respective a priori probability-values as follows:

R = {(p1, ρ1), · · · , (p�, ρ�)},
where (pi , . . . , p�) is a probability-vector (a sequence of positive real numbers such that 

∑�
i=1 pi = 1).

Bob knows a priori both the set of possible states and their associated a priori probabilities. His task is to determine, 
by means of a suitably chosen measurement, the state ρi he receives from Alice, and hence the intended message. 
However, the problem of finding an optimal strategy for discrimination among arbitrary states is still unresolved. 
Although error-free solutions can be found for some particular cases (for example when R contains only mutually 
orthogonal states), errors will necessarily occur in the discrimination process of arbitrary states (see, for example, 
[5]). This means that, given an ensemble R = {(p1, ρ1), · · · , (p�, ρ�)}, in general there exists no measurement M
such that for any i, j ∈ {1, . . . �} with i 
= j : tr(M(i)ρj ) = 0. Thus, once Alice sends the i-th state to Bob, he can 
either conclude (erroneously) that he was given the state ρj or, conversely, he can conclude (correctly) that he was 
given the state ρi (successful discrimination). The average probability for Bob to perform a successful discrimination 
by means of a given measurement M is given by

pMsucc(R) :=
�∑

i=1

pi tr(M(i)ρi). (5)

In order to minimize the error probability in the discrimination problem, it is necessary to find an optimal mea-
surement M which maximizes Equation (5) or equivalently, that minimizes the discrimination error probability
1 − pMsucc(R). One can prove (see [50]) that, for any ensemble R, there exists an optimal measurement M, denoted by 
Opt(R), such that

Opt(R) = max{pNsucc(R) : N is a measurement}.
In other words, Opt(R) is the measurement that allows Bob to achieve the maximum probability of successfully 
discriminating the states in R.
6
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4.1. Helstrom measurement and binary classification

In 1969, C. W. Helstrom found an exact analytical description for the optimal measurement for ensembles of two 
quantum states in his seminal paper [24]. Let

R = {(p1, ρ1), (p2, ρ2)}
be an ensemble of two quantum states with a priori probabilities p1 and p2 = 1 − p1. Let us define the Helstrom 
observable as

� = p1ρ1 − p2ρ2. (6)

Let l+ and l− be the sets of all eigenvectors determined by the positive and negative eigenvalues of �, respectively. 
Let P+ := ∑

λ∈l+ Pλ and P− := ∑
λ∈l− Pλ, where Pλ denotes the projection associated to the eigenspace determined 

by the eigenvalue λ. Intuitively, P+ and P− represent the property of the measurement to correctly identify a state 
as being in state ρ1 (ρ2, respectively). The set {P+, P−} determines a (von Neumann) measurement (called Helstrom 
measurement) since P+ + P− = I. Helstrom proved that this measurement is optimal, meaning that it achieves the 
maximum probability of successfully discriminating between the two states in the ensemble. Such a maximum prob-
ability – called the Helstrom bound of R (Hb(R)) – is given by

Hb(R) := p1tr(P+ρ1) + p2tr(P−ρ2), (7)

which is the sum of the probabilities of correctly identifying the two states weighted by their a priori probabilities. It 
turns out (see [50]) that

Hb(R) = 1

2
+ 1

2
T (p1ρ1,p2ρ2)

where T is the trace distance induced by the trace norm ‖ . ‖1:

T (p1ρ1,p2ρ2) := 1

2
‖p1ρ1 − p2ρ2‖1 .

In the case when p1 = p2 = 1
2 , we will write Hb(ρ1, ρ2) instead of Hb(R). The Helstrom bound Hb(ρ1, ρ2) satisfies 

the following properties (see [50]):

i) 0 ≤ Hb(ρ1, ρ2) ≤ 1;
ii) Hb(ρ1, ρ2) = 1

2 iff ρ1 = ρ2;
iii) Hb(ρ1, ρ2) = 1 iff im(ρ1) is orthogonal to im(ρ2), where im(ρ) is the subspace spanned by the image of ρ.

Under Helstrom’s formalism, let us now consider the particular case of binary classification, where L := {1, 2}. 
After quantum encoding, we obtain the quantum training datasets S1

Qtr and S2
Qtr , (defined according to Equation (3)), 

and ρ1 and ρ2 as their respective quantum centroids (see Definition 3.1). In this way, it is possible to define the 
Helstrom observable (as in Equation (6)) for the two quantum centroids ρ1 and ρ2, that we assume to have the same 
a priori probability-values, i.e., p1 = 1 − p2 = 1

2 .5 The Helstrom measurement {P+, P−} gives rise to a learning 
function f defined as follows:

∀�x ∈ Cd : f (�x)1 := tr(P +ρ�x) and f (�x)2 := tr(P−ρ�x).

According to Definition 3.2, we can define the quantum classifier induced by f (called Helstrom Quantum Classi-
fier) in the following way:

Clf (�x) :=
{

1, if f (�x)1 ≥ f (�x)2;
2, otherwise.

5 In same cases, the a priori probability-values p1 and p2 are assumed to be: p1 = |S1
Qtr

|
|S | and p2 = |S2

Qtr
|

|S | .

Qtr Qtr

7
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In [42], an experiment is presented where the Helstrom Quantum Classifier (HQC) is applied to fourteen different 
datasets and compared with eleven different standard classifiers. The results show that HQC exhibits a high level of 
accuracy when compared to these standard classifiers. In that paper, the application of quantum state discrimination to 
the classification problem led the authors to the following notable conclusion: the higher the probability of successfully 
discriminating between quantum centroids, the better the accuracy performance of HQC. In other words, the increase 
of the Helstrom bound of the two quantum centroids seems to be strongly correlated with an increase in classification 
accuracy. The Helstrom bound, which is a measure of the distinguishability between the two quantum centroids, seem 
to set a fundamental limit on the accuracy that can be achieved by HQC. The experiment given in [43,42] provides 
empirical evidence of this claim.

As discussed at the end of Section 3, it is possible to perform the tensor product of each object quantum-state. This 
allows us to define the new quantum centroids ρ(n)

1 and ρ(n)
2 that give rise to the Helstrom measurement {P (n)

+ , P (n)
− }

and to the following learning function f (n):

∀�x ∈ Cd : f (n)(�x)1 := tr(P (n)
+ ρ

(n)

�x ) and f (n)(�x)2 := tr(P (n)
− ρ

(n)

�x ).

Thus, the Helstrom Quantum Classifier takes the form

Cl
(n)
f (�x) :=

{
1, if f (n)(�x)1 ≥ f (n)(�x)2;
2, otherwise.

The empirical results obtained in [42] strongly suggest that taking tensor products of multiple copies of the object 
quantum-states turns out to be beneficial for classification tasks, as the following Theorem seems to clearly indicate 
[19].

Theorem 1. For any n ∈N+,

Hb(ρ
(n)
(1) , ρ

(n)
(2) ) ≤ Hb(ρ

(n+1)
(1) , ρ

(n+1)
(2) ).

According to Theorem 1, increasing the number of copies of the object quantum states (and consequently, increas-
ing the number of factors in the tensor product) leads to a higher Helstrom bound, resulting in increased accuracy 
performance of HQC (see the discussion in [19]).

Many questions remain open, and an extensive investigation into the relationship between the Helstrom bound and 
statistical scores in machine learning problems is ongoing. The results obtained so far motivate further research in this 
area. It is also relevant to note that, although increasing the number of copies in the tensor product can potentially 
improve the accuracy performance of the quantum classifier, it also incurs an additional computational cost (i.e., the 
runtime of the algorithm). Hence, depending on the size of the dataset and the machine being used, the choice of 
the maximum number of tensor copies should be based on practical considerations. This leads to another interest-
ing question for future work, namely, whether it is possible to use quantum hardware to speed up the classification 
protocol.

4.2. Pretty Good Measurement and multi-class classification

A common strategy for performing multi-class classification is to decompose it into combinatorial compositions of 
binary classifications using strategies such as “One vs One” or “One vs Rest”. One disadvantage of these strategies is 
that, especially for datasets containing a large number of classes, a large number of binary classifications are required, 
resulting in increased complexity.

In the following, we demonstrate how quantum state discrimination suggests an alternative method for multi-class 
classification that does not require any combinatorial decomposition into binary classification processes

Given an ensemble of possible states with their respective a priori probabilities

R = {(p1, ρ1), · · · , (p�, ρ�)}, (8)

it may be difficult to find an analytical description for the exact optimal measurement associated to R. One possible 
solution is to search for a sub-optimal measurement that can be expressed in an analytical form. This is known as the 
8
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so-called Pretty Good Measurement [50], which we will introduce in the following. Let us define the average state of 
R as

σ =
�∑

i=1

piρi .

For each i : 1 ≤ i ≤ �, let us define the following operator

Ei = (σ�)1/2piρi(σ�)1/2,

where σ� is the pseudoinverse (or Moore-Penrose inverse) of σ . The operator Ei is well defined. Indeed, by Theorem 2
(iv) (see Appendix A), σ� is positive since σ is positive, and consequently, the square root of σ� exists and is unique. 
Since piρi is positive semidefinite and it is enclosed on the left and on the right by a the self-adjoint operator (σ�)1/2, 
we can conclude that Ei is also positive semidefinite (see [25], p. 431). By Theorem 2 (vi) (see Appendix A), we have 
σσ� = σ�σ . Consequently, by Theorem 6.6.4 (see [15], p. 223), (σ�)1/2 commutes with σ . Thus, by Theorem 2 (vi), 
we obtain:

�∑
i=1

Ei =
�∑

i=1

(σ�)1/2piρi(σ�)1/2

= (σ�)1/2σ(σ�)1/2

= σ(σ�)1/2(σ�)1/2

= σ(σ�)

= Pim(σ), (9)

where Pim(σ) is the projection onto the subspace spanned by the image of σ .
Since any Ei is positive semidefinite, we have that Ei ≤ ∑�

i=1 Ei = Pim(σ). Hence, Ei is bounded by the identity 
operator I and therefore is an effect operator: O ≤ Ei ≤ I. However, the set {Ei}�i=1 does not determine a measurement 
since in general 

∑�
i=1 Ei < I. The set {Ei}�i=1 can be easily transformed into a set of � effects that finally induce a 

measurement.
For each i with 1 ≤ i ≤ �, let us define the following operators:

Fi := Ei + 1

�
Pker(σ ), (10)

where Pker(σ ) is the projection onto the subspace spanned by the kernel of σ . It turns out that the map F :
{1, 2, · · · , �} → B(Cn)+ such that for any i ∈ {1, . . . , �}:

F(i) = Fi

is a measurement since, as we have seen above, 
∑�

i=1 Ei = Pim(σ) and thus

�∑
i=1

Fi =
�∑

i=1

(Ei + 1

�
Pker(σ ))

=
�∑

i=1

Ei + 1

�

�∑
i=1

Pker(σ )

= Pim(σ) + Pker(σ ) (11)

= I.

Unlike the Helstrom case, the measurement F (called Pretty Good Measurement [23], shortly PGM) is unsharp since 
the operators Fi are not projections. Therefore, the training dataset will determine a fuzzy observable. Since σ is 
invertible iff Pker(σ ) =O, we can conclude, from Eqs. (9) and (11), that Ei = Fi iff σ is invertible.
9
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It turns out the Pretty Good Measurement F is sub-optimal [7] since

pFsucc(R) ≥ Opt(R)2.

Let us now turn to the general problem of multi-class classification. We will follow a similar formalism to that of the 
Helstrom observable (for the binary classification case), but using a classifier based on the Pretty Good Measurement 
formalism. After the quantum encoding procedure, we consider the quantum training datasets Si

Qtr as defined in 
Equation (3) and their respective quantum centroids ρ(i) as defined in Definition 3.1. Hence, it is possible to consider 
the ensemble R as defined in Equation (8) where, as in the Helstrom case, the a priori probability-values are assumed 
to be equal, i.e., for any i ∈ {1, . . . , �} : pi = 1

�
. Thus, we can associate to R a Pretty Good Measurement F according 

to Equation (10). In this case, the learning function f is defined as follows:

∀�x ∈ Cd ,∀i ∈ {1, . . . , �} : f (�x)i := tr(Fiρ�x).

According to Definition 3.2, the multi-class quantum classifier determined by f , called Pretty Good Classifier
(PGM classifier), is defined as follows:

Clf (�x) := min{i ∈ {1, · · · , �} : tr(Fiρ�x) = max{tr(Fkρ�x) : 1 ≤ k ≤ �}}. (12)

Notice that if Pker(σ ) =O, we can replace Fi by Ei in the above equation.
We can also generalize this framework by taking the tensor product of n-copies of states. Thus, the definition of 

the multi-class quantum classifier introduced in Equation (12), can be naturally extended as

Clf (�x) :=min{i ∈ {1, · · · ,m} :
tr(F (n)

i ρ
(n)

�x ) = max{tr(F (n)
k ρ

(n)

�x ) : 1 ≤ k ≤ �}}.
As in the Helstrom measurement case, it is possible to define a bound for the Pretty Good Measurement as follows:

PGMb(R) :=
�∑

i=1

pi tr(Fiρi).

It is currently unknown whether it is possible to obtain a general result regarding the relationship between the value 
of the PGM bound (PGMb) and the number of tensor products (as in Theorem 1) for the Pretty Good Measurement 
classifier. An initial insight and empirical evidence on this, suggesting an analogous result, is showed in [19].

As discussed at the beginning of the subsection, the PGM classifier avoids the need to decompose an n-ary classi-
fication into a combinatorial number of binary classifications, as required by the standard “One versus One” or “One 
versus Rest” procedures. A detailed experiment comparing the performance of PGM with other standard classifiers is 
presented in a separate work [20].

5. Representing PGM classifier in IBM-Q

As discussed in Section 2, the two approaches to machine learning, QML and QiML, are fundamentally different: 
while the former requires the use of a quantum device, the latter does not. Of course, this does not mean that QiML 
cannot in principle be implemented on quantum devices. Indeed, the aim of this section is to show that the testing 
part of the PGM classification can be realised on a “simulation backbone” on a near-term quantum computer,6 such 
as IBM-Q. As a first step, we use Neumark’s dilation theorem [16], which allows us to transform any POVM into 
the composition of unitary operators. In particular, the PGM can be represented as a suitable combination of quantum 
gates that can be implemented in a quantum circuit. Based on this intuition, the idea is to consider the PGM classifier 
process as divided into two distinct steps:

• First, the training part, which aims to define the PGM (and which is computed by a classical hardware).

6 The term “near-term quantum computer” refers to a type of device that is expected to become available in the near future and to perform specific 
computations for specific applications, albeit with limited qubit numbers and coherence times. Examples of near-term quantum computers include 
NISQ devices such as quantum annealers and quantum simulators.
10
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Fig. 1. The circuit that implements the PGM in IBM-Q simulator. This circuit only contains C-Not gates (indicated by the usual representation) and 
rotations Ri(n) along a given direction i (x, y or z) of a given angle n.

• Second, the test, which is based on the application of the PGM to the test set. We show here that this second 
step can be instantiated in a quantum hardware by applying the quantum circuit implementing the PGM (obtained 
during training) to each of the quantum states representing the encoded objects of the test set (see also [49] for 
different implementations of quantum-like algorithms).

The following is a simple example using the following procedure.

• We start with a classical data set (Lupus data set [47], given by 87 two-feature vectors divided into two classes7), 
and we perform the quantum coding of the data. We show how to compute the PGM induced by the training set 
(using classical hardware).

• Next, we decompose the PGM in terms of unitary operators by appealing to Neumark’s theorem. We do this using 
the QCompiler Wolfram package [28] (on classical hardware), which finds a representation in terms of the native 
gates of the quantum hardware (IBM-Q). The circuit representing the PGM for this example is shown in Fig. 1.

• Finally, we run the circuit in an IBM-Q quantum computer simulator using Qiskit [27]. We apply it to the different 
quantum states obtained by encoding the objects of the test set. For this example, we do not consider cross-
validation, but we have fixed a random partition of the Lupus dataset into 80% elements for the training set and 
20% elements for the test set (Fig. 2).

The comparison between the expectation results computed in the classical version of the algorithm and the output 
of the IBM-Q simulation can be seen in Table 1. More precisely, the expectation values of the classical version are 
obtained by computing the quantities8 pktr(Fkρ�x) that we have seen in Equation (12), for k = 1 and k = 2 (because the 
lupus data set consists of only two classes). The expectation values correspond to the probabilities of a given quantum 
object of the quantum test set being classified in the first or second class, respectively. Each quantum state of the test 
set is prepared as an actual quantum state in IBM-Q. In this way we run the circuit repeatedly to obtain the statistics 
associated with the application of the PGM circuit to each quantum test object. The output |000〉 corresponds to the 
classification in the first class, while the output |100〉 corresponds to the classification in the second class. We first 
consider a noiseless simulation with finite statistics (we use 1024 shots). Then we run the simulation with different 
noisy scenarios. The first one is implemented using the Qiskit simulator (backend FakeVigo). The second one is a kind 
of parameterised noise that is included in the Qiskit library as Pauli error (in our case we have fixed the value of the 
parameter p to p = 0.02). As expected, the noise produces different expectation values with respect to those obtained 
by the theoretical algorithm. However, as we can see from the mean squared error values in Table 1, this difference is 
quite small and has a marginal effect on the accuracy of the classification.

7 For simplicity, we have considered a two-class data set. However, the algorithm can be applied, without loss of generality, to an arbitrary n-class 
dataset.

8 In this example, the weights pk are set equal to the uniform distribution.
11
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Fig. 2. Here the expectation values calculated on class 1 with the theoretical PGM classifier are plotted against those obtained via IBM-Q simulator.

Table 1
Along the different rows we have the different elements of the test set, divided in the two classes. In the 
first column we have the expectation value for each element to be classified in the first or the second 
class, respectively. In the second column we have the noiseless simulation with finite statistics; in the other 
columns we have the statistics obtained for FakeVigo and Pauli error noises, respectively.

State Expectation Value Noiseless FakeVigo Pauli Error

|000〉 |100〉 |000〉 |100〉 |000〉 |100〉 |000〉 |100〉
Class 1 1 0.529 0.471 0.530 0.470 0.546 0.454 0.528 0.472

2 0.522 0.478 0.520 0.480 0.545 0.455 0.515 0.485
3 0.474 0.526 0.481 0.519 0.489 0.511 0.470 0.530
4 0.530 0.470 0.525 0.475 0.543 0.457 0.537 0.463
5 0.527 0.473 0.529 0.471 0.536 0.464 0.529 0.471
6 0.530 0.470 0.539 0.461 0.547 0.453 0.523 0.477
7 0.522 0.478 0.522 0.478 0.542 0.458 0.522 0.478
8 0.486 0.514 0.492 0.508 0.501 0.499 0.471 0.529
9 0.525 0.475 0.521 0.479 0.539 0.461 0.519 0.481
10 0.475 0.525 0.470 0.530 0.506 0.494 0.472 0.528
11 0.530 0.470 0.525 0.475 0.555 0.455 0.523 0.477

Class 2 1 0.359 0.641 0.363 0.637 0.415 0.585 0.365 0.635
2 0.068 0.932 0.071 0.929 0.202 0.798 0.104 0.896
3 0.377 0.623 0.379 0.621 0.438 0.562 0.392 0.608
4 0.395 0.605 0.392 0.608 0.435 0.565 0.412 0.588
5 0.522 0.478 0.526 0.474 0.547 0.453 0.525 0.475
6 0.522 0.478 0.512 0.488 0.537 0.463 0.521 0.479

Mean Squared Error 0.00002 0.00183 0.00013
Accuracy 0.706 0.706 0.824 0.706

6. Conclusion and open problems

In this work, we have addressed the problem of solving multi-class classification problems using quantum-inspired 
algorithms. We have presented the PGM algorithm, which is based on the PGM quantum state discrimination tech-
12
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nique and can be fully implemented on classical hardware. It represents an improvement in terms of computational 
efficiency over other variants, such as the Helstrom classifier. The reason is that, unlike the latter, the algorithm pre-
sented here is based on an intrinsically multi-class classifier that does not need to rely on computationally expensive 
strategies such as the One vs One or One vs Rest. The training part is the most time consuming part of our algorithm. 
It involves not only the encoding of each piece of classical information, but also the computation of the PGM matrix 
once the quantum centroids of the classes have been determined. Once these are obtained, one can compare each 
element of the test set, using the trace as a kind of distance in the quantum state space. The classification function is 
based on a fuzzy observable associated with a POVM determined by the training set. It is shown that an advantage 
in classification accuracy can be obtained, especially when considering tensor copies of the quantum representa-
tives.

Thus, the quantum-inspired approach introduced here leads to several potential benefits. First, as discussed in sec-
tion 4, we obtain an increase (on average) in the accuracy of the classification compared to other standard classical 
methods. Secondly, by using the PGM classifier, we avoid resorting to the standard One vs One or One vs Rest strate-
gies, which are time-consuming. Finally, we have shown a promising example that opens the door to the possibility 
of implementing our quantum-inspired classifier in a real quantum computer.

Many questions remain. Perhaps the most important one concerns the choice of the most appropriate quantum 
encoding for each data set. In [39,41], we have compared the application of some encodings to certain sets of artificial 
or real datasets, and we have found that the so-called amplitude encoding has a positive effect on the final accuracy of 
the quantum-inspired classifiers.

We have also explored how to implement the test part of the PGM algorithm in a quantum computer. This task 
requires a number of further steps. The quantum implementation allows us to highlight some important differences 
from its classical counterpart. First, it is important to emphasize that the encoding part is challenging. In principle, 
the quantum encoded version of a piece of classical information assumes that it is possible to prepare an arbitrary 
quantum state with high accuracy. As reported in the reference [49], this task can be very demanding for state-
of-the-art quantum computers, since, in addition to the need to find the necessary gates using classical hardware, 
one must add the fact that an arbitrary state may involve the use of many elementary gates, creating a scenario 
in which decoherence plays an important role. A similar consideration applies to the implementation of the PGM 
circuit, whose unitary matrix (computed according to Neumark’s theorem) is computed in a classical computer, as 
well as its decomposition in terms of native quantum hardware gates. Future research should therefore focus on the 
problem of finding quantum encoding functions that use fewer resources. This is a difficult task that raises non-trivial 
questions about which encodings actually lead to a performance advantage. In the quantum version, the averages 
are also calculated by performing repeated measurements on the same quantum state. Again, there is the problem of 
preparing a large enough number of copies to obtain a robust statistic for estimating these quantities.

Apart from the above challenges, one may wonder what happens when the number of features is large enough to 
create a quantum state of high dimension and reach a regime intractable by a classical computer. The same problem 
arises when tensor copies of the same state are used to improve performance (see the discussion in [19]). In this case, 
the algorithm could only be implemented in a quantum computer to overcome the large memory problem. Of course, 
this possibility would require that it is possible to find an encoding mechanism that allows to efficiently generate the 
quantum representatives of each piece of classical information and the PGM circuits. This is clearly an open problem 
that we will address in future work.
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Appendix A. Mathematical properties of the pseudoinverse

Let Cn be the finite complex Hilbert space of dimension n. B(H)+ will denote the set of all positive semidefinite 
bounded linear operator of Cn. The set of all projections of H will be denoted by P(H). Using E(H) we will denote 
the set of all effects of H, i.e. the set of all positive operator in B(H)+ that are bounded by the identity operator I. 
Thus, an effect is a an operator E of H such that O ≤ E ≤ I.

Definition 6.1. Let A be a linear operator of Cn. The pseudoinverse (or Moore-Penrose inverse) of A is an operator 
X of Cn such that the following conditions are satisfied:

i) AXA = A;
ii) XAX = X;

iii) (AX)† = AX, where † is the adjoint operation;
iv) (XA)† = XA.

One can prove that the pseudoinverse of any operator exists and is unique. The pseudoinverse of an operator A will 
be denoted by A�. It turns out that if A is invertible, then the inverse of A (i.e. A−1) coincides with A�.

Theorem 2. Let A be a linear operator of Cn. The following properties hold:

i) A is invertible iff A−1 = A�;
ii) (A�)� = A;

iii) (A†)� = (A�)†;
iv) if A ∈ B(H)+, then A� ∈ B(H)+;
v) AA� and A�A are projections;

vi) if A ∈ B(H)+, then AA� = A�A = Pim(A), where Pim(A) is the projection that projects onto the image of A.
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