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Carcinus spp. are global aquatic invaders and carriers of several parasites, including a taxonomically unrecog-
nised microsporidian recently observed from Argentina. We provide genome drafts for two parasite isolates, one
from Carcinus maenas and one from Carcinus aestuarii, and use multi-gene phylogenetics and genome comparison
methods to outline their similarities. Their SSU genes are 100 % similar and other genes have an average sim-
ilarity of 99.31 %. We informally name the parasite Agmasoma carcini, terming the isolates Ac. var. aestuarii and

Ac. var. maenas, following the wealth of genomic data available for each. This study follows on from Frizzera
et al. (2021), where this parasite was first histologically identified.

The microsporidia are a group of spore-forming obligate parasites of
Animalia and Protozoa across a range of environmentally diverse eco-
systems (Bojko et al., 2022). Their diversity includes over 1600 potential
species; however, ~290 species (~18 %) are formally described with
available pathological, ultrastructural, and genetic data (Murareanu
et al., 2021; Bojko et al., 2022). Fewer (~50 species) have genomic
sequence data available (Bojko et al., 2022). Systematics surrounding
the microsporidia has been changeable over the past century, but the
suggestion of a standard naming system that follows classic taxonomic
nomenclature introduces a straight-forward system to continue
describing new species and their higher taxonomy, using pathology,
ultrastructure, and genetic/genomic techniques (Bojko et al., 2022).

Many microsporidian parasites have been described from invasive
species, non-native organisms that negatively impact native biodiversity
and ecosystems at their invasion site(s). In some cases, invasive species
have been found to carry microsporidia to new ranges (Burgess and
Bojko, 2022) and in other cases their microsporidian parasites have had
a direct influence on their host’s invasiveness (Bojko et al., 2019). The
Crustacea, a group of invertebrate animals that have many associated
microsporidian parasites, includes multiple highly invasive species, such
as the European shore crab (invasive green crab) Carcinus maenas
(Brachyura) (Bojko et al., 2021). Carcinus maenas is associated with ~95
symbionts (Bojko et al., 2021), many of which are parasitic, and includes

5 microsporidian species: Parahepatospora carcini (Bojko et al., 2017);
Nadelspora canceri (Stentiford et al., 2013); Abelspora portucalensis
(Azevedo, 1987); Ameson pulvis (Sprague and Couch, 1971); and The-
lohania maenadis (Sprague and Couch, 1971). A relative of C. maenas,
Carcinus aestuarii is also a global invader associated with microsporidian
parasites (T. maenadis; Ormieresia carcini) (Vivares et al., 1977) and has
most recently been found to carry a microsporidian parasite to
Argentina, with genetic similarity to the genus Agmasoma (Enter-
ocytozoonida) (Frizzera et al., 2021). It is important to mention that
microsporidians are obligate parasites that can affect host health, rep-
resenting a potential danger for other crustaceans that may have
important economic or ecological value in Argentina.

The Enterocytozoonida currently holds 5 species with draft genomic
data: Hepatospora eriocheir (variants from Cancer pagurus and Eriocheir
sinensis) (accession: GCA_002087885; size: 4.70254 Mb; proteins: 2871;
BUSCO: 44.0 %); Enterospora canceri (accession: GCA_002087915; size:
3.09538 Mb; proteins: 2169; BUSCO: 53.5 %); Enterocytozoon bieneusi
(accession: GCA_000209485; size: 3.86074 Mb; proteins: 3632; BUSCO:
54.5 %); Enterocytozoon hepatopenaei (accession: GCA_002081675; size:
3.03974 Mb; proteins: 2536; BUSCO: 56.7 %); and Vittaforma corneae
(accession: NZ_AEYK00000000; size: 3.21352 Mb; proteins: 2239;
BUSCO: 75 %) (Mittleider et al., 2002; Akiyoshi et al., 2009; Wiredu
Boakye et al., 2017). In this study we provide a genome draft for the
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Agmasoma parasite infecting invasive C. aestuarii and C. maenas in
Argentina (Frizzera et al., 2021), and we sequence isolates from both
hosts to conduct a comparison and determine if it is the same species of
parasite infecting each host.

A single C. aestuarii and a single C. maenas collected by hand from the
intertidal zone around Puerto Madryn (45°50'S, 64°54'W) exhibited
microsporidian infections described by Frizzera et al. (2021), and were
dissected to obtain infected tissues in 96 % ethanol for DNA extraction.
DNA was extracted from hepatopancreas, muscle and gill tissue from
both animals using a ‘Wizard® genomic DNA extraction kit’ (Promega).
The DNA extracts were pooled for each host species, resulting in two
extracts that were submitted for paired-end next generation sequencing
with Novogene. The two samples were prepared into individual libraries
using an ‘NEBNext® Ultra™ DNA Library Prep Kit’ (PE150; Illumina)
and sequenced on an Illumina NovaSeq platform.

The sequence data for the C. aestuarii isolate included 3.5 x 10° raw
forward reads and 3.7 x 10° raw reverse reads. The sequence data for
the C. maenas isolate included 2.3 x 10° raw forward reads and 2.4 x
10°® raw reverse reads. The data were trimmed (Trimmomatic [LEAD-
ING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36]; Bolger et al.,
2014) and assembled (SPADES v.3.15.3 [phred-offset 33]; Bankevich
et al., 2012) separately. The resulting metagenomic assemblies
(C. aestuarii; n = 211,925 contigs > 1000 bp; N50: 2,146; L50: 65,319)
(C. maenas; n = 136,893 contigs > 1000 bp; N50: 1,549; L50: 63,999)
were then screened for similarity against all available microsporidian
proteins using blastx (NCBI), helping to isolate contiguous sequences
derived from the microsporidian parasites. Metaxa2 was used to isolate
the contigs that included the microsporidian ribosomal small-subunit
RNA gene (SSU) (Bengtsson-Palme et al., 2015). Trimmed reads were
then mapped to the microsporidian contigs in ‘CLC genomics workbench
22' (Qiagen) to confirm their contiguity. Microsporidian contigs were
then annotated using GeneMarkS (intronless eukaryotic mode; Besemer
et al., 2001) and each protein was checked against all available micro-
sporidian proteins using blastp (NCBI) and InterProScan. Via this
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method, the microsporidian isolate from C. aestuarii was represented by
70 contigs accounting for 4,248,920 bp of the parasite genome and
encoded a predicted 1,626 proteins (12X, average coverage) (Fig. 1).
The isolate from C. maenas was present at a much lower burden in the
host and was represented by a more fragmented assembly including 715
contigs accounting for 1,626,467 bp and encoded a predicted 769 pro-
teins (22X, average coverage). The contigs from the C. maenas isolate
were also mapped to the C. aestuarii microsporidian draft genome in CLC
genomics workbench v.9 to capture any missing contigs (similarity: 0.8;
coverage: 0.8). BUSCO (Simao et al., 2015) was used to determine the
overall completeness of the two genomes by comparing their translated
proteins to the microsporidia_odb10 database, resulting in values of
62.7 % (373 complete and single-copy BUSCOs; 3 complete and dupli-
cated BUSCOs; 3 fragmented BUSCOs; 221 missing BUSCOs) for the
C. aestuarii isolate and 20.3 % (122 complete and single-copy BUSCOs;
0 complete and duplicated BUSCOs; 25 fragmented BUSCOs; 453
missing BUSCOs) for the C. maenas isolate. Based on the BUSCO values
for the C. aestuarii isolate and other Enterocytozoonida, this might be the
second most complete genome of the Enterocytozoonida so far, after
V. corneae (Mittleider et al., 2002).

Conducting comparative genomics between the two isolates and the
broader Enterocytozoonida involved phylogenetic and sequence simi-
larity analyses. OrthoFinder (Emms and Kelly, 2019) was used to isolate
orthogroups shared between available Enterocytozoonida species with
genomic data (and outgroup Nosema granulosis; Nosematida) as well as
the two new isolates. The translated orthogroups (n = 784, with 75 % of
species having single-copy genes in any orthogroup) were then aligned
and used in a concatenated maximum-likelihood (ML) phylogeny using
the OrthoFinfer’s ‘iqtree’ and tree inference ‘msa’ options (Fig. 2). This
revealed that the two Agmasoma isolates branched at the base of the
Enterocytozoonida, together, with a branch distance of 0.0127 between
them. The average nucleotide similarity between all protein coding
genes was 99.31 %, with the most similar being 100 % and the least
similar being gene_390 (predicted: histidinol phosphatase) at 80.55 %.
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Fig. 1. A genome architecture plot of the contiguous sequences that encode protein coding genes, which compose the Agmasoma carcini var. aestuarii genome. The
genes annotated correspond to the BUSCO identification of GeneMarkS annotated proteins. A colour key is provided to highlight the broad function of each hy-
pothetical protein across 12 categories (see key). The plot was developed in RStudio (R Core Team, 2013) using the gggenes package (www.cran.r-project.org/we

b/packages/gggenes).
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Fig. 2. A multi-protein concatenated tree using 793 orthogroups with a minimum of 75.0 % of species having single-copy genes in any orthogroups, based on a
comparative genomics approach. The tree includes data from the genomes of Hepatospora eriocheir (GCA_002087885), Enterospora canceri (GCA_002087915),
Enterocytozoon bieneusi (GCA_000209485), Enterocytozoon hepatopenaei (GCA_002081675), Vittaforma corneae (NZ_AEYK00000000), and the two new Agmasoma
isolates, Agmasoma carcini var. aestuarii and Agmasoma carcini var. maenas. Nosema granulosis (Nosematida) is used as an outgroup to root the tree. Node support and
branch lengths (in green) are noted on the tree, which was developed using OrthoFinder. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

A single-gene ML tree was produced from the MAFFT aligned SSU
region of both Agmasoma isolates alongside 209 other microsporidian
parasite SSU sequences, using IQ-Tree (Nguyen et al., 2015), allowing
for broader comparison across microsporidian species from the Enter-
ocytozoonida and other higher taxa (Fig. 3). This tree highlighted that
the Agmasoma isolates form a well-supported branch alongside Agma-
soma penaei from Penaeus spp., at the base of the Enterocytozoonida.
Comparatively, the SSU and genome trees show the same topology;
however, the branch distance is greater between the Agmasoma isolates
when considering the multi-gene output from OrthoFinder.

A draft genome for a microsporidian at the base of the Enter-
ocytozoonida may prove valuable for further metabolomic work.
Wiredu Boakye et al. (2017) compared a series of metabolic pathways
present across several microsporidian genomes, highlighting that the
glycolysis pathway had been almost entirely lost from members of the
Enterocytozoonidae, but was largely maintained in the V. corneae
genome. Comparison between the V. corneae glycolysis proteins using
blastp revealed that the Agmasoma isolate from C. aestuarii appears to
have maintained the majority of genes, presenting putative homologous
proteins to the V. corneae pyruvate kinase (gene_451), phosphoglycerate
mutase (gene_78), hexokinase (glucose ATP phosphotransferase)
(gene_1542), pyruvate DHase E1 beta (gene_559), phosphofructokinase
(gene_1588), glyceraldehyde 3-phosphate dehydrogenase (gene_1110),
phosphoglucose isomerase (gene_511), and triose phosphate isomerase
(gene_216). However, homologous proteins to the V. corneae (or other
microsporidian) enolase (phosphopyruvate hydratase), fructose-
bisphosphate aldolase, pyruvate DHase E1 alpha, and phosphoglyc-
erate kinase, were not identifiable from either Agmasoma isolate. Other
than the potential evolutionary loss of these proteins, it may be more
likely that these proteins are encoded on a chromosomal region we have
not sequenced, or perhaps too divergent for us to determine using
available protein comparison methods. Use of InterProScan on potential

protein candidates with < 40 % similarity to the missing proteins did not
determine any conserved region that might suggest that they may
function appropriately.

Given the detailed phylogenetic and genomic detail provided for
these two isolates, it draws into question whether the field of Micro-
sporidiology and microsporidian systematics may begin to use genomic
data to parameterise species, genera, and higher taxonomic units.
Several recent taxonomic studies of microsporidian parasites have
drawn genetic parameters into their taxonomic descriptions, such as the
description of Parahepatospora carcini (Bojko et al., 2017). In the case of
these two new Agmasoma-like isolates, we show that the two share 100
% similar SSU genes (a common comparative gene for Microsporidia)
and that their comparable genomes are similar (overall, 99.31 %), and
that they branch closely in our phylogenetic and phylogenomic assess-
ments. Such information is used as a basis for viral taxonomy and pro-
moted by the International Committee for the Taxonomy of Viruses
(ICTV) to great effect.

It may be time for microsporidian taxonomy to take important steps
towards accepting the wealth of taxonomic detail that genomic data
provides. This suggests a movement away from reliance on develop-
mental and ultrastructural measurements when considering systematic
descriptions, in some cases. Conducting microscopy work would instead
be necessary to forward our understanding of the microsporidian
infection mechanism and host-parasite interactome. We (informally, at
this time) suggest that the species we present here be termed Agmasoma
carcini (with two variants: Ac var. aestuarii and Ac var. maenas) and use
genomic data as the primary feature for this systematic identification. In
this case, additional pathology data is provided by Frizzera et al. (2021)
for this Carcinus-infecting parasite, supplying a more classical element of
systematic description, but still lacking ultrastructure and develop-
mental information.

We conclude that this microsporidian parasite is a basal member of
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Fig. 3. A maximum-likelihood phylogenetic tree of microsporidian species focussing on the Enterocytozoonida, using SSU sequences. Bootstrap values are absent if
the value was above 90 %, otherwise the value is stated at the node. Additional annotation is provided, including details from recent literature, identification of the
different groups (Agmasoma sp.; Other Microsporidia; Out-group), and a star to represent those Enterocytozoonida that have genomic data available. The tree was

developed using IQ-Tree.
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the Enterocytozoonida, related to Agmasoma penaei, and a single
microsporidian species (informally termed Agmasoma carcini) that has
been determined to infect two related host crabs from the same bra-
chyuran genus, based on close phylogenetic topology of the two isolates,
their closely related SSU region, and similar protein coding gene se-
quences and protein products. The genome of the more complete
C. aestuarii microsporidian isolate is the second largest of the Enter-
ocytozoonida, with the first being H. eriocheir. We suggest that the two
parasites we sequence could be referred to as variants (Agmasoma carcini
var. aestuarii and Agmasoma carcini var. maenas), since there is notice-
able, strain-level, variation in their genome sequences despite being
largely similar. Further sequencing of isolates at highly variable sites in
the genome could provide a range of valuable diagnostic methods for
determining whether individual strains are more competent in either
host species and therefor help to predict the influence of the parasite in
these invasive brachyuran populations.
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