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Microfluidic chips are useful devices for cell culture that allow cell growth under highly controlled conditions, as
is required for production of therapeutic recombinant proteins. To understand the optimal conditions for growth
of cells amenable of recombinant protein expression in these devices, we culturedHEK-293T cells under different
microfluidic experimental conditions. The cells were cultured in polymethyl methacrylate (PMMA) and polydi-
methylsiloxane (PDMS)microdevices, in the absence or presence of the cell adhesion agent poly-D-lysine. Differ-
ent microchannel geometries and thicknesses, as well as the influence of the flow rate have also been tested,
showing their great influence in cell adhesion and growth. Results show that the presence of poly-D-lysine
improves the adhesion and viability of the cells in continuous or discontinuous flow. Moreover, the optimal ad-
hesion of cells was observed in the corners of the microchannels, as well as in wide channels possibly due to the
decrease in the flow rate in these areas. These studies provide insight into the optimal architecture of
microchannels for long-term culture of adherent cells in order to use microfluidics devices as bioreactors for
monoclonal antibodies production.

© 2015 Published by Elsevier B.V.
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R1. Introduction

Microfluidics allowsminiaturization of basic conventional biological
or chemical laboratory operations. Lab-on-a-chip technology has been
well accepted by biological and medical research communities as a
promising tool for engineering microenvironments at molecular, cellu-
lar and tissue levels [1]. In the early 1990s the first microfluidic devices
for biochemical applications were developed, and since then the field
has been rapidly expanding [2,3]. These microfluidic chips have been
used on a broad range of cell-oriented applications including monitor-
ing cellular activity [4], cell-based assays to test drug sensitivity [1],
cell-free protein synthesis [5] or monoclonal antibodies production [6,
7] among others.

In contrast to conventional static approaches,microfluidic-based cell
cultures are not only able to maintain well defined cell culture condi-
tions, but more importantly, allow to continuously provide cells with
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fresh media containing oxygen, carbon dioxide and nutrients while
removing metabolic products at a controlled flow rate [1,4,8].

Alternatively to early glass microfluidic chips, today polymers have
become the popular choice offering a wide range of chemical and
mechanical properties as well as better biocompatibility [2,9–11]. Com-
monly employed polymers are polydimethylsiloxane (PDMS) and
polymethyl-methacrylate (PMMA). Garza-Garcia and collaborators
engineered a chip with PMMA body and PDMS cover plate to produce
themonoclonal antibody Infliximab [6]. Recombinantmonoclonal anti-
bodies are used for treatment grave diseases including autoimmunedis-
orders and cancer [12], becoming one of the fastest growing areas in
biopharmaceutical industry. Currently,monoclonal antibodies commer-
cial production and other biotherapeutics are based on the synthesis in
bioreactorswith suspendedmammalian cells with agitation operated in
fed-batch or perfusion mode [13,14]. The monoclonal antibodies pro-
duction in stirred tanks faced challenges related to product quality
and process such as demand for higher productivity, glycosylation con-
trol and reproducibility. Most of these challenges are related to large
spatial and temporal variability of intrinsic fermenters conditions. One
way to improve control is to reduce the scale of the system byminiatur-
ization in the form ofmicro devices [15]. Amicro device provides sever-
al advantages, including shorter time response, a higher surface/volume
ratio and a more homogeneous and controllable microenvironment.
microfluidic chips for application in monoclonal antibody production,
.03.059
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Moreover, PDMS devices offer surfaces that can bemodified through
oligopeptides, polysaccharides, proteins adsorption or via plasma pro-
cessing to obtain specific surface features. Mimicking extracellular ma-
trix is a challenge that has been addressed by texturing microchannels
with fibronectin [6,7] and collagen [4,16] to achieve a better surface at-
tachment of cells.

In this study, antibody production cells HEK-293T [17]were cultured
in PMMA and PDMSmicrochannels in presence or absence of cell adhe-
sion agent poly-D-lysine to assess their compatibility for mammalian
cell culture and the effect ofmicrochip geometry on cell growth. Coating
with poly-D-lysine was chosen because it increases the number of
positively-charged sites on chip surface, enhancing electrostatic interac-
tions with the negatively charged groups on cell surface, therefore
improving adsorption while preserving biological activity.

2. Materials and methods

2.1. Microfluidic devices design and fabrication

Two different microfluidic devices have been designed using Layout
editor software (http://www.layouteditor.net). The first chip consists in
three different microchannel shapes 40 μm height × 0.4 mm width
(linear, zigzag and square waves), with an internal volume of 3.68 μL
(Fig. 1A).

In the second microfluidic chip, channels of 40 μm height, with
different serpentine shapes 100 μm wide and lengths between 12 and
80 mm, feed by a central channel (40 × 1.9 mm), and spacer channels
(12 × 1.2 mm) between serpentines, were designed. The internal vol-
ume is 17.8 μL (Fig. 1B). These different microchannel shapes and
widths have been designed and fabricated to test if cell adhesion and
growth depend on geometry.

The microdevices were built in PDMS. To do this, a mold of the
design in high relief was made by photolithography in a silicon wafer
700 μm thick (Virginia Semiconductor, Inc.), by using the negative
resin SU-8 (MicroChem). The silicon substrate was cleaned by sonica-
tion in acetone and isopropylic alcohol, and substrate surface was
dehydrated for 10 min at 200 °C. Then, SU-8 resist was dispensed on
the substrate and spun in two cycles. The spinner was accelerated for
5 s at 100 rpm·s−1 until 500 rpm, and held at 500 rpm for 5 s. In the
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Fig. 1. Microfluidic chips designs (A) lineal, zigzag and square wave microchannels,
internal volume of 3.68 μL, (B) serpentine microchannels, internal volume of 17.8 μL.
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spin cycle, a ramp of 300 rpm·s−1 was applied until 2000 rpm, and
held for 30 s. The resist was soft baked firstly at 65 °C for 20 min, and
secondly at 95 °C for 50 min. The substrate was aligned and the resist
was exposed to near UV at 650 mJ. The first step of a post-exposure
bake consisted on 65 °C for 12 min, and the second step at 95 °C for
15 min. Finally, the resist was developed for 15 min under agitation.
PDMS chip fabrication steps are described in supplementary material.
The first chip was also constructed from PMMA, which was
manufactured using a Class 2 CO2 laser etching system (Megalaser
ML-609), operating at 60 W and 200 mm·s−1 scan speed. Designs of
the plano-convex lenses were created using Layout editor software,
interfaced directly with the CO2 laser. Finally, the inlet and outlet of
the microdevice linked the microchannels with a syringe needle.

Two flow types have been used: continuous and discontinuous.
Continuous flow experiments consisted in connecting microfluidic
chips to a peristaltic pump (APEMA) and a bubble trap using PVC
tubes in a recirculation mode (See a scheme in supplementary materi-
al), this set-upwas inserted into an incubator at a constant temperature
of 37 °C, whereas discontinuous flow studies were carried out by
renewing culturemediumeach 24h. Cellswere cultured in an incubator
(Ciberbay) that is commonly used to incubate eggs as it allows to con-
trol temperature and humidity (See supplementary material).
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2.2. Cell culture and distribution

Themicrofluidic chips were disinfected using NaOH 0.1 mol·L−1 for
24 h, and then rinsed with sterile water. Before cell seeding, chip was
treated with poly-D-lysine hydrobromide 0.1 mg·mL−1 (Sigma) sterile
solution to improve cells attachment. The microdevice was incubated
with poly-D-lysine solution for one hour at 37 °C. The solution was
then removed and let dry 24 h at 4 °C. HEK-293T cells (ATCC CRL-
3216) were cultured in complete DMEMmedium (Gibco), supplement-
edwith fetal calf serumheat-inactivated (FBS) 10%(w/v) (Internegocios
SA), L-glutamine 2mmol·L−1 (Gibco), penicillin 100 units·mL−1, strep-
tomycin 100 μg·mL−1 and fungizone 0.250 μg·mL−1 (Gibco) at 37 °C in
an incubator with 5% CO2. Cells were resuspended with trypsin
0.50 mg·mL−1 and EDTA-4Na 0.2 mg·mL−1 (Gibco), and incubated at
37 °C for 3min. Trypsinwas inactivatedwith FBS and cells werewashed
with phosphate buffer solution (PBS) (NaH2PO4 50 mmol·L−1, NaCl
300 mmol·L−1, pH = 7.6) and centrifuged at 1000 rpm for 5 min.
Finally, cells were resuspended in the same complete DMEM medium,
supplemented this time with 20% FBS at 107 cells·mL−1.

The microchannels and PVC tubes were filled with 15 mL complete
DMEM medium, and the system was purged for 2 h. Next, HEK-293T
cells in suspension were seeded into the syringe needle in the inlet of
the microfluidic device. Cells were allowed to settle and microfluidic
device was incubated at 37 °C in incubator overnight. A flow rate of
5 μL·min−1 was applied to the peristaltic pump to constantly refresh
DMEM medium, so each channel flow rate was 1.67 μL·min−1. The
microchannels were visualized using an inverted Olympus microscope
CKX41. Brightfield imageswere takenwithOlympus objectives LUCPlan
FLN 40×/0.60; LCAch N 20×/0.40; PlanC N 10×/0.25; and PlanC N 4×/
0.10 with an Olympus QColor 5; and processed with QCapture Pro 6.0
software. Cell density inside microchannels with linear, zigzag, or
square wave (Fig. 1A) treated with poly-D-lysine was quantified. After
two days incubation with peristaltic pump, cell density in each configu-
rationwas determined through quantification using Open CFU software
[18] of 10× images acquired in triplicates. Bar graph analysis was
performed with Excel and the significant differences analysis between
the microchannels was made by t-test with the Statistica Package
software.

The analysis of cell distribution over time in multiple configuration
microdevices was determined through area quantification using Image
J software of 4× images acquired in quadruplicates for wide channels
and serpentine channel overtime, respectively. Bar graph and
microfluidic chips for application in monoclonal antibody production,
.03.059
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significant differences analysis between microchannels was made by t-
test performed with Excel (See supplementary material).

3. Results and discussion

The study of cell adhesion in the PMMAmicrodevice, in presence of
cell adhesion molecules such as poly-D-lysine, has been carried out. In
absence of poly-D-lysine, cells did not attach on any surface of the
PMMA microdevice channel and were washed away. In contrast,
when poly-D-lysine was present, cells were attached to the bottom of
themicrochannel, as it can be seen in Fig. 2A (see videos in supplemen-
tary material depicting cell flow in absence or presence of poly-D-ly-
sine). In the case of adhered cells, 5 μL·min−1 continuous-flow culture
medium was provided by peristaltic pump.

Since presence offlowwashed away cells in the chipwithout poly-D-
lysine we tested whether discontinuous flow allowed cell adhesion.
HEK-293T cells were seeded in a PDMS microdevice without poly-D-
lysine addition and in discontinuous flow with fresh media pulses
every 24 h (Fig. 2B). Although most of the cells were washed away by
the first discontinuous flow, after 24 h some cells attached to channel
walls instead of glass floor. Cells remained attached to the channel
walls after the second day even though PDMS does not have intrinsic
charge. It is possible that themild texture of walls provides enough sup-
port for cells to attach, but they did not grow further.

In contrast, when poly-D-lysine was present in PDMS chips, cells
showed good adhesion to the bottom. In one of the chips, three different
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Fig. 2. Cells incubation on microdevices with and without poly-D-lysine coating. Panel A
shows inverted microscope optical images of HEK-293T cells, attached to PMMA
microchannel bottom. HEK-293T cells were attached to microchannels bottom, coated
with poly-D-lysine (0.1 mg·mL−1), at 37 °C. Panel B shows HEK-293T cells incubated for
two days on a PDMS chip without poly-D-lysine coating. HEK-293T cells were attached
to walls but not to glass floor. Cells were cultured under the following conditions:
discontinuous flow, atmosphere of 5% CO2, 37 °C. Panel C shows a bar graph of the
quantification of HEK-293T cell densities in linear, zigzag and square waves
microchannels geometries in PDMS chips coated with poly-D-lysine. Error bars indicate
standard deviation of triplicate determinations and significance in difference was
determined by t-test for non-paired data, with two tails and unequal variances. Significant
difference is represented by * p b 0.001.
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microchannel geometries (lineal, zigzag and square wave, Fig. 1A) were
assessed. Before starting flow rate, cells settled and the distribution was
homogeneous trough all microchannels. When flow rate started to run,
it was observed that zigzag and square waves configurations presented
cell accumulation at corners due to the lower local flow velocity and
vorticity field in these areas, facilitating cell deposition and attachment,
as previously described by Garza-Garcia et al. [6,7]. As expected, linear
channel showed less cell adhesion. Fig. 2C shows differences in cell den-
sity after two days incubation in different microchannel configurations.
As thought, the lineal channel showed significantly lower cell density
compared to zigzag and square wave channels. This could be associated
to the fact that linear microchannel exhibit the fastest lineal speed
(1.1 mm·s−1) in comparison with zigzag (0.57 mm·s−1) and square
waves (0.47 mm·s−1), which have the lowest lineal speed. We also
observed that there was a significant difference in density
(p b 0.0001) between zigzag versus square waves microchannels.

Different serpentine designs separated by wide channels were test-
ed in a PDMS microdevice in a discontinuous flow rate. In this case,
after 16 h of cells deposition, the DMEM culture medium was renewed
each 24 h under 5% CO2 and 37 °C (Fig. 3).

Under this condition, at seeding day (day 0) cells were not distribut-
ed uniformly through all microchannels (Fig. 3). As expected, it was ob-
served that cell localization is more frequent in the wide channels than
in the serpentine channels. In fact, at day 0 cells cover a significantly
larger area (1.5 higher) in wide channels than serpentine channels.
Two days after cells seeding, the most of cells in serpentine channels
were washed and the individual cells were adhered to the wide chan-
nels bottom. High fluid velocity of the narrow microchannels seems to
result in constant washing of cells, favoring their carrying and deposi-
tion to quieter areas (See supplementary material). Over time, cells
began to form clusters and to extend processes around the clusters. At
day five cells consolidate their growth in clusters on the floor of the
wide microchannels, with almost no cells in the serpentine channels
(Fig. 4), resulting an area covered by cells that is 29.5 fold higher in
wide channels compared to serpentine channels (See supplementary
material). At day eight, cells began to show signs of stress, with granu-
lations in the cytoplasm and the experiment was concluded.

4. Conclusions

HEK-293T cells have been cultured in microdevices with different
materials, microchannel geometries and experimental conditions. Use-
fulness of poly-D-lysine as cell adhesion molecule in microfluidic chips
has been confirmed in both PMMA and PDMS materials. Besides, chan-
nel geometry significantly influences cells adhesion and growth,
Fig. 3. Distribution of cells along microchannels with multiple configurations. HEK-293T
cells were not distributed uniformly through microchannels on day 0. Microchannels
were coated with poly-D-lysine and cells were cultured in discontinuous flow at 5% CO2

and 37 °C.

microfluidic chips for application in monoclonal antibody production,
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Fig. 4. Incubation of cells on PDMS microdevices with poly-D-lysine coating. Images of
HEK-293T cells cultured for eight days attached to the bottom of the wide
microchannels coated with poly-D-lysine.
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showing that cells tend to grow in themicrochannel corners, and conse-
quently in the square waves channel. Moreover, in another chip with
multiple configurations it has been observed that wide channels are
more suitable for cell stabilization, providing adequate environment
for cells to attach and grow. This seems to be associated to reduction
in fluid speed inwidemicrochannels favoring cells retention, accumula-
tion, and attachment.

This paper provides new insights in cells growth for monoclonal an-
tibodies production, using microfluidics chips as potential bioreactors.
These results show that HEK-293T cells can attach and grow in
microfluidic devices preferably in areas with reduced flow for at least
eight days, demonstrating the usefulness of microfluidics chips as
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Please cite this article as: A. Peñaherrera, et al., Evaluation of cell culture in
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bioreactors, which defines a direction for future work. Although we
did not show antibody expression by the cultured cells, an extensive
characterization of cell growth as well as antibody production study
will be the subject of future publications.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.mee.2016.03.059.
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