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Abstract: The mortality rates of patients infected with Acinetobacter baumannii who were treated
with cefiderocol (CFDC) were not as favorable as those receiving the best available treatment for
pulmonary and bloodstream infections. Previous studies showed that the presence of human serum
albumin (HSA) or HSA-containing fluids, such as human serum (HS) or human pleural fluid (HPF),
in the growth medium is correlated with a decrease in the expression of genes associated with high-
affinity siderophore-mediated iron uptake systems. These observations may explain the complexities
of the observed clinical performance of CFDC in pulmonary and bloodstream infections, because
ferric siderophore transporters enhance the penetration of CFDC into the bacterial cell. The removal
of HSA from HS or HPF resulted in a reduction in the minimal inhibitory concentration (MIC)
of CFDC. Concomitant with these results, an enhancement in the expression of TonB-dependent
transporters known to play a crucial role in transporting iron was observed. In addition to inducing
modifications in iron-uptake gene expression, the removal of HSA also decreased the expression of
β-lactamases genes. Taken together, these observations suggest that environmental HSA has a role
in the expression levels of select A. baumannii genes. Furthermore, the removal of iron from HSA
had the same effect as the removal of HSA upon the expression of genes associated with iron uptake
systems, also suggesting that at least one of the mechanisms by which HSA regulates the expression
of certain genes is through acting as an iron source.

Keywords: Acinetobacter baumannii; human serum albumin; cefiderocol; iron; human pleural fluid;
carbapenem-resistance

1. Introduction

The development of novel and effective antibiotic treatments is an urgent need
created by the increased number of antibiotic-resistant bacteria. Multi- or pan-drug-
resistant Acinetobacter baumannii strains, recognized as urgent threats by the Centers for
Disease Control and Prevention (CDC), are responsible for serious and often untreat-
able hospital-acquired infections [1,2]. Especially worrisome are the infections caused by
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carbapenem-resistant A. baumannii (CRAB) strains, for which only a few treatment options
are available [3–5].

Cefiderocol (CFDC), a recently approved broad-spectrum antibiotic, is one of the few
existing options to treat CRAB infections [6–10]. CFDC is a hybrid molecule that consists of
a cephalosporin component, which targets cell wall synthesis, linked to a catechol moiety, a
chemical addition that facilitates cell penetration by active high affinity ferric siderophore
transporters [6–9,11]. CFDC is approved to treat nosocomial pneumonia and urinary tract
infections caused by extensively drug-resistant (XDR) Gram-negative bacteria [4,12,13].
However, the CREDIBLE-CR randomized trial showed that the mortality rates of patients
infected with A. baumannii and treated with CFDC were higher than the best treatment
available for pulmonary and bloodstream infections [4]. In contrast, mortality rates did not
increase in CFDC-treated urinary tract infections [4].

Previous work has shown that HSA and unmodified HSA-containing fluids, such as
human serum (HS) and human pleural fluid (HPF), modulate the transcriptional expres-
sion of various genes associated with several A. baumannii functions, including antibiotic
resistance, DNA acquisition, and iron uptake [14–17]. The changes in the transcriptional
expression of genes associated with iron uptake systems may be linked to the lower success
seen in treating A. baumannii infections in humans with CFDC [4,18,19]. The addition of HS,
HPF, or purified HSA to the growth medium was associated with an increase in the CFDC
MICs of three CRAB-model clinical isolates with different genetic backgrounds [20]. Under
these testing conditions, genes that are part of high-affinity iron-uptake systems were
downregulated and those associated with resistance to β-lactams were upregulated [20].
In contrast, the addition of human urine (HU), which contains only traces of HSA or free
iron, did not result in modifications to CFDC MICs. Moreover, these conditions resulted
in an enhancement of the transcription of TonB-dependent receptors (TBDRs) such as
piuA, pirA, bauA, and bfnH [17]. These results strongly suggested that human bodily fluids
with high HSA contents induce changes in the expression of iron uptake and β-lactam
resistance-associated genes in A. baumannii. It was also observed that modifications to the
levels of expression of high-affinity iron uptake system components resulted in variations
of the CFDC MIC values [20].

These data lead us to hypothesize that the presence of HSA creates an iron-rich
environment that represses the expression of iron-uptake genes, thereby limiting CFDC’s
entrance into bacterial cells. In this work, we focus on the analysis of the effect of HSA
on CFDC susceptibility and on the expression of genes coding for siderophore-mediated
iron acquisition functions and β-lactamases in CRAB. We also show that at least one of the
mechanisms by which HSA regulates the transcription of genes coding for siderophore-
mediated iron acquisition is associated with HSA acting as an important host iron source
that A. baumannii encounters during infection.

2. Results and Discussion
2.1. HSA Present in Human Fluids Alters CFDC MICs via a Global Transcriptional Response

HSA, the predominant protein in human plasma and extracellular fluids, acts as a
key host signal triggering an adaptive response in a variety of pathogens and serves as an
important host iron reservoir [14,16,20,21,21–25]. For these reasons, we sought to determine
whether HSA causes changes in the MIC values of CFDC when A. baumannii is exposed to
HPF or HS, host fluids that have 50–70% and 90–96% HSA, respectively. For this purpose,
the A. baumannii CRAB strains AB5075 and AMA40, previously used as model clinical
isolates [26–28], were cultured in iron-depleted, cation-adjusted Mueller Hinton (CAMHB),
100% HS, or CAMHB supplemented with 4% HPF, as well as in the presence of the cognate
HSA-free derivatives of these two human fluids, which were prepared as described in
Materials and Methods.

This analysis showed a slight but not significant decrease in the CFDC MIC for strain
AB5075 when HSA was removed from both fluids (1 doubling dilution) (Table 1). For strain
AMA40, the effect observed was more pronounced when HSA was not present. A decrease
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of four and seven doubling dilutions was seen when HSA was removed from HS and HPF,
respectively (Table 1). Notably, in addition, the appearance of colonies within the growth
inhibition zones (heteroresistant cells) was detected in samples cultured in the presence of
HS and HPF, but not when bacteria were cultured under HSA depleted conditions.

Table 1. Minimal inhibitory concentrations (MICs) of cefiderocol (CFDC) for the CRAB AB5075 and
AMA40 strains, calculated using CFDC MTS strips (Liofilchem S.r.l., Italy) on iron-depleted CAMHA
(cation-adjusted Mueller Hinton agar) and the different conditions tested.

Condition
CFDC MIC (mg/L)

AB5075 AMA40

CAMHB 0.5 (S) 0.5 (S)
4% HPF 1 (S) 16 * (R)
4% HPF HSA free ** 0.5 (S) 0.25 (S)
100% HS 1 (S) 4 * (S)
100% HS HSA free ** 0.5 (S) 0.25 (S)

CFDC: cefiderocol, S: susceptible, R: resistant; * intra-colonies are present. ** HSA removal, Sigma Aldrich.

In order to further verify the role of HSA as a specific inducer of these A. baumannii
responses, transcriptional analysis via the quantitative RT-PCR (qRT-PCR) of both strains
cultured in the presence of HS and HPF and their cognate HSA-free derivatives was also
assessed. The expression of the TBDR-dependent bauA, pirA, piuA, and bfnH genes, which
code for active iron uptake systems, and genes coding for β-lactamases (blaOXA-51-like,
blaADC, blaOXA-23, blaNDM-1, and blaGES-11), were evaluated. In both CRAB strains, we
observed that the expression of TonB-dependent receptors (TBDRs) genes was significantly
increased when HSA was not present in HS (Figure 1A,B, Table S1), suggesting that HSA
plays a specific role in triggering the observed changes. As predicted from the consideration
of previous observations [28], an opposite result was observed when we analyzed the
expression of the β-lactamases genes. A statistically significant decrease in the level of
expression of blaOXA-51-like was seen when AB5075 was incubated in the presence of HS
lacking HSA (Figure 1C, Table S1). Notably, no significant changes were not seen for blaADC,
blaOXA-23, and blaGES-11 (Figure 1C, Table S1). For AMA40, statistically significant decreases
in transcript levels were seen for the three β-lactamases genes (blaOXA-51-like, blaADC, and
blaNDM-1) present in the strain (Figure 1D, Table S1).

Previous studies have shown a wide transcriptional response (1120 differentially
expressed genes) and an impact on CFDC MICs when A. baumannnii was exposed to
HPF [14,28]. Here, we studied the specific effect of HSA when present in this fluid. Consid-
ering that HPF possesses a high HSA-content but also other components, such as reactive
oxygen species, monocytes, granulocytes, and other human proteins such the iron chelating
protein ferritin, HPF free of HSA was used to assess the differential transcription response
of genes coding for TBDRs and β-lactamases.

Importantly, qRT-PCR results showed that when the A. baumannii AB5075 and AMA40
strains were exposed to HSA-free HPF, a statistically significant up-regulation of bauA,
pirA, piuA, and bfnH occurred when compared with untreated HPF (Figure 2A,B, Table S1).
These results, together with those obtained with further HS, support the postulated role
HSA plays in regulating the transcriptional expression of A. baumannii genes coding for
transport functions associated with siderophore-mediated iron acquisition processes.
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bfnH) and bla genes (blaOXA-51-like, blaADC, blaOXA-23, blaNDM-1, and blaGES-11) expressed in the presence of 
human serum (HS) or HSA-free HS. The data shown are the mean ± SD of normalized relative quan-
tities (NRQ) obtained from transcript levels calculated using the qBASE method. This method is a 
modification of the classic ΔΔCt method used to take multiple reference genes (in this work, rpoB 
and recA) and gene-specific amplification efficiencies into account. At least three independent sam-
ples were used, and four technical replicates were performed from each sample. The HS condition 
was used as reference. Statistical significance (p < 0.05) was determined by two-way ANOVA fol-
lowed by Tukey’s multiple comparison test, one asterisk: p < 0.05; two asterisks: p < 0.01; three as-
terisks: p < 0.001; and four asterisks: p < 0.0001. 
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Figure 1. Expression analysis of iron uptake genes and genes coding for β-lactamases in the
AB5075 (A,C) and AMA40 (B,D) strains. The qRT-PCR of TonB-dependent receptors (pirA, piuA,
bauA, and bfnH) and bla genes (blaOXA-51-like, blaADC, blaOXA-23, blaNDM-1, and blaGES-11) expressed in
the presence of human serum (HS) or HSA-free HS. The data shown are the mean ± SD of normal-
ized relative quantities (NRQ) obtained from transcript levels calculated using the qBASE method.
This method is a modification of the classic ∆∆Ct method used to take multiple reference genes (in
this work, rpoB and recA) and gene-specific amplification efficiencies into account. At least three
independent samples were used, and four technical replicates were performed from each sample.
The HS condition was used as reference. Statistical significance (p < 0.05) was determined by two-way
ANOVA followed by Tukey’s multiple comparison test, one asterisk: p < 0.05; two asterisks: p < 0.01;
three asterisks: p < 0.001; and four asterisks: p < 0.0001.

The transcriptional analysis of the expression of β-lactamases genes in HSA-free HPF
showed a statistically significant decrease in the level of expression of all the genes for both
A. baumannii strains (Figure 2C,D, Table S1).

Taken together, the presented analysis supports the hypothesis that HSA is a significant
factor contributing to A. baumannii transcriptional responses, which have a major impact
on CFDC antibacterial efficacy. In addition, these results further support observations
made by Le et al. asserting that fluids with high HSA contents (HPF and HS), or pure HSA
at a physiological concentration, down-regulate the expression of iron-uptake systems,
while genes associated with β-lactam resistance are up-regulated [29]. In A. baumannii,
the role of HSA in affecting the expression of genes involved in its antibiotic resistance
and pathogenesis has also been previously reported [14,16,17,30,31]. In addition, HSA in
combination with carbapenems showed a synergistic increase in natural transformation
and expression of competence genes. [29]. Similarly, Ledger et al. showed that HSA directly
triggers tolerance to the lipopeptide antibiotic daptomycin in Staphylococcus aureus [24].
This tolerance was attributed to the GraRS two-component regulatory system, leading to
increased peptidoglycan accumulation as well as another independent mechanism that
results in membrane cardiolipin abundance [24]. Notably, these investigators also showed
the specific and direct role of HSA as the molecule mediating the observed effects with
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S. aureus [24]. In addition, the role of HSA in augmenting virulence was not only seen in
bacteria. In pathogenic fungi, such as Candida glabrata, the presence of HSA also contributes
to the virulence of this species [25].
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Figure 2. Expression analysis of iron uptake genes and genes coding for β-lactamases in the
AB5075 (A,C) and AMA40 (B,D) strains. The qRT-PCR of TonB-dependent receptors (pirA, piuA, bauA,
and bfnH) and bla genes (blaOXA-51-like, blaADC, blaOXA-23, blaNDM-1, and blaGES-11) genes expressed
in cation-adjusted Mueller Hinton (CAMHB) supplemented with either human pleural fluid (HPF)
or HSA-free HPF. The data shown are the means ± SD of normalized relative quantities (NRQ) ob-
tained from transcript levels calculated via the qBASE method. This method is a modification of the
classic ∆∆Ct method to take multiple reference genes (in this work, rpoB and recA) and gene-specific
amplification efficiencies into account. At least three independent samples were used, and four
technical replicates were performed from each sample. The CAMHB HPF was used as reference.
Statistical significance (p < 0.05) was determined by two-way ANOVA followed by Tukey’s multiple
comparison test, two asterisks: p < 0.01; three asterisks: p < 0.001; and four asterisks: p < 0.0001.

2.2. Role of Ferric HSA on A. baumannii Response Affecting CFDC Susceptibility

The results obtained with HSA-free fluids strongly support the possibility that HSA is
the molecule modulating changes in the expression of genes coding for iron acquisition
and β-lactam resistance functions, both of which contribute to alterations in CFDC MICs.
However, the mechanisms by which HSA triggers these effects are not yet fully understood.
HSA could be playing at least two possible roles: (i) HSA exerts a direct role in the
modulation of virulence-associated phenotypes; or (ii) HSA serves as a carrier of metal
ions, such as iron [32,33], affecting the differential expression of genes coding for active iron
uptake systems and β-lactam resistance genes. These roles may impact CFDC’s efficacy.

With the aim of evaluating whether HSA is acting as an iron carrier causing the down-
regulation of genes associated with iron-uptake ultimately affecting CFDC activity, iron
was removed from HSA (Fe-free HSA). The transcriptional analysis by qRT-PCR showed
that when A. baumannii was exposed to Fe-free HSA, a statistically significant up-regulation
of bauA, pirA, piuA, and bfnH occurred in both evaluated strains (Figure 3A,B). In addition,
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when Fe-free HSA was supplemented with FeCl3 or untreated HSA, the transcription
expression levels of the tested genes were restored to levels comparable to those of samples
incubated with untreated HSA (Figure 3A,B). These results indicate that the iron carried by
HSA plays a role in regulating the expression of A. baumannii iron-acquisition genes.
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AB5075 (A,C) and AMA40 (B,D) strains. qRT-PCR of pirA, piuA, bauA, bfnH, blaOXA-51-like, blaADC,
blaOXA-23, blaNDM-1, and blaGES-11 expressed in human serum albumin (HSA), HSA Fe-free, HSA
Fe-free supplemented with FeCl3, or HSA Fe-free supplemented with HSA. The data shown are
the means ± SD of normalized relative quantities (NRQ) obtained from transcript levels calculated
via the qBASE method. This method is a modification of the classic ∆∆Ct method used to take
multiple reference genes (in this work, rpoB and recA) and gene-specific amplification efficiencies into
account. At least three independent samples were used, and four technical replicates were performed
using each sample. The HSA condition was used as a reference. Statistical significance (p < 0.05)
was determined by two-way ANOVA followed by Tukey’s multiple-comparison test, one asterisk:
p < 0.05; two asterisks: p < 0.01; three asterisks: p < 0.001; and four asterisks: p < 0.0001.

Expression levels ofβ-lactamases genes in Fe-free HSA were next evaluated. A. baumannii
cells cultured in Fe-free HSA, showed a significant decreased in blaOXA-51-like transcripts
for AMA40 with respect to the untreated HSA condition (Figure 3D). Significant changes
were not seen for either strain in the transcript levels for the other β-lactamases genes
under these conditions (Fe-free HSA) (Figure 3C,D). However, when Fe-free HSA was
supplemented with FeCl3 or HSA, the expression levels were restored (blaOXA-51-like) or
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increased compared to those of the HSA condition (Figure 3C,D). Statistically significant
increases varied depending on the evaluated gene, condition, and strain (Figure 3C,D).

Studies in vitro have shown that the intrinsic activity of CFDC against Pseudomonas aeruginosa
is enhanced under iron-limited conditions [9], showing that supplementation with ferric
iron increases CFDC MICs. In order to assess whether the same effect occurs in A. baumannii,
we tested the role of free iron on AMA40 and AB5075 CFDC MICs in vitro. A significant
increase in CFDC MICs was noted when the iron-depleted media (CAMHA) was supple-
mented with 20 µM FeCl3 or 40 µM FeCl3 (Table S2). These results not only show that the
effect of iron on CFDC is independent of the pathogen studied, but also suggest that the
variations in the iron content of different human fluids (free iron or iron bound to human
proteins) could be a potential factor that affects the efficacy of CFDC.

We next decided to determine the effect of ferric HSA at the phenotypic level through
changes in the susceptibility of the bacteria to CFDC. CFDC MICs for AMA40 and AB5075
using CAMHB (untreated), CAMHB supplemented with HSA pre-Chelex® treatment
(HSA Fe), or Fe-Free HSA were performed. In addition, the CAMHB was supplemented
with Fe-Free HSA + 100 µM FeCl3 and Fe-Free HSA + 3.5% HSA in order to further
determine the role in CFDC susceptibility. The minimal bactericidal concentration (MBC)
was also determined under these conditions while keeping in mind the occurrence of
heteroresistance that cannot be detected using the microdilution method. A decrease was
observed in the MIC and MBC values for AB5075 when the iron was removed from HSA;
values were restored or even further increased more when inorganic iron was added back
to the Fe-free HSA tested condition (Table 2). A similar response was observed when
untreated HSA was added to the medium. Similarly, in the AMA40 strain, MIC and MBC
values decreased when iron was removed, while restored or increased when iron or HSA
were added (Table 2). These results indicate that iron-rich HSA and/or the presence of free
inorganic iron are associated with reduced susceptibility to CFDC.

Table 2. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations
(MBCs) of CFDC for the CRAB AB5075 and AMA40 strains calculated via microdilution on iron-
depleted CAMHB and the different conditions tested.

Strains

CFDC

AB5075 AMA40

MIC
(mg/L)

MBC
(mg/L)

MIC
(mg/L)

MBC
(mg/L)

Untreated 0.25 (S) 0.25 (S) 0.5 (S) 32 (R)

HSA pre-Chelex® treatment 8 (I) 32 (R) 2 (S) 64 (R)

HSA Fe-Free (post-Chelex® treatment) 0.125 (S) 8 (I) 1 (S) 16 (R)

HSA Fe-Free + 100µM FeCl3 32 (R) 256 (R) 128 (R) 128 (R)

HSA Fe-Free + 3.5% HSA 8 (I) 64 (R) 4 (S) 64 (R)
CFDC: cefiderocol, S: susceptible, I: intermediate, R: resistant.

2.3. Changes in the Expression of Genes Coding for Iron Uptake Functions and β-Lactam
Resistance in Cerebrospinal Fluid (CSF), a Low HSA Content Fluid

Previous work showed that a human fluid, such as urine, with no or a trace amount
of HSA triggers different A. baumannii behavioral and transcriptional responses [28]. This
work also showed that CFDC MICs values are not significantly modified, while the ex-
pression of piuA, pirA, bauA, and bfnh was enhanced when bacteria were cultured in urine,
suggesting that CFDC uptake through active iron transport systems is not impaired [28].

Since the incidence of A. baumannii as a causal agent of nosocomial meningitis has
been increasing in recent years with a mortality rate of 15–71% [34,35], and knowing that
only 1% of the cerebrospinal fluid (CSF) content corresponds to proteins, HSA representing
70% of these proteins [36], we decided to study the expression of genes coding for iron
uptake systems and β-lactams resistance when A. baumannii cells are exposed to 20% CSF.
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It is important to note that our analysis resulted in no detectable iron in 100% and 20% CSF
samples (see Table S3). qRT-PCR showed that the exposure of A. baumannii to CSF resulted
in a statistically significant up-regulation of piuA, pirA, and bfnH with both tested strains
when compared to the CAMHB control (Figure 4A,B). In contrast, bauA transcription
was down-regulated, although not significantly, when compared to the same control
(Figure 4A,B). These observations agree with the results of Nishimura et al., showing a
similar differential expression of iron acquisition genes when A. baumannii encounters
human fluids with low HSA contents [28]. Moreover, the expression levels of β-lactamases
genes are also affected by the presence of CSF; promoting the statistically significant down-
regulation of bla genes tested in both strains (Figure 4C,D). As expected, considering the
previous results seen in urine, changes in the MIC to CFDC were not observed when
A. baumannii AB5075 or AMA40 were exposed to CSF (Table S3).
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Figure 4. Expression analysis of iron uptake genes and genes coding for β-lactamases in the
AB5075 (A,C) and AMA40 (B,D) strains. qRT-PCR of TonB-dependent receptors (pirA, piuA, bauA,
and bfnH) and bla genes (blaOXA-51-like, blaADC, blaOXA-23, blaNDM-1, and blaGES-11) expressed in cation-
adjusted Mueller Hinton (CAMHB) or CAMHB supplemented with cerebrospinal fluid (CSF). The
data shown are the means ± SD of normalized relative quantities (NRQ) obtained from transcript
levels calculated by the qBASE method. This method is a modification of the classic ∆∆Ct method
used to take multiple reference genes (in this work, rpoB and recA) and gene-specific amplification
efficiencies into account. At least three independent samples were used. CAMHB was used as the
reference condition. Statistical significance (p < 0.05) was determined by two-way ANOVA followed
by Tukey’s multiple-comparison test, one asterisk: p < 0.05; two asterisks: p < 0.01; three asterisks:
p < 0.001; and four asterisks: p < 0.0001.

In summary, these results support the hypothesis that the absence of detectable iron
and the low HSA content of CSF compared to HS or HPF are the signals that affect the
antimicrobial activity of CFDC.
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3. Concluding Remarks

The results obtained in the present work further expand upon previous investigations
and provide insights into earlier observations suggesting that human fluids containing
high concentrations of HSA, including HPF and HS, affect the potency of CFDC as an
antibacterial agent against A. baumannii. Here, we demonstrate that HSA is a critical host
product that significantly affects the antimicrobial efficacy of CFDC. This undesirable
outcome is due to the capacity of HSA and HSA-containing fluids to act as a viable iron
source, which ultimately downregulates the transcriptional expression of genes that code
for the active transport of A. baumannii high-affinity siderophores, particularly those that
include a catechol moiety. Our data show that such a response correlates with significant
increases in CFDC MICs. On the other hand, the mechanism by which the presence of ferric
HSA controls the differential expression of genes coding for β-lactam resistance remains to
be elucidated.

It must be noted that this study was conducted on two A. baumannii strains. Consider-
ing the high genetic variability of this bacterium, we cannot be sure that the phenomenon
is present in all strains of A. baumannii. Also, this investigation was conducted using
pure fluids (a highly controlled environment). In contrast, the milieu wherein humans
suffer from infections is very complex. We know that A. baumannii has numerous clinical
manifestations and can cause different disease states. In each of these cases there may be
multiple effects on gene expression. It would therefore be premature to extrapolate our
in vitro results to what happens in the human body. Experiments using animal models of
infection will help to assess the clinical environments’ impact on A. baumannii, regulating
gene expression to modify levels of resistance to CFDC.

4. Materials and Methods
4.1. Bacterial Strains

The carbapenem-resistant A. baumannii AB5075 (blaOXA-51-like, blaADC, blaOXA-23, and
blaGES-11) [26,29,31] model strain and the clinical carbapenem-resistant AMA40 (blaOXA-51-like,
blaADC, and blaNDM-1) isolate [27,28,37], belonging to different clonal complexes, were used
in this work.

4.2. RNA Extraction, Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

A. baumannii AB5075 and AMA40 cells were cultured in iron depleted cation adjusted
Mueller Hinton (CAMHB) and incubated with agitation for 18 h at 37 ◦C. Overnight cultures
were then diluted 1:10 in fresh CAMHB, CAMHB supplemented with 3.5% human serum
albumin (HSA), 3.5% iron-free HSA, 3.5 iron-free HSA + 100 µM FeCl3, 3.5% iron-free HSA +
100 µM FeCl3 + 3.5% HSA. Bacteria were also cultured in CAMHB supplemented with
4% human pleural fluid (HPF), CAMHB supplemented with HSA-free HPF, 100% human
serum (HS) or 100% HSA free HS. All samples were incubated with agitation for 18 h at
37 ◦C. RNA was immediately extracted using the Direct-zol RNA Kit (Zymo Research,
Irvine, CA, USA) following the manufacturer’s instructions, as previously described [28].
Total RNA extractions were performed in three biological replicates for each condition.
The extracted and DNase-treated RNA was used to synthesize cDNA iScriptTM Reverse
Transcription Supermix for qPCR (Bio-Rad, Hercules, CA, USA) using the manufacturer’s
protocol. The cDNA concentrations were adjusted to 50 ng/µL, and qPCR was conducted
using the qPCRBIO SyGreen Blue Mix Lo-ROX following the manufacturer’s protocol
(PCR Biosystems, Wayne, PA, USA). At least three biological replicates of cDNA were each
tested in triplicate using the CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA). Data are presented as NRQ (normalized relative quantities) calculated
by the qBASE method [38], using recA and rpoB genes as normalizers. The qBASE method is
a modification of the classic ∆∆Ct method used to take multiple reference genes and gene-
specific amplification efficiencies into account [38]. The sequences of the qPCR primers
are listed in Table S4. Asterisks indicate significant differences as determined by t-test or
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ANOVA followed by Tukey’s multiple comparison test (p < 0.05), using GraphPad Prism
(GraphPad software, San Diego, CA, USA).

4.3. HSA Removal

In order to remove the HSA from HS or HPF, the ProteoExtract® Albumin/IgG Re-
moval Kit (Sigma-Aldrich, St. Louis, MO, USA) was used following the manufacturer’s
instructions. To corroborate the correct removal of HSA, protein samples of both fluids pre-
and post HSA removal treatment were separated by linear SDS-PAGE (REF) (12% resolving
and 6% stacking gel) and visualized by Coomassie staining (Figure S1). Protein concen-
trations in all of the soluble extracts analyzed (Table S5) were determined by the Bradford
method [39].

4.4. Iron Removal

Iron was removed from HSA samples using Chelex® 100 Chelating Ion Exchange
Resin (Bio-Rad, Hercules, CA, USA) following the manufacturer’s instructions. The iron
content of pre- and post Chelex® 100 treatment was determined using the Iron Assay Kit
(Sigma-Aldrich, St. Louis, MA, USA) following the manufacturer’s recommendations
(Table S6).

4.5. Antimicrobial Susceptibility Testing

Antibiotic susceptibility assays were performed following the procedures recom-
mended by the Clinical and Laboratory Standards Institute (CLSI). After OD600 adjustment,
100 µL of A. baumannii AB5075 and AMA40 cells grown in fresh CAMHB, or CAMHB
supplemented with human fluids (HPF, HS, or CSF) or fluids where HSA was removed
(HSA-free HPF and HSA-free HS) were inoculated on CAMH agar plates (CAMHA) as
previously described [28]. Antimicrobial commercial E-strips (Liofilchem S.r.l., Roseto degli
Abruzzi, Italy) CFDC were used. CAMHA plates were incubated at 37 ◦C for 18 h. CLSI
breakpoints were used for interpretation [40]. E. coli ATCC 25922 was used for quality
control purposes.

The microdilution test was used to study the effect of HSA and iron-free HSA on CFDC
MICs. CAMHB was prepared as described above and supplemented with HSA, iron-free
HSA, iron-free HSA Fe + 100 µM FeCl3, or iron-free HSA + iron-free HSA Fe + 3.5% HSA
to performed CFDC (range 0.25–512 mg/L) following the CLSI guidelines [40]. In order to
study the role of ferric iron on AMA40 and AB5075 CFDC MIC, iron-depleted CAMHA
and iron-depleted CAMHA supplemented with 20 µM FeCl3 or 40 µM FeCl3 were used.
The MICs were determined using CFDC MTS strips (Liofilchem S.r.l., Italy) following the
CLSI guidelines [40]. The quality control strain (Escherichia coli ATCC 25922) was used as a
control [40,41]. CLSI breakpoints were used for interpretation [40].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11020639/s1, Table S1: Comparison of the level
of expression of iron associated and antibiotic resistance genes obtained by qRT-PCR in the two
CRAB strains, Table S2: Minimal Inhibitory Concentrations (MICs) of cefiderocol (CFDC) for the
CRAB AB5075 and AMA40 strains performed using CFDC MTS strips (Liofilchem S.r.l., Italy) on Iron-
depleted CAMHA (Cation Adjusted Mueller Hinton Agar) supplemented with 20 µM or 40 µM FeCl3,
Table S3: Minimal Inhibitory Concentrations (MICs) of cefiderocol (CFDC) for the CRAB AB5075 and
AMA40 strains, performed using CFDC MTS strips (Liofilchem S.r.l., Italy) on Iron-depleted CAMHA
(Cation Adjusted Mueller Hinton Agar) and supplemented with 4% or 20% of cerebrospinal fluid
(CSF), Table S4. Name of the primers used in the present study and their corresponding sequences,
Table S5. Total protein concentration determined in CAMHB, and different fluids analyzed using
the ProteoExtract®Albumin/IgG Removal Kit (Sigma-Aldrich, St. Louis, MA, USA), Table S6. Total
Iron concentration determined in CAMHB, and different fluids analyzed using the Iron Assay Kit
(Sigma-Aldrich, St. Louis, MA, USA), Figure S1. SDS-PAGE of human fluids analyzed using the
ProteoExtract®Albumin/IgG Removal Kit (Sigma-Aldrich, St. Louis, MA, USA).

https://www.mdpi.com/article/10.3390/biomedicines11020639/s1
https://www.mdpi.com/article/10.3390/biomedicines11020639/s1
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