SAN2023

October 3rd - 7th Universidad Nacional de San Luis San Luis - Argentina

Organizing Committee	04
Sponsors & Venue	05
Code of Conduct	06
Program	07
Pre Meetting Courses	14
Plenary Lectures	16
<u>Symposia</u>	19
Young Investigator Talks	52
Oral Communications	62
Poster Session 1	

Cellular and Molecular Neurobiology	72
<u>Chronobiology</u>	97
Cognition, Behavior, and Memory	106
Development	155
Disorders of the Nervous System	158
Neural Circuits and Systems Neuroscienc	176
Neural excitability, synaptic transmission and neuron-glia interactions	184
Neurochemistry and Neuropharmacology	188
Neuroendocrinology and Neuroimmunology	192
Sensory and Motor Systems	197
Theoretical and Computational Neuroscience	205
Tools Development and Open Source Neuroscience	212
Comisión Especial SAN de Divulgación y Comunicación	215

Poster Session 2

Cellular and Molecular Neurobiology	216
<u>Chronobiology</u>	241
Cognition, Behavior, and Memory	250
<u>Development</u>	299
Disorders of the Nervous System	302
Integrative Systems	319
Neural Circuits and Systems Neuroscience	320
Neural excitability, synaptic transmission and neuron-glia interactions	327
Neurochemistry and Neuropharmacology	331
Neuroendocrinology and Neuroimmunology	336

Sensory and Motor Systems	341
Theoretical and Computational Neuroscience	348
Tools Development and Open Source Neuroscience	356
Comisión Especial SAN de Género y Diversidades	358
Comisión Especial SAN de Federalización	359
Comisión Especial SAN de Historia	360

ORGANIZING COMMITTEE

Macarena Amigo Duran

Instituto de investigación en Biomedicina de Buenos Aires, IBioBA-CONICET-MPSP

Marta Antonelli

Instituto de Biología Celular y Neurociencia "Prof Dr. Eduardo De Robertis"

Ana Anzulovich Facultad de Química, Bioquímica y Farmacia, UNSL- IMIBIO-SL, CONICET-UNSL

Ivanna Carla Castro-Pascual Facultad de Química, Bioquímica y Farmacia, UNSL- IMIBIO-SL, CONICET-UNSL

Leandro Casiraghi

Laboratorio Interdisciplinario del Tiempo y la Experiencia (LITERA), Universidad de San Andrés

Noel Federman

Instituto de investigación en Biomedicina de Buenos Aires, IBioBA-CONICET-MPSP

Lucia Alba Ferrara

Estudios en Neurociencias y Sistemas Complejos, ENYS – CONICET – Hospital El Cruce Universidad Nacional Arturo Jauretche

Sol Ramos

Instituto de investigación en Biomedicina de Buenos Aires, IBioBA-CONICET-MPSP

Diego Rayes

Instituto de Investigaciones Bioquímicas de Bahía Blanca, INIBIBB-CONICET

Eliana Ruetti

Unidad de Neurobiología Aplicada (UNA), CEMIC-CONICET

Mariano Soiza Reilly

Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET)

Lidia Szczupak

Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET)

SPONSORS & VENUE

VENUE

The XXXVIII Annual Meeting of the SAN will be held at the Auditorium of the National University of San Luis, San Luis, Argentina, from October 2nd to 7th, 2023. The meeting will be held mainly in face-to-face format.

212 | Early ethanol exposure elicits ventilatory alterations by a serotonergic phenotype in neonate of rats

Neural Circuits and Systems Neuroscience

Author: Catalina Giacinto | Email: catalinagiacinto@gmail.com

Catalina Giacinto ^{1°}, Tomás Mateo Jesús Palmeri ^{1°}, Ana Fabiola Macchione ^{1°}

1° Instituto de Investigaciones Psicológicas IIPsi-CONICET-UNC. Córdoba-Argentina.

2° Facultad de Psicología, UNC. Córdoba-Argentina.

Alcohol consumption is highly frequent during pregnancy and lactation. Early ethanol exposure (EEE) affects the development, triggering different neurobehavioral dysfunctions and also affecting respiratory regulation. The serotonergic system modulates the respiratory frequency through efferents towards areas of the brainstem responsible for the generation of the respiratory rhythm. The mains goals of this study are to: i) analyze serotonin-5HT levels in areas of the medullary raphe according to acute or chronic EEE, or also the combination of both, and ii) correlates 5HT levels and plethysmographic recordings against an hypoxic challenge. The results indicate that breathing frequencies depress under any form of EEE. But, first acute ethanol intoxication elicits major breathing depression while the prior ethanol exposure induces ventilatory plasticity phenomena to recover and elevate them. Besides, any form of EEE is associated with an increase in 5HT levels in the medullary raphe nuclei analyzed. In turn, we find a significant association between 5HT levels in the raphe magnus and the ventilatory rates during hypoxia. Actually, higher respiratory frequencies are found in pups with lower 5HT levels in this nucleus. These results allow us to think about how the EEE with a moderate dose (2.0g/kg) induces a serotonergic phenotype that may be affecting the respiratory processes of metaplasticity observed in an hypoxic event. Financial support by FONCyT, CONICET and UNC.