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HIGHLIGHTS 

 UV-vis NIR and fluorescence data to quantify adulterants in high-quality edible oils  

 PLS regression models built with individual sources and fused data 

 A comprehensive comparison between approaches to assess predictive performances 

 The higher the chemical information, the better the predictive efficiency 
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Abstract 

The high demand, high cost, and low regulations surrounding high-quality edible 

oils (HQEO) make them a target for fraudulent actions, particularly adulteration with 

refined oils. Consequently, the authentication of this kind of oil is of great interest. This 

work assessed the adulteration degree of five HQEOs: sesame, flaxseed, chia, rapeseed, 

and extra virgin olive oils, using different chemometric strategies to enhance the 

detection capability of the analytical methodology. Refined oils used as adulterants 

were evaluated at low concentrations (2-15 % v/v). Three multidimensional 

spectroscopic techniques (UV-Visible, near-infrared, and excitation-emission matrix 

fluorescence) were used, and two data fusion strategies (low- and mid-level) were 

evaluated. Principal component analysis was applied as an exploratory analysis tool to 

visualise and interpret the information contained in the dataset. For the adulterant 

quantification, partial least squares regression analysis was used to build the sensitive 

predictive models. The results revealed that chemical information enhancement 

leverages the ability to attain reduced prediction compared to unidimensional signals. In 

scenarios with low sample variability, conventional unidimensional spectroscopy (UV-

Visible or near-infrared) data was shown to be adequate to guarantee predictive 

efficiency. In contrast, when analysing predictive figures derived from models built 

using a dataset with high variability, e.g., brands, low-level data fusion approaches 

enhance predictive efficiency. The results showed that excitation-emission matrix-based 

or low-level data fusion approaches can be accurately implemented to guarantee the 

authenticity of edible oils even when a low content of adulterant oil is presented. 

 

Keywords: food quality; high-quality edible oils; adulteration fraud; spectroscopic 

measurements; data fusion strategies; chemometric modelling  
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1. Introduction 

High-quality edible oils (HQEO) play a crucial role in human nutrition and are 

widely used in cooking, baking, and food preparation. Unfortunately, due to their high 

cost, some manufacturers and traders commit fraud by adulterating expensive edible 

oils with cheaper alternatives or low-quality ingredients. The adulteration of HQEO is a 

global concern that seriously threatens public health and consumer rights [1]. Detecting 

food adulteration in these products is a complex and challenging task due to the 

diversity of potential adulterants and the sophistication of the techniques used to detect 

them.  

In recent years, significant advancements in analytical techniques have led to the 

development of more accurate and reliable methods for detecting food adulteration in 

edible oils [2,3]. In this regard, spectroscopy has emerged as a powerful tool due to its 

speed, non-destructive nature, and low-cost analysis [4,5]. In addition, chemometrics 

proved to be of great importance due to its effectiveness in various food products and 

adulteration scenarios [6–9]. In this regard, it has been demonstrated that the 

combination of conventional spectroscopic techniques such as UV-Visible (UV-Vis), 

near-infrared (NIR), mid-infrared (MID), and fluorescence spectroscopy with 

chemometrics is an efficient strategy for the analysis of many complex matrices and 

valuable to detect and quantify adulterants in food products [10]. For instance, 

chemometrics approaches were utilised for the analysis of UV-Vis spectroscopy data to 

distinguish among different adulteration degrees in edible oils [11–14] and in 

combination with NIR spectroscopy to detect and quantify low-quality oils used as 

adulterants in high nutritional value oils, e.g., flaxseed (FSO), sesame palm, or rapeseed 

oils (RSO) [15–17]. On the other hand, excitation-emission fluorescence matrix (EEM) 
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spectroscopy associated with chemometric is particularly useful in detecting the 

presence of adulterants in high-quality oils, for example, the addition of pomace olive 

oil to extra virgin olive oil (EVOO) [18], or corn oil and soybean oil to sesame oil (SO) 

[16]. 

More recently, data fusion strategies have emerged as an appealing approach that 

exploits the synergic effect of individual techniques, improving the accuracy and 

reliability of the analysis [19–21]. In this context, three distinct data fusion approaches 

emerge: low-, mid-  and high-level data fusions (LLDF, MLDF, and HLDF, 

respectively). These alternatives have garnered significant attention, particularly in 

predictive and classification fields, and several applications have been reported in the 

literature [22–24].  

LLDF comprises modelling a data set built by concatenating raw data from different 

sources along the common mode. MLDF involves a two-step model in which data from 

various sources are individually modelled; then, the outputs are joined and used to 

construct the final model. In HLDF, the final decision is reached considering the 

outcomes obtained from the models built with data proceeding from individual sources 

[25].  

This study investigates the potential of three conventional spectroscopic techniques 

(UV-Vis, NIR, and EEM) for detecting and quantifying adulterants in EVOO, FSO, SO, 

chia (CO), and RSO oils. Data fusion strategies were also applied to assess individual 

source synergistic/complementary information. Predictive analysis was assessed at a 

very low degree of adulteration (2-15 %), and a comprehensive comparative assessment 

of the predictive performance across various approaches was accomplished.  

 

2. Materials and methods 
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2.1. Oil samples 

High-quality and refined Argentinian edible oils were acquired from local markets. 

Five brands of EVOO, 4 brands of RSO, 2 brands of FSO, 1 brand of CO, and 1 brand 

of SO were analysed. Sunflower, corn, and soybean oil were used as adulterants. 

 

2.2. Sample preparation 

Artificial adulterated samples were built using an experimental design composed of 

two D-optimal designs for quaternary mixtures. For the first design, adulterations 

between 0 % and 15 % v/v were evaluated at five levels. The second design assessed 

adulterant oil at five concentration levels from 0 % to 7 % v/v. Table S1, Supplementary 

Material, shows detailed information about sample composition.   

Five mL of adulterated samples were prepared by directly adding the aliquot of the 

refined oils to the target oil. After preparation, the samples were mechanically vortexed 

for 1 min and stored for 24 h in the dark at 4 °C before analysis to guarantee the 

homogenisation of the samples.  

 

2.3. Instrumentation 

UV-Vis spectroscopy measurements were performed on a 10 mm-path length quartz 

cell using a UV-Vis Ocean Optics CHEMUSB4 spectrophotometer with a linear diode 

array (LDA) detector. The UV-vis spectra were registered in the 200-800 nm range 

every 0.21 nm. 

NIR spectra were collected between 900 nm and 1650 nm in transmittance mode 

(6 nm resolution) using a FLAME-NIR Ocean Optics spectrophotometer (Duiven, The 

Netherlands) equipped with a 10 mm-path length quartz cell. Dark body and empty 
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quartz cuvette, corresponding to 0 % and 100 % of transmittance, respectively, were 

used for the instrument calibration.  

OceanView software (1.6.7 version; Ocean Optics, The Netherlands) was used to 

control the UV-vis and NIR spectrophotometers.  

EEM matrices were recorded using an Agilent Cary Eclipse luminescence 

spectrophotometer (Agilent Technologies, Waldbronn, Alemania) equipped with a 

xenon flash lamp, using a 10×10 mm-path length quartz cell and Cary WinFLR 

software for instrument control and data acquisition. The EEMs were obtained by 

varying the excitation wavelength every 3 nm and recording the emission spectra every 

2 nm according to the following parameters: 1) EEMEVOO 280-580 nm/420-700 nm at 

430 V PMT; 2) EEMRSO 280-580 nm/380-700 nm at 500 V PMT; 3) EEMFSO, EEMCO 

and EEMSO 280-500 nm/380-700 nm at 450 V PMT. The excitation and emission slits 

were set at 10 nm, and the scan rate was fixed to 9600 nm s
-1 

in all cases.  

 

2.4. Data sets 

First, non-informative spectral regions were avoided. Then, for UV-vis and NIR 

data sets (UVDS and NDS, respectively), 2-way arrays were built by staking the spectra 

of all analysed samples. On the other hand, the EEM data set (FDS) was constructed 

with the unfolded EEMs, which were then column-wise appended to build a 2-way 

array. In all cases, bidimensional samples×variables matrices were obtained.  

UVDS, NDS, and FDS were row-wise concatenated to build the low-level data 

fusion dataset (LLDF). To construct the mid-level data fusion data set (MLDF), 

principal component analysis (PCA) was individually performed on the UVDS, NDS, 

and FDS, and the optimal principal component (PC) scores were combined in a single 

block. The size of each dataset is detailed in Table 1.  
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Table 1. Dataset dimensions 

Dataset 

Oil (sample×variable) 

EVOO FSO SO CO RSO 

UVDS 52×1719 31×289 16×289 12×1207 40×547 

NDS 52×128 31×128 16×30 12×40 40×128 

FDS 52×14241 31×12075 16×12075 12×12075 40×16261 

LLDF 52×16088 31×12492 16×12394 12×13322 40×16936 

MLDF 52×28 31×17 16×20 12×22 40×26 

 

2.5. Software and data analysis 

All calculations were done in MATLAB (The Mathworks, Natick, MA, USA). PCA 

was performed using PCA_toolbox, available at 

https://es.mathworks.com/matlabcentral/fileexchange/134751-pca-toolbox-for-

matlab?s_tid=prof_contriblnk [26]. Quantification of adulterant oils was calculated by 

partial least square (PLS) regression analysis using the Regression_toolbox [27]. Both 

toolboxes are freely available at https://michem.unimib.it/download/matlab-toolboxes/. 

EEM_corr GUI, freely downloaded from 

https://fbcb.web1.unl.edu.ar/laboratorios/ladaq/download/, was utilised to subtract the 

Rayleigh and Raman scattering from the EEM [28]. All data sets were partitioned into 

calibration and validation sets using the Kennard-Stone (KS) algorithm [29]. 

 

3. Results and discussion 

3.1. General considerations of spectroscopic features  
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Figures 1A and B show the UV-vis and NIR spectra of the raw and adulterated oils. 

Figure 1C depicts the EEM obtained for the raw samples. For more information about 

spectral profiles, the reader is referred to Figure S1, Supplementary Material.  

In the UV-Vis spectra, the bands between 300-500 nm are mainly attributed to 

lignans, tocopherols, phytosterols, and carotenoids, which are natural antioxidants 

responsible for conferring the exceptional properties of high-quality edible oils. Similar 

behaviour is observed in the EEM, for which the same constituents show significant 

fluorescence intensities in the spectral region of 350-400 nm excitation (λexc) and 400-

550 nm emission (λem) [17,30–32]. In particular, EVOO and blend oils exhibit a 

distinctive spectral band at 680 nm in the UV-Vis spectra given by the presence of 

chlorophylls and pheophytins [33], which is also observed in the EEM at 520-550 nm 

λexc/660-680 nm λem.  

The significant UV-Vis absorbance band spanning 300-320 nm in SO is attributed 

to its high lignan content sourced from sesame seeds, recognised as rich sources of these 

compounds [34]. Similar spectral features are observed in RSO, showing a prominent 

band at lower wavelengths and minor bands within the 400-500 nm range.  

Notably, differences in the UV-Vis absorbance profiles of EVOO between brands 

are observed (Figure S1, Supplementary Material). These differences can arise from 

variations in the locations of olive production. Different soil properties and varying 

climate conditions in these locations can lead to variability of aroma compound 

composition [35]. At the same time, the differences between FSO brands could be 

attributed to the production process declared by the manufacturer, wherein partial 

degreasing of the seeds is carried out. This process leads to a significant reduction in 

antioxidant compounds typically known to exhibit absorption within the range of 400-

500 nm [33,36–38]. 
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As can be appreciated, the higher the adulteration degree, the lower the UV-vis 

absorbance intensities of the significant bands, particularly those corresponding to 

carotenoids, tocopherols, and chlorophylls (400-700 nm). Moreover, it is worth noting 

that, in all cases, the fluorescence intensity at 320-400 nm λexc/400-550 nm λem 

increases as the adulterant concentration rises. This fact is attributable to fatty acid 

oxidation products from refined oils (Kongbonga et al., 2011). Also, a detriment in the 

fluorescence intensity at 500-550 nm λexc/660-690 nm λem (for EVOO) and at 350-

430 nm λexc/ 660-690 nm λem for SO, CO, and RSO is noticed in adulterated samples as 

a consequence of the dilution effect.  

NIR spectroscopy is a powerful technique for identifying distinct molecular groups 

based on their vibrational harmonics. Oils, rich in triacylglycerols and fatty acids, 

typically exhibit observable vibrational patterns, such as the stretching vibrational 

second harmonics of –CH bonds and the first stretching vibrational harmonics of –CH3, 

–CH2, and HC=CH groups found in unsaturated fatty acid chains [30,39,40]. Because of 

this, the NIR spectra of the different samples show a high degree of similarity, which 

becomes challenging for classification analysis.  
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Figure 1. UV-Vis (A) and NIR (B) absorption spectra of unadulterated (solid line) and 15 % v/v 

adulterated (dashed line) samples. Excitation-emission matrices (EEMs) (C) for unadulterated oil 

samples. 
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3.2. Exploratory analysis through PCA  

In a first attempt to investigate the adulteration effect on the target oils, an 

exploratory data analysis was performed to detect outliers and identify hidden patterns 

in sample distribution. In this line, PCA models were built, and a comparative, albeit 

exploratory, analysis among techniques was accomplished.  

First, different pre-processing approaches were evaluated to implement the protocol 

that renders the best outcomes in terms of sample distribution by cluster formation. 

Hence, mean centring (MC), standard normal variate (SNV), and autoscaling, among 

others, were proven. Results demonstrated that implementing the MC approach to 

individual datasets led to a more reliable model regarding explained variance. On the 

other hand, the combination of SNV and MC approaches rendered the best performance 

figures for the LLDF-based strategy, while autoscale was also implemented for MLDF-

based models.  

Then, five PCA models were performed for each oil: three corresponding to the 

individual technique datasets (UVDS, NDS, FDS) and two for the fused data (LLDF, 

MLDF). Here, it is important to remark that MLDF was built with the PC scores 

obtained from the optimised PCA model of UVDS, NDS, and FDS. Table 2 summarises 

the optimal parameters obtained from the different PCA models of each oil and LLDF 

strategy, considering the number of PCs that minimise the root-mean-standard error for 

cross-validation (RMSECV).  

  

Table 2. Optimal parameters obtained from PCA models 

Oil Strategy Optimal PC number 
Cumulative explained variance 

(%) 

EVOO 
UVDS 8 99.8 

NDS 11 99.8 
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FDS 9 99.9 

LLDF 6 99.6 

FSO 

UVDS 6 99.9 

NDS 6 98.3 

FDS 5 99.9 

LLDF 4 99.9 

SO 

UVDS 6 99.8 

NDS 5 99.4 

FDS 9 99.5 

LLDF 4 98.4 

CO 

UVDS 6 99.7 

NDS 8 99.7 

FDS 8 99.0 

LLDF 4 95.8 

RSO 

UVDS 7 99.8 

NDS 13 99.4 

FDS 6 99.9 

LLDF 5 99.8 

 

Notably, LLDF-based models attain the highest cumulative explained variance 

values with a low number of PCs, surpassing those selected for models obtained 

through individual technique datasets. 

Figure 2 shows the 3D score plots for the first three PCs of the individual and fused 

data set-based PCA models and the ellipsoids of the confidence region at 95 %. 

Furthermore, the scores obtained from the raw oils were labelled to gain further insight 

into the effect of adulteration on the raw oils. 

The first outcome accomplished from this analysis revealed that both individual and 

fused data sets provide enough chemical information to adequately discriminate 

samples among brands. In this regard, the models constructed with FDS achieved the 

best performance for EVOO, FSO, and RSO samples compared to those built with 

UVDS and NDS. At this point, it is worth highlighting that SO and CO samples were 

not subjected to brand analysis since only one brand was available for each oil. 
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Nevertheless, PCA models were built for further analysis. The PCA models using 

UVDS accounted for the highest sample variance for SO and CO. Similarly, this aligns 

with the previously mentioned outcomes of the optimal parameters obtained from PCA 

models (table 2), wherein the PCA models with the highest cumulative explained 

variance values are those obtained through FDS for EVOO, FSO and RSO samples and 

UVDS for SO and CO samples. 
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Figure 2. Scores plot of the first three PCs obtained by PCA according to the edible oil discriminated 

by brand. A shows PCAs obtained through individual data (FDS for EVOO, FSO, and RSO, and UVDS 

for SO and CO), while B presents PCAs based on fused data (LLDF for each oil). The ellipsoids show the 

confidence region at the 95 % level for each group according to the different oil brands. Dashed lines 

indicate the central axis of three-dimensional space. Non-adulterated oil samples (circles) exhibit 

different colors corresponding to their brand identities. 
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As can be appreciated, the sample variability of different brands is higher than that 

of adulterated samples of the same brand, and as many clusters as brands are discerned 

in each case. It becomes crucial to emphasise that, in all cases, the raw samples can be 

clearly distinguished from the adulterated samples since a clear separation from them is 

observable. Notably, the discrimination performances behave similarly among 

strategies, albeit smaller ellipsoids of confidence are obtained for fused data. 

These outcomes evidenced the possibility of a binary distinction between raw and 

adulterated samples, even at low levels of adulteration. This observation holds 

significance considering the notable complexity of the studied system, primarily 

stemming from the variability of brands, the differences in the refined oils used as 

adulterants, and the low levels of adulteration. Nevertheless, to obtain more consistent 

results from a pattern recognition analysis, it is necessary to increase the number of 

samples to acquire more consistent groups of adulterated and unadulterated samples and 

to reach valid conclusions.  

 

3.3. Multivariate predictive model development 

Aiming to determine the degree of adulteration of the edible oils, PLS regression 

models were built. First, to establish the optimal approach that minimises the prediction 

and validation-associated errors, different data pre-processing strategies were evaluated, 

and models were compared regarding their predictive efficacy and the robustness of the 

statistical indicator.  

For the model development, the samples were randomly selected by the Kennard-

Stone algorithm [41] and split into calibration and validation sets. Each calibration set 

comprised 80 % of the samples used for the calibration and internal validation of the 

                  



17 

 

models. The validation set comprised the remaining 20 % of the total samples and was 

used to evaluate the model’s capability to detect the degree of adulteration.  

The proper number of latent variables (LVs) for each model was assessed by the 

minimum error rate in cross-validation (Venetian blind, six splits). Once the number of 

total LVs was chosen, the prediction step was accomplished on the validation samples. 

To comprehensively interpret the model performance, cross-validation (RMSECV), and 

prediction (RMSEP), the determination coefficients (R
2
) and the relative error of 

prediction were estimated (REP%). Table 2 summarises the parameters and the results 

obtained for the models built for each oil type. 

The outcomes outlined in Table 3 demonstrate that, for EVOO, FSO, and RSO, an 

augmentation in the dimensionality of the data leads to a notable enhancement in the 

predictive efficacy of the models. The chemical information enhancement accomplished 

by acquiring multidimensional signals, i.e., EEM, enables the establishment of more 

sensitive models, leveraging the ability to attain reduced prediction compared to 

unidimensional signals (REP% higher than 25.8 % and 41.4 % for UV-Vis and NIR, 

respectively).  

For SO and CO, satisfactory predictive figures were achieved for unidimensional 

UVDS-based models (REP% <15 % and %  ̅ c.a. 100 %). This outcome might stem 

from using a single brand for each oil type. This situation leads to a scenario with low 

sample variability; thus, conventional unidimensional spectroscopy (UV-Vis or NIR) 

data might be adequate to guarantee predictive efficiency.  

 

Table 3. Statistical parameters of PLS regression models for prediction of adulteration 

using the different approaches 
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Oil Strategy Pre-processing*
 

LVs R
2
 cal 

RMSECV       

(% v/v) 

RMSEP  

(% v/v) 

REP  

(%) 
%  ̅b

 

EVOO 

UVDS SNV 9 0.99 3.65 2.55 33.4 115.4 

NDS MSC 10 0.83 6.30 3.16 41.4 88.5 

FDS SC+MC 7 0.97 2.91 1.41 18.5 96.5 

LLDF PoSS 10 0.99 2.41 0.97 12.7 98.5 

MLDF PoSS+MC 8 0.72 3.70 1.52 19.9 102.0 

FSO 

UVDS SNV+MC 6 0.96 5.78 2.17 25.8 109.6 

NDS De+MSC+PoSS 7 0.86 4.37 2.96 35.2 125.3 

FDS SC+MC 8 0.99 5.03 0.85 10.1 108.3 

LLDF SNV 7 0.99 5.09 0.68 8.09 102.7 

MLDF FD+MSC+PoSS 12 0.90 4.45 0.92 10.9 104.9 

SO 

UVDS SNV 6 0.95 7.44 1.08 13.4 94.4 

NDS FD+MSC+PoSS 7 0.80 8.52 3.58 44.5 76.8 

FDS SC 5 0.99 2.63 1.12 13.9 107.0 

LLDF PoSS 5 0.99 2.29 1.02 12.6 105.5 

MLDF MC+PaSS 7 0.98 2.37 1.12 13.9 92.0 

CO 

UVDS - 5 0.96 4.11 0.71 10.3 100.8 

NDS FD +SNV 5 0.91 5.85 1.47 21.3 101.6 

FDS FD+MC 3 0.99 3.36 1.22 17.7 100.0 

LLDF FD+SNV 3 0.99 3.23 1.31 19.0 103.5 

MLDF PaSS 4 0.99 2.98 1.80 26.2 92.1 

RSO 

UVDS MC+PoSS 9 0.98 4.92 2.70 34.3 137.4 

NDS FD+MSC+VSS 9 0.72 6.48 3.51 44.7 157.5 

FDS SC 8 0.95 3.19 0.99 12.6 107.0 

LLDF SNV 10 0.99 3.18 0.84 10.7 100.5 

MLDF MC+PaSS 9 0.79 3.04 1.25 15.9 103.2 

* De: Detrend, SNV: standard normal variate, MSC: multiplicative scattering correction, MC: mean 

centring, VSS: variance standard scaling, FD: first derivative, PaSS: Pareto standard scaling, PoSS: 

poison standard scaling, SC: Scattering correction. 

b
%  ̅= mean recovery in % 

 

On the other hand, the unsatisfactory figures of merit obtained for all the NDS-

based models imply their limited capability in accurately evaluating oil adulteration, 
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especially at low levels of adulteration. These observations align with results obtained 

in several works in which NIR data did not provide good statistical figures in the 

predictive evaluation of adulteration in edible oils. However, fused NIR data with MIR 

[40] or Raman [20]enhanced the performance of the models.  

Additionally, when analysing predictive figures derived from models built using a 

dataset encompassing various brands such as EVOO, FSO, and RSO, it becomes 

evident that employing LLDF approaches enhances predictive efficiency. These 

methods yield REP values consistently below 12.7 %, showcasing notable 

improvements compared to using individual technique datasets. 

Moreover, something that deserves attention is that, in most cases, MLDF strategies 

render poor prediction figures, not showing a distinctive enhancement of the 

performance in comparison to the individual technique datasets. This phenomenon 

could be attributed to the reduction in data dimensionality before treatment. In this case, 

although the previous step to the DF was based on extracting significant system 

characteristics through PCA, there is a potential loss of pertinent information for 

subsequent PLS analysis. 

To gain further insights into the predictive capability of the models, the plot of 

nominal vs. predicted values and the elliptical joint of confidence region (EJCR) for the 

slope and the intercept of the predicted vs. nominal values were analysed. Figure 3 

illustrates the results obtained for individual and fused data-based models and the EJCR 

plots at a 95 % confidence level. 
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Figure 3. Nominal vs. predicted value plots derived from the information obtained using the best 

individual technique (A) or the best data fusion strategy applied (B) for EVOO FSO, SO, CO, and RSO. 

Elliptical joint confidence region (C) in the plane slope-intercept for a 95 % confidence level, indicating 

the ideal point [1, 0] (grey circle) for slope and intercept, respectively, for the data UVDS (pink), NDS 

(blue), FDS (grey), LLDF(green) and MLDF (orange). Full circles and triangles are calibration and 

validation samples, respectively. 
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As can be appreciated, in all cases, the predicted samples approximate the ideal 

regression line (Figure 3A and 3B). This observation is supported by the EJCR plots 

(Figure 3C), where the ideal points for slope and intercept (1 and 0, respectively) are 

included within the confidence region of the ellipses at a 95 % level. These outcomes 

shed light on the satisfactory accuracy achieved.  

One achievement to highlight is that the PLS models allowed satisfactory prediction 

of those samples with the lowest level of adulteration (2 % v/v). This result is of 

paramount relevance since, to the best of our knowledge, this is the first time 

adulteration in seed oils using a mixture of refined oils as adulterants is assessed. In 

addition, it is noteworthy that most published works cover broad ranges of adulterant 

levels (typically between 10 % and 90 %) [5,13,40,42–45]. These ranges often surpass 

permissible limits in certain countries, raising pertinent concerns. For instance, 

according to the regulations outlined in the Argentine Food Code (CAA), adulterating 

EVOO is prohibited in Argentina [46]. Maintaining the integrity of EVOO samples is 

essential to ensure the authenticity and quality of the product. In this sense, 

investigations focusing on detecting low levels of adulterants in oil samples are 

particularly valuable due to the strict prohibition against adulteration, which contributes 

significantly to upholding the standards set and helping safeguard the genuineness of 

EVOO in the market. 

Furthermore, while the CAA generally addresses FSO, SO, CO, and RSO, no 

specific regulation explicitly permits blending these oils with others of lower quality. 

Therefore, without established guidelines, such blending is not permitted. The lack of 

explicit permission prohibits mixing these high-quality oils with inferior ones, ensuring 

their quality standards are maintained and upheld.  
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4. Conclusions 

This study shows a comprehensive comparative evaluation of data analysis 

approaches to analysing high-quality edible oil.  

First, spectroscopic data obtained from conventional techniques (UV-Vis, NIR, and 

EEM) were subjected to PCA, and results regarding classificatory performance were 

compared. The results shed light on the fact that bidimensional signals such as EEM 

provide more chemical information than unidimensional signals (UV-Vis and NIR), 

enhancing the discrimination of samples according to the blend variability. 

Nevertheless, non-significant differences were encountered among techniques where 

blend variability does not occur.  

The results obtained from modelling data proceeding from individual techniques 

were compared to those obtained from low-level and mid-level fused data. The study 

proved that low-level fused data render better results than mid-level fused data. These 

outcomes provide insights that the model performance is enhanced while increasing the 

chemical information by fusing data proceeding from different sources. These 

achievements align with the above observations that demonstrate that increasing the 

chemical information by acquiring bidimensional signals led to an improvement in the 

accomplishments of the method.  

This study provides insights into the effectiveness of spectroscopy techniques for 

analysing edible oils and contributes to the development of rapid and non-destructive 

methods for the detection of adulteration of these kinds of samples. 
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