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Abstract. Recent research on algebraic models of quasi-Nelson logic has brought new

attention to a number of classes of algebras which result from enriching (subreducts of)

Heyting algebras with a special modal operator, known in the literature as a nucleus.

Among these various algebraic structures, for which we employ the umbrella term intu-

itionistic modal algebras, some have been studied since at least the 1970s, usually within the

framework of topology and sheaf theory. Others may seem more exotic, for their primitive

operations arise from algebraic terms of the intuitionistic modal language which have not

been previously considered. We shall for instance investigate the variety of weak implicative

semilattices, whose members are (non-necessarily distributive) meet semilattices endowed

with a nucleus and an implication operation which is not a relative pseudo-complement but

satisfies the postulates of Celani and Jansana’s strict implication. For each of these new

classes of algebras we establish a representation and a topological duality which generalize

the known ones for Heyting algebras enriched with a nucleus.
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1. Introduction

A nuclear Heyting algebra is obtained by enriching a Heyting algebra
〈H; ∧,∨,→, 0, 1〉 with a unary modal operator � satisfying the following
identity:

x → �y = �x → �y.

(One can equivalently require � to satisfy either the properties stated in
Definition 2.5 or Definition 2.6; see below.) Such an operator is also known in
the literature as a nucleus or multiplicative closure operator1. Many natural
constructions give rise to nuclei. For instance, having fixed an element a ∈ H

1The notion of nucleus (on a Heyting algebra) can be traced back at least to the early
1970s. Under the name of ‘modal operators’, nuclei are studied extensively in [18], which
refers to earlier work (from the late 1960s) by F.W. Lawvere.
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of a Heyting algebra, we can obtain a nucleus by setting either �x := a → x
or �x := a ∨ x, or �x := (x → a) → a. So, in particular, the identity map,
the constant map x �→ 1 and the double negation map also define nuclei (see
[1,18] for further examples).

The class of nuclear Heyting algebras (and some of its subreducts) has
been studied since the 1970s, usually within the framework of topology and
sheaf theory [2,3,18,20]. A more recent paper [14] proposed a logic based on
nuclear Heyting algebras (called Lax Logic) as a tool in the formal verifica-
tion of computer hardware. Even more recently, another connection between
nuclear Heyting algebras and logic emerged within the study of the algebraic
semantics of quasi-Nelson logic [29,30]. The latter may be viewed as a com-
mon generalization of both intuitionistic logic and Nelson’s constructive logic
with strong negation [22] obtained by deleting the double negation law.

As shown in [25,26,29], there exists a formal relation between the alge-
braic counterpart of quasi-Nelson logic and the class of nuclear Heyting alge-
bras which parallels the well-known connection between Nelson algebras and
Heyting algebras (see e.g. [32]). This relation—which, as we shall see, con-
cerns the algebras in the full language as well as some of their subreducts—
provides, in our view, further motivation for the study of nuclear Heyting
algebras from a logical as well as an algebraic point of view. It is interest-
ing to note that, with the notable exception of [1], studies of this kind are
scant in the literature—perhaps owing to the mainly topological interest in
this class of algebras. The purpose of the present contribution is to fill in
this gap, at least partly, and at the same time to draw attention to certain
subreducts of nuclear Heyting algebras whose interest is motivated by the
recent developments in the theory of quasi-Nelson logic.

Since a nuclear Heyting algebra is usually presented in the language
{∧,∨,→,�, 0, 1}, fragments that appear to be of natural interest (from
a logico-algebraic perspective) are, for instance, the implication-free one
{∧,∨,�} – perhaps enriched with the lattice bounds 0 and 1—and the im-
plicational one {→,�}. The former, whose models are distributive lattices
enriched with a modal operator, is in fact the main object of [1], while the
latter—whose models are Hilbert algebras, the algebraic counterpart of the
purely implicational fragment of intuitionistic logic, expanded with a modal
operator—was studied, mainly from a topological perspective, as far back
as in [18], and as recently as in [12]. Other less obvious but, in our opinion,
also interesting classes of algebras emerged in the course of our recent inves-
tigations on quasi-Nelson logic and its algebraic counterpart, the variety of
quasi-Nelson algebras. An interest in these classes of algebras, however, can
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also be motivated within the limits of the traditional framework of nuclear
Heyting algebras, as we shall try to explain below.

A well-known fact in the theory of nuclear Heyting algebras [18, Thm. 2.12]
is that, for every such algebra H = 〈H; ∧,∨,→,�, 0, 1〉, the set H� := {a ∈
H : a = �a} of fixpoints of the � operator can itself be endowed with a
nuclear Heyting algebra structure by defining, for every n-ary algebraic oper-
ation f ∈ {∧,∨,→,�, 0, 1}, the operation f� given, for all a1, . . . , an ∈ H�,
by:

f�(a1, . . . , an) := �f(a1, . . . , an).

Denoting this algebra by H�, we observe that the universe H� can equiv-
alently be defined as the nucleus image {�a : a ∈ H} of H. While H� is
indeed a nuclear Heyting algebra, it is a very special one on which the �
operator is the identity map. This very fact, in turn, is essential in ensur-
ing that H� has a Heyting algebra reduct; for instance we have, for all
a, b ∈ H�,

a ∧� b = �(a ∧ b) = �a ∧ �b = a ∧ b

guaranteeing that ∧� is a meet semilattice operation on H�. A similar rea-
soning applies to the other operations, although the join ∨� (computed in
H�) does not coincide with the join ∨ (computed in H), i.e. H� is not a
subalgebra of H. This construction is easily seen to be a generalization of
Glivenko’s result relating Heyting and Boolean algebras (the latter corre-
sponding to the case where �x = ¬¬x).

Thus, although nothing prevents one from considering each operation
f� as defined on the whole universe H, in general ∧� and ∨� will not be
semilattice operations on H, and →� will not be a Heyting (i.e. relative
pseudo-complement) implication on H (on the other hand, we always have
�� = � and 1� = 1. By definition, these new operations will be general-
izations of the intuitionistic ones, which can be retrieved by requiring � to
be the identity map on H. In this respect natural questions to ask are, in
our opinion, (1) which properties each generalized operation f� retains, and
(2) whether some particular choice of f� has any independent interest that
may justify further study.

A first answer to the latter question may be sought within the theory
of quasi-Nelson logic. Indeed, as shown in the papers [25–27,29], some of
the above-defined operations of type f� naturally arise within the study of
fragments of the quasi-Nelson language. From this standpoint, it is also in-
teresting to observe that the classes of algebras one obtains through the twist
representation (see below) combine the original Heyting operations with the
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new ones. Thus, for instance, one of the classes of algebras arising in this
way (see Definition 3.1) retains the original meet semilattice operation (and
the lattice bounds) while replacing the Heyting implication with a gener-
alized counterpart: that is, we are looking at the {∧,→�, 0, 1}-subreducts
of nuclear Heyting algebras. We stress that these new algebras are not the
result of an arbitrary choice of operations, but arise as twist factors in the
representation of subreducts of quasi-Nelson algebras, as we now proceed to
explain.

A quasi-Nelson algebra may be defined as a commutative integral bounded
residuated lattice (see e.g. [16] for formal definitions of these terms) A =
〈A; 	,
, ∗,⇒,⊥〉 that (upon letting ∼x := x ⇒ ⊥) satisfies the Nelson
identity :

(x ⇒ (x ⇒ y)) 	 (∼ y ⇒ (∼ y ⇒ ∼x)) = x ⇒ y.

Quasi-Nelson algebras arise as the algebraic counterpart of quasi-Nelson
logic, which can be viewed either as a generalization (i.e. a weakening) com-
mon to Nelson’s constructive logic with strong negation and to intuitionistic
logic, or as the extension (i.e. strengthening) of the well-known substructural
logic FLew (the Full Lambek Calculus with Exchange and Weakening) by
the Nelson axiom:

((x ⇒ (x ⇒ y)) 	 (∼ y ⇒ (∼ y ⇒ ∼x))) ⇒ (x ⇒ y).

We refer to [30] for further details on quasi-Nelson logic, as well as for
other equivalent characterizations of the variety of quasi-Nelson algebras
(which can e.g. also be obtained as the class of (0, 1)-congruence orderable
commutative integral bounded residuated lattices).

Formally, every Heyting algebra may be viewed as a quasi-Nelson algebra
(on which ∧ = ∗, ∨ = 
, → = ⇒ and 0 = ⊥) and, as noted earlier, the double
negation map defines a modal operator on every Heyting algebra H. If we
replace H by a quasi-Nelson algebra A, then the double negation map still
gives us a nucleus in the sense of Definition 2.5 but no longer in the sense of
Definition 2.6, for item (ii) may fail to be satisfied (indeed, the equivalence
of both definitions breaks down outside the setting of Heyting algebras).
The double negation can, however, be used to obtain a nucleus on a special
quotient H(A), which is the (Heyting) algebra canonically associated to
each quasi-Nelson algebra A via the twist construction.

Given a quasi-Nelson algebra A, consider the map given, for all a ∈ A, by
a �→ a∗a. The kernel θ of this map is a congruence of the reduct 〈A; 	,
, ∗〉
which is also compatible with the double negation operation and with the
weak implication ⇒2 given by x ⇒2 y := x ⇒ (x ⇒ y). Letting �(x/θ) :=
∼ ∼x/θ, we thus have a quotient algebra H(A) = 〈A/θ; 	,
,⇒2,�,⊥〉,
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which is a nuclear Heyting algebra (where ∗ = 	). Moreover, A embeds into
a twist-algebra over H(A), defined as follows.
Definition 1.1. Let H = 〈H; ∧,∨,→,�, 0, 1〉 be a nuclear Heyting alge-
bra. Define the algebra H�� = 〈H��; 	,
, ∗,⇒,⊥〉 with universe:

H�� := {〈a1, a2〉 ∈ H × H� : a1 ∧ a2 = 0}
and operations given, for all 〈a1, a2〉, 〈b1, b2〉 ∈ H × H, by:

⊥ := 〈0, 1〉
〈a1, a2〉 ∗ 〈b1, b2〉 = 〈a1 ∧ b1,�((a1 → b2) ∧ (b1 → a2))〉
〈a1, a2〉 	 〈b1, b2〉 := 〈a1 ∧ b1,�(a2 ∨ b2)〉
〈a1, a2〉 
 〈b1, b2〉 := 〈a1 ∨ b1,�(a2 ∧ b2)〉

〈a1, a2〉 ⇒ 〈b1, b2〉 := 〈(a1 → b1) ∧ (b2 → a2),�(a1 ∧ b2)〉.
A quasi-Nelson twist-algebra over H is any subalgebra A ≤ H�� satisfying
π1[A] = H.

The twist representation theorem says that every quasi-Nelson algebra
A embeds into the twist-algebra (H(A))�� through the map given by a �→
〈a/θ,∼ a/θ〉 for all a ∈ A [30].

Definition 1.1 suggests that certain term operations of the language of nu-
clear Heyting algebras may be of particular interest in the study of fragments
of the quasi-Nelson language. Consider, for instance, the monoid operation
(∗). In order to define it, on a quasi-Nelson algebra A ≤ H��, we need two
operations on H: the semilattice operation ∧ (for the first component) and,
for the second component, an implication-like operation (henceforth denoted
by ⇀) which can be given by x⇀y := x → �y. The latter claim may not be
obvious, but using the properties of the twist construction and the modal
operation, it is not hard to verify the following equalities:

�((a1 → b2) ∧ (b1 → a2)) = �((a1 → �b2) ∧ (b1 → �a2))

= �(a1 → �b2) ∧ �(b1 → �a2)

= (a1 → �b2) ∧ (b1 → �a2)

= (a1 ⇀ b2) ∧ (b1 ⇀ a2).

These observations led to the introduction of the class of algebras dubbed
⇀-semilattices in [27], where it is shown in particular that the {∗,∼}-
subreducts of quasi-Nelson algebras are precisely the algebras representable
as twist-algebras over ⇀-semilattices. Similar considerations motivated the
introduction of other term operations of the language of nuclear Heyting
algebras, such as the following:
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x � y := �(x ∧ y) x ⊕ y := �(x ∨ y).

As shown in [27], the corresponding classes of modal algebras (see Defini-
tions 3.9 and 3.14) allow us to establish twist representations for (respec-
tively) the classes of {⇒2,∼}-subreducts and of {∧, ∗,⇒,∼}-subreducts
of quasi-Nelson algebras. Other subreducts may be obtained by adding a
modal operator to more traditional classes of intuitionistic algebras, such
as implicative semilattices (corresponding to the {∗,⇒,∼}-subreducts of
quasi-Nelson algebras), distributive lattices (corresponding to the {∧,∨,∼}-
subreducts studied in [28]) and pseudo-complemented lattices (correspond-
ing to the “two-negations” subreducts studied in [26]).

The previous considerations suggest the above-mentioned classes of modal
algebras as mathematical objects that may be of interest both in themselves
and in relation to the study of non-classical logics, in particular Nelson’s
logics2. The aim of the present paper is to improve our understanding of
these classes of algebras from an algebraic and a topological point of view.

The rest of the paper is organized as follows. Section 2 recalls the defini-
tions of (subreducts of) Heyting algebras and of the modal operators known
as nuclei.

In Sect. 3 we introduce the main classes of algebras of interest. The
first is the variety of weak implicative semilattices (Subsect. 3.1), which
is a variety of semilattices enriched with an implication operation ⇀ that,
while not being necessarily a relative pseudo-complement, satisfies the pos-
tulates of Visser’s strict implication [9]. We then introduce the variety of nu-
clear Hilbert semigroups (Subsect. 3.2), whose members consist of bounded
Hilbert algebras (the purely implicational subreducts of Heyting algebras)
enriched with a pseudo-meet operation � giving rise to a semigroup that is
not necessarily a semilattice. The variety of nuclear implicative semilattices
(Subsect. 3.3), which is not new (see e.g. [2]), mostly interests us as a basis
for our definition of ⊕-implicative semilattices (Subsect. 3.4): the latter are
bounded implicative semilattices (i.e. the join-free subreducts of Heyting al-
gebras) endowed with a nucleus and a join-like operation ⊕ which forms a
semigroup but not necessarily a semilattice.

In Sect. 4 we recall or establish some simple facts about congruences and
homomorphisms of the above-mentioned classes of algebras; these will be
useful for characterizing the morphisms in the corresponding categories.

2Beyond the Nelson realm, (0-free subreducts of prelinear) nuclear Heyting algebras
also feature in the twist-type representation introduced in [17] for Sugihara monoids, a
variety of algebras related to relevance logics.
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In Sect. 5 we introduce topological dualities for our new classes of intu-
itionistic modal algebras: in order to do so we shall build on the existing
dualities for Lax Hilbert algebras (i.e. Hilbert algebras expanded with a nu-
cleus, Subsect. 5.1) and for (non-necessarily distributive) meet semilattices
(Subsect. 5.3). The new dualities are established in Subsects. 5.2, 5.4 and
5.5.

Finally, the concluding Sect. 6 contains some indications for future re-
search.

2. Heyting Algebras, Subreducts and Nuclei

In this section we recall the main definitions of subreducts of Heyting alge-
bras that are relevant to our study, as well as the definition(s) of nucleus.

The purely implicational subreducts of Heyting algebras are known in
the literature as Hilbert algebras, or (positive) implication algebras.

Definition 2.1. A Hilbert algebra is an algebra 〈H; →, 1〉 of type 〈2, 0〉 that
satisfies the following (quasi-)identities:

(i) x → (y → x) = 1.

(ii) x → (y → z) = (x → y) → (x → z).

(iii) if x → y = y → x = 1, then x = y.

Every Hilbert algebra has a natural order ≤ given, for all a, b ∈ H, by
a ≤ b iff a → b = 1, having 1 as top element (as a matter of fact, the
constant 1 need not be included in the language, for it is term definable
by 1 := x → x). If the order ≤ also has a minimum element (denoted 0),
we speak of a bounded Hilbert algebra. In such a case we include 0 in the
algebraic signature, and one can define a negation operation ¬ by ¬x :=
x → 0. Bounded Hilbert algebras correspond to the {→,¬, 0, 1}-subreducts
of Heyting algebras.

The subreducts of Heyting algebras obtained by retaining only the in-
fimum and the negation operations form the class of pseudo-complemented
semilattices, or p-semilattices [15,31].

Definition 2.2. A pseudo-complemented semilattice (p-semilattice) is an
algebra 〈S; ∧,¬, 0, 1〉 of type 〈2, 1, 0, 0〉 such that:

(i) 〈S; ∧, 0, 1〉 is a bounded semilattice (with order ≤).

(ii) x ≤ ¬y (i.e. x ∧ ¬y = x) if and only if x ∧ y = 0.
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A pseudo-complemented lattice (p-lattice) is an algebra 〈L; ∧,∨,¬, 0, 1〉 of
type 〈2, 2, 1, 0, 0〉 such that 〈L; ∧,¬, 0, 1〉 is a p-semilattice and 〈L; ∧,∨, 0, 1〉
is a bounded distributive lattice.

We shall refer to item (ii) above as to the “property of the pseudo-
complement”. Pseudo-complemented semilattices form a variety whose only
proper subvariety is the class of Boolean algebras [31, p. 305]; the latter
can thus be relatively axiomatized by adding any identity that is not valid
on all pseudo-complemented semilattices (for instance the involutive law
¬¬x = x).

If we retain both the meet and the intuitionistic implication, we obtain
implicative semilattices (also known as Brouwerian semilattices).

Definition 2.3. An implicative semilattice is an algebra 〈S; ∧,→, 1〉 of
type 〈2, 2, 0〉 such that:

(i) 〈S; ∧, 1〉 is an upper-bounded semilattice (with order ≤ and top element
1).

(ii) x ∧ y ≤ z if and only if x ≤ y → z.

The property in item (ii) is known as residuation, and we shall say that
〈∧,→〉 is a residuated pair. Implicative meet semilattices are precisely the
∨-free subreducts of Heyting algebras; in turn, the ∧-free reduct of every
implicative meet semilattice forms a Hilbert algebra. A bounded implica-
tive semilattice is one whose semilattice reduct has a least element 0. In
such a case, by letting ¬x := x → 0, one obtains a pseudo-complemented
semilattice. With the above definitions in mind, Heyting algebras may be
introduced as follows.

Definition 2.4. A Heyting algebra is an algebra 〈H; ∧,∨,→, 0, 1〉 of type
〈2, 2, 2, 0, 0〉 such that:

(i) 〈H; ∧,∨, 0, 1〉 is a bounded lattice.

(ii) 〈H; ∧,→, 1〉 is an implicative semilattice.

The pseudo-complement negation ¬ is defined, on every Heyting algebra,
by ¬x := x → 0, as in the preceding cases.

In the following sections we shall consider algebras that result from adding
a modal-like operator to the subreducts of Heyting algebras introduced ear-
lier. Such operators are known as nuclei (or modal operators, or multiplica-
tive closure operators), and have been extensively studied in the literature
on residuated lattices and Heyting algebras; for our purposes, the results
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contained in the dissertation [18] will be particularly useful. We shall con-
sider two different but essentially equivalent definitions for a nucleus, which
depend on which other operations are available on the algebra.

Definition 2.5. Let A be an algebra having a reduct 〈A; ∧, 0〉 that is a
(meet) semilattice with order ≤ and minimum 0. We shall say that an op-
eration � : A → A is a nucleus on A if the following identities are satisfied:

(i) x ≤ �x = ��x

(ii) �(x ∧ y) = �x ∧ �y.

If �0 = 0, then we say that � is dense.

Observe that the above properties entail that, if the order ≤ has a maxi-
mum element 1, then �1 = 1 (so the � operator is indeed modal-like in that
it preserves all finite meets). When the underlying algebra does not have a
meet operation, we can define a nucleus as follows.

Definition 2.6. ([25], Def. 4.3). Given an algebra having a bounded Hilbert
algebra reduct 〈H; →, 0, 1〉, we say that an operation � : H → H is a nu-
cleus on H if:

(i) x ≤ �x = ��x,

(ii) �(x → y) ≤ �x → �y.

As before, if �0 = 0, then we say that � is dense.

Following [12], a Hilbert algebra endowed with a nucleus, thus viewed as
an algebra in the language {→,�, 1}, will be called a Lax Hilbert algebra
(an LH-algebra, for short).

3. Intuitionistic Modal Algebras

In this section we introduce a number of classes of algebras that, as observed
earlier, arise from the twist representation of (subreducts of) quasi-Nelson
algebras. All these carry a nucleus operator together with one or more alge-
braic operations that are term definable in the language of Heyting algebras
enriched with the nucleus.

3.1. Weak Implicative Semilattices

As mentioned in the introduction, the algebras introduced in the next def-
inition were first considered in [27], under the name of ⇀-semilattices, as
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factors in the twist representation of {∗,∼}-subreducts of quasi-Nelson al-
gebras. Here we introduce the more suggestive term “weak implicative semi-
lattices”, which we shall explain in a moment.

Definition 3.1. A weak implicative semilattice (abbreviated WIS) is an
algebra S = 〈S; ∧,⇀, 0, 1〉 satisfying the following properties (we abbreviate
�x := 1 ⇀ x):

(i) 〈S; ∧, 0, 1〉 is a bounded semilattice (with order ≤).

(ii) x ⇀ (y ⇀ z) = (x ∧ y) ⇀ z.

(iii) x ⇀ (y ∧ z) = (x ⇀ y) ∧ (x ⇀ z).

(iv) �0 = 0.

(v) x ≤ �x.

(vi) x ∧ �y = x ∧ (x ⇀ y).

(vii) x ≤ y ⇀ z if and only if x ∧ y ≤ �z.

(viii) x ⇀ y = �x ⇀ �y.

Items (ii)–(v) of the preceding definition entail that the operation � given
by �x := 1 ⇀ x indeed realizes a nucleus (in the sense of Definition 2.5) on
every weak implicative semilattice S. Therefore, whenever convenient, we
shall consider weak implicative semilattices as algebras in the language that
includes the nucleus thus defined.

The operation ⇀ can be thought of as a generalized (intuitionistic) impli-
cation in the following sense. For every algebra having a bounded implicative
semilattice reduct 〈S; ∧,→, 0, 1〉 as per Definition 2.3 and a nucleus �, we
can obtain a weak implicative semilattice by letting x ⇀ y := x → �y
(cf. Definition 3.12 and Example 3.13). As a nucleus we can for example
take the double negation (which gives us x ⇀ y = x → ¬¬y) or the identity
function on S (which gives us ⇀ = →).

The following remark should explain the name chosen for our algebras.
Consider the class of weak Heyting algebras (or WH-algebras), which arose
in [9] from the study of strict implication fragments of modal logics. For-
mally, a WH-algebra is a bounded distributive lattice 〈L; ∧,∨, 0, 1〉 further
endowed with a binary operation ⇀ which satisfies the following identities
[9, Def. 3.1]:

(WH1) x ⇀ (y ∧ z) = (x ⇀ y) ∧ (x ⇀ z).

(WH2) (x ∨ y) ⇀ z = (x ⇀ z) ∧ (y ⇀ z).

(WH3) (x ⇀ y) ∧ (y ⇀ z) ≤ x ⇀ z.
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(WH4) x ⇀ x = 1.

It is not hard to verify that every weak implicative semilattice satisfies all the
above identities, except of course (WH2). Conversely, the ∨-free reduct of
every WH-algebra satisfies all the properties listed in Definition 3.1 except
perhaps item (v). Those WH-algebras that satisfy item (v) are known as
basic algebras [9, Def. 3.3], and form the algebraic counterpart of Visser’s
logic [34].

On every weak implicative semilattice S (or, more generally, on every
algebra having a nucleus �), we can consider the set of �-fixpoints, which
can be given in either of the following ways:

S� := {a ∈ S : a = �a} = {�a : a ∈ S}.

It is easy to verify that, for every weak implicative semilattice S =
〈S; ∧,⇀, 0, 1〉, the set S� is the universe of a subalgebra

S� = 〈S�; ∧,⇀, 0, 1〉 ,

which is a bounded implicative semilattice. The case where S� = S is char-
acterized in the following proposition.

Proposition 3.2. ([27], Prop. 3.2). Let S = 〈S; ∧,⇀, 0, 1〉 be a weak im-
plicative semilattice. The following are equivalent:

(i) S |= �x ≤ x.

(ii) 〈S; ⇀, 0, 1〉 is a (bounded) Hilbert algebra.

(iii) 〈S; ∧,⇀, 0, 1〉 is a (bounded) implicative semilattice.

Regarding the preceding proposition, we observe that the algebras on
which the nucleus is the identity function (which are then just ordinary
subreducts of Heyting algebras) are of special interest within the theory of
quasi-Nelson algebras, for they correspond precisely to subreducts of Nelson
algebras (i.e. involutive quasi-Nelson algebras).

The next propositions better explain the relationship between weak im-
plicative semilattices and p-semilattices.

Proposition 3.3. ([27], Prop. 3.3). Given a pseudo-complemented semilat-
tice P = 〈P ; ∧,¬, 0, 1〉, define x ⇀ y := ¬(x ∧ ¬y). Then 〈P ; ∧, ⇀, 0, 1〉 is a
weak implicative semilattice.

As observed in [31, Cor. 4.14], the congruence lattice of a pseudo-
complemented semilattice need not satisfy any non-trivial lattice identity.
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Proposition 3.3 thus entails that the same holds for weak implicative semilat-
tices; in particular, they are in general non-distributive semilattices
(cf. Sect. 4).

Proposition 3.4. ([27], Cor. 3.5). Let S = 〈S; ∧,⇀, 0, 1〉 be a weak im-
plicative semilattice. Upon defining ¬x := x ⇀ 0, the algebra 〈S; ∧,¬, 0, 1〉
is a pseudo-complemented semilattice.

Proposition 3.5. ([27], Prop. 3.6). Let S = 〈S; ∧, ⇀, 0, 1〉 be a weak im-
plicative semilattice, with the pseudo-complement operation ¬ given by ¬x :=
x ⇀ 0. The following are equivalent:

(i) S |= �x = ¬¬x.

(ii) S |= x ⇀ y = ¬(x ∧ ¬y).

It may be interesting to notice that ¬(x ∧ ¬y) is precisely the term
that defines the “classical” implication within D. Prawitz’s Ecumenical Sys-
tem, a calculus designed for combining classical and intuitionistic logic (see
e.g. [24]); likewise the term interpreting the “classical” disjunction within
Prawitz’s system matches the one given for the operation ⊕ that we shall
consider in Example 3.15.

As expected, every implicative semilattice with a nucleus
S = 〈S; ∧,→,�, 0, 1〉 (Definition 3.12) may be endowed with a weak im-
plicative semilattice structure by letting x ⇀ y := x → �y. Given this
definition, we have the following result, which was used in [27] to show that
the class of twist-algebras over weak implicative semilattices coincides with
the {∗,∼}-subreducts of quasi-Nelson algebras.

Proposition 3.6. ([27], Prop. 6.2). Every weak implicative semilattice em-
beds into a complete3 implicative semilattice with a nucleus.

It was shown in [2] that the class of bounded nuclear implicative semilat-
tices is locally finite. This result, together with Proposition 3.6, entails that
weak implicative semilattices are also locally finite.

Proposition 3.7. The class of weak implicative semilattices is a variety.

Proof. It suffices to verify that item (vii) of Definition 3.1, which is the
one non-equational condition, can be equivalently replaced by the following
two:

(I) x ⇀ x = 1.

3As per standard terminology, a semilattice 〈S;∧, 0, 1〉 is complete when the meet of
every subset B ⊆ A (denoted

∧
B) exists in A.
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(II) x ≤ y ⇀ x.

It is easy to verify that (I) and (II) are satisfied by all weak implicative
semilattices. Indeed, by item (vii) of Definition 3.1, we have 1 ≤ x ⇀ x iff
1 ∧ x ≤ �x, which is true by item (v). Similarly, we have x ≤ y ⇀ x iff
x ∧ y ≤ x, which is certainly true.

For the other direction of the equivalence, let S = 〈S; ∧, ⇀, 0, 1〉 be an
algebra that satisfies all items of Definition 3.1 except perhaps (vii). Given
elements a, b, c ∈ S, assume a ≤ b ⇀ c. Then a ∧ b ≤ b ∧ (b ⇀ c), and item
(vi) of Definition 3.1 gives us b ∧ (b ⇀ c) = b ∧ �c ≤ �c, from which the
result easily follows.

Conversely, assume a ∧ b ≤ �c. The latter means that a ∧ b = a ∧ b ∧ �c.
Then b ⇀ (a ∧ b) = b ⇀ (a ∧ b ∧ �c), and by item (iii) of Definition 3.1 and
(I), we have b ⇀ (a ∧ b) = (b ⇀ a) ∧ (b ⇀ b) = (b ⇀ a) ∧ 1 = b ⇀ a. Likewise,
b ⇀ (a ∧ b ∧ �c) = (b ⇀ a) ∧ (b ⇀ b) ∧ (b ⇀ �c) = (b ⇀ a) ∧ (b ⇀ �c).
Hence b ⇀ a = (b ⇀ a) ∧ (b ⇀ �c), which by (II) gives us a ≤ b ⇀ a ≤
b ⇀ �c = b ⇀ c, as required. To justify the last equality, recall that � is a
nucleus, and in particular ��c = �c, because (by item (ii) of Definition 3.1)
��c = 1 ⇀ (1 ⇀ c) = (1 ∧ 1) ⇀ c = 1 ⇀ c = �c. Then, using item (viii) of
Definition 3.1, we have b ⇀ �c = �b ⇀ ��c = �b ⇀ �c = b ⇀ c.

Remark 3.8. As observed earlier, for each weak implicative semilattice S =
〈S; ∧,⇀, 0, 1〉, the nucleus image S� is the universe of a subalgebra S� =
〈S�; ∧,⇀, 0, 1〉 which is a bounded implicative semilattice. Conversely, from
a pair 〈S, I〉, where S is a bounded meet semilattice and I is a bounded
implicative semilattice related by suitable maps (if one wishes, I may simply
be taken to be a subset of S), we can obtain a weak implicative semilattice
as follows. Let S = 〈S; ∧S, 0S, 1S〉 and I = 〈I; ∧I,→I, 0I, 1I〉 be as above and
let n : S → I and p : I → S be maps satisfying the following properties:

(i) both n and p preserve finite meets and the bounds;

(ii) s ≤S p(n(s)) for all s ∈ S;

(iii) IdI = n ◦ p.

Then, letting x ⇀ y := p(n(x) → n(y)), we have that 〈S; ∧S, ⇀, 0S, 1S〉
is a weak implicative semilattice. Indeed, one can prove that every weak
implicative semilattice S = 〈S; ∧,⇀, 0, 1〉, arises in this way from the pair
〈〈S; ∧, 0, 1〉, 〈S�; ∧,⇀, 0, 1〉〉 by letting n = � and p = IdS� .
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3.2. nH-Semigroups

The class of algebras considered in this section was introduced to provide a
twist representation for the (weak) implication-negation subreducts of quasi-
Nelson algebras [25,29]; the latter class, in turn, is the equivalent algebraic
semantics of the algebraizable fragment of quasi-Nelson logic studied in [19].

We recall that, according to the twist construction of quasi-Nelson alge-
bras (Definition 1.1), the weak implication is given by:

〈a1, a2〉 ⇒2 〈b1, b2〉 = 〈a1 → b1,�(a1 ∧ b2)〉.
This suggests that the factor algebras corresponding to the weak implication-
negation subreducts will need to carry, besides the nucleus operator, only
an intuitionistic implication → and a “pseudo-meet” operation � such that
x � y = �(x ∧ y); this motivates the following definition.

Definition 3.9. ([25], Def. 4.5). A bounded nuclear Hilbert semigroup (nH-
semigroup for short) is an algebra S = 〈S; �,→, 0, 1〉 such that:

(i) 〈S; →, 0, 1〉 is a bounded Hilbert algebra.

(ii) 〈S; �〉 is a commutative semigroup.

(iii) The operation � given by �x := x�x is a dense nucleus on 〈S; →, 0, 1〉
in the sense of Definition 2.6.

(iv) x � y = x � (x → y).

(v) �x → (�y → z) = (x � y) → z.

(vi) x � 0 = 0.

(vii) x � 1 = �x.

It is clear that the {→,�, 1}-reduct of every nH-semigroup is a Lax
Hilbert algebra in the sense of [12], an observation that we shall exploit
later on. Observe that nH-semigroups generalize bounded implicative semi-
lattices, for every bounded implicative semilattice 〈A; ∧,→, 0, 1〉 is an nH-
semigroup where ∧ = � and � is the identity map. As in the case of weak im-
plicative semilattices, it is also easy to verify that the algebra of �-fixpoints
〈S�; �,→, 0, 1〉 of every nH-semigroup S = 〈S; �,→, 0, 1〉 is a bounded im-
plicative semilattice. The following examples should provide some further
insight on nH-semigroups.

Example 3.10. (cf. [25], Prop. 4.8). Let A be any algebra having a bounded
Hilbert algebra reduct 〈A; →, 0, 1〉. Define ¬x := x → 0 and
x � y := ¬(x → ¬y). Then the algebra 〈A; �,→ 0, 1〉 is an nH-semigroup
where �x = ¬¬x.
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Lemma 3.11. (cf. [25], Lemma 4.9). Let S = 〈S; �,→, 0, 1〉 be an nH-
semigroup and a, b, c ∈ S.

(i) �(a � b) = �a � �b = a � b.

(ii) If a ≤ b, then �a = a � b.

(iii) a → (b � c) = (a → �b) � (a → �c).

(iv) a → 0 = �a → 0.

(v) a � b ≤ �a.

Proof. Items (i), (ii) and (iv) match those of [25, Lemma 4.9]. Item (iii)
is slightly more general than it appears on [25, Lemma 4.9], namely: �a →
(b� c) = (�a → �b)� (�a → �c). But the two formulations are easily seen
to be equivalent by the identities x → �y = �x → �y [25, Lemma 4.4] and
x → (y � z) = x → �(y � z), which is a consequence of item (i). Finally,
regarding (v), using Definition 3.9 (v) we have (a�b) → �a = �a → (�b →
�a) = 1.

3.3. Nuclear Implicative Semilattices

The following definition is easily seen to be equivalent to the one adopted
in [2] which is based, for the nucleus, on our Definition 2.5.

Definition 3.12. A bounded nuclear implicative semilattice is an algebra
S = 〈S; ∧,→,�, 0, 1〉 such that:

(i) 〈S; ∧,→, 0, 1〉 is a bounded implicative semilattice;

(ii) � is a nucleus (Definition 2.6) on the bounded Hilbert algebra reduct
〈S; →, 0, 1〉.

As in the preceding cases, the algebra of �-fixpoints S� = 〈S�; ∧,→, 0, 1〉
of a nuclear implicative semilattice S = 〈S; ∧,→,�, 0, 1〉 is a bounded im-
plicative semilattice. Thus each class of algebras K introduced so far is nu-
clear in the sense of [3], that is, for every member A ∈ K, we have A� ∈ K.
The following example should help clarify the relationship among the above-
mentioned classes.

Example 3.13. (cf. [25], Lemma 4.6). Let S be any algebra having a reduct
〈S; ∧,→,�, 0, 1〉 that is a bounded nuclear implicative semilattice. Define
x⇀y := x → �y and x�y := �x∧�y. Then the algebra 〈S; ∧, ⇀, 0, 1〉 is a
weak implicative semilattice (Definition 3.1) and the algebra 〈S; �,→ 0, 1〉
is an nH-semigroup (Definition 3.9). In particular, by taking � to be the
identity map, we have that 〈S; ∧,→, 0, 1〉 is both a weak implicative semi-
lattice and an nH-semigroup.
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3.4. ⊕-Implicative Semilattices

As mentioned earlier, nH-semigroups arise as factors in the twist representa-
tion of the weak implication-negation subreducts of quasi-Nelson algebras.
If we enrich the latter with the quasi-Nelson meet operation, we obtain a
variety of algebras (dubbed quasi-Nelson semihoops in [27]) which can be
represented as twist-algebras over the class of ⊕-implicative semilattices in-
troduced below. Indeed, Definition 1.1 suggests that, in order to represent
the quasi-Nelson meet (	), one only needs to introduce a further binary
operation (here denoted ⊕) such that x ⊕ y = �(x ∨ y).

As observed in [27], the quasi-Nelson monoid operation (∗) is definable
as follows:

x ∗ y := x ∧ y ∧ ∼((x ⇒2 ∼ y) ∧ (y ⇒2 ∼x)).

Thus every quasi-Nelson semihoop also carries the quasi-Nelson monoid op-
eration; this is in keeping with the observation that, according to Defini-
tion 1.1, the operation ∗ can be defined on twist-algebras using only the
implicative semilattice operations (and the nucleus) of the factor algebra.

Definition 3.14. A ⊕-implicative semilattice is an algebra
S = 〈S; ∧,⊕,→, 0, 1〉 such that:

(i) 〈S; ∧,→,�, 0, 1〉 is a bounded nuclear implicative semilattice whose
nucleus is given by �x := x ⊕ x (Definition 3.12).

(ii) 〈S; ⊕〉 is a commutative semigroup.

(iii) x ⊕ 1 = 1.

(iv) �x = x ⊕ 0 = x ⊕ (x ∧ y).

(v) x ≤ x ⊕ y = �x ⊕ �y.

(vi) �x ∧ (y ⊕ z) = (x ∧ y) ⊕ (x ∧ z).

Let us illustrate the preceding definition with an example.

Example 3.15. Let 〈H; ∧,∨,→,�, 0, 1〉 be a nuclear Heyting algebra. Then,
upon defining x ⊕ y := �(x ∨ y), the algebra 〈H; ∧,⊕,→, 0, 1〉 is a ⊕-
implicative semilattice. Thus, in particular, every Heyting algebra may be
viewed as a ⊕-implicative semilattice where, taking the nucleus � to be the
identity map, we have that ⊕ coincides with the lattice join, whereas taking
� to be the double negation map we have x ⊕ y = ¬(¬x ∧ ¬y).

The class of ⊕-implicative semilattices is also nuclear in the above-
introduced sense: given S = 〈S; ∧,⊕,→, 0, 1〉, we have that the algebra of
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�-fixpoints S� = 〈S�; ∧,⊕,→, 0, 1〉 is a Heyting algebra (so S� is also a
⊕-implicative semilattice).

Given a nuclear Heyting algebra 〈H; ∧,∨,→,�, 0, 1〉, letting x ⊕ y :=
�(x ∨ y), we can recall the following result from [27], which was used to
characterize the class of {	,⇒2,∼}-subreducts of quasi-Nelson algebras.

Proposition 3.16. ([27], Lemma 6.6). Every ⊕-implicative semilattice em-
beds into a complete nuclear Heyting algebra.

The following properties will be useful later on, in particular for giving a
characterization of congruences of ⊕-implicative semilattices.

Lemma 3.17. ([27], Lemma 5.5). Every ⊕-implicative semilattice
S = 〈S; ∧,⊕,→, 0, 1〉 satisfies the following (quasi-)identities.

(i) If x ≤ z and y ≤ z, then x ⊕ y ≤ �z.

(ii) �(x ⊕ y) = x ⊕ y.

(iii) x → y ≤ (x ⊕ z) → (y ⊕ z).

(iv) ¬(x ⊕ y) = ¬x ∧ ¬y.

(v) (x → �z) ∧ (y → �z) ≤ (x ⊕ y) → �z.

Proof. The only item not proved in [27, Lemma 5.5] is the last one. Let
a, b, c ∈ S. Since (a → �c)∧ (b → �c) ≤ �(a → �c)∧�(b → �c), it suffices
to show that �(a → �c) ∧ �(b → �c) ≤ (a ⊕ b) → �c. To see this, let us
compute:

�(a → �c) ∧ �(b → �c) ≤ (a ⊕ b) → �c iff (by residuation)

(a ⊕ b) ∧ �(a → �c) ∧ �(b → �c) ≤ �c iff (by Def. 3.14.vi)

((a ∧ (a → �c)) ⊕ (b ∧ (a → �c))) ∧ �(b → �c) ≤ �c iff (by x ∧ (x → y) = x ∧ y)

((a ∧ �c) ⊕ (b ∧ (a → �c))) ∧ �(b → �c) ≤ �c iff (by Def. 3.14.vi)

(a ∧ �c ∧ (b → �c)) ⊕ (b ∧ (a → �c) ∧ (b → �c)) ≤ �c iff (by x ∧ (x → y) = x ∧ y)

(a ∧ �c ∧ (b → �c)) ⊕ (b ∧ (a → �c) ∧ �c) ≤ �c iff (by x ≤ y → x)

(a ∧ �c) ⊕ (b ∧ �c) ≤ �c iff (by Def. 3.14.vi)

��c ∧ (a ⊕ b) ≤ �c iff (by �x = ��x)

�c ∧ (a ⊕ b) ≤ �c.

4. Congruences and Homomorphisms

In this section we take a look at congruences and homomorphisms of the
above-introduced classes of intuitionistic modal algebras. As we shall see,
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similarly to the case of Heyting algebras endowed with a nucleus, in most
cases the congruences of each intuitionistic modal algebra coincide with
those of its purely implicational reduct. The next well-known fact (see e.g.
[21]) will be a key ingredient in subsequent proofs.

Lemma 4.1. ([29], Lemma 36). Let H = 〈H; →, 1〉 be a Hilbert algebra,
a, b ∈ A and θ ∈ Con(H). The following conditions are equivalent:

(i) 〈a, b〉 ∈ θ.

(ii) 〈a → b, 1〉, 〈b → a, 1〉 ∈ θ.

Proposition 4.2. Let A be either (i) a Lax Hilbert algebra, (ii) an nH-
semigroup, (iii) a nuclear implicative semilattice or (iv) a ⊕-implicative
semilattice. In all these cases, the congruences of A coincide with those
of the Hilbert algebra reduct of A.

Proof. (i). Let A = 〈A; →,�, 1〉 be a Lax Hilbert algebra, and let θ be
a congruence of the Hilbert algebra reduct 〈A; →, 1〉. Assume 〈a, b〉 ∈ θ.
Then 〈a → b, 1〉, 〈b → a, 1〉 ∈ θ, by Lemma 4.1. Since a → b ≤ �a → �b,
from 〈a → b, 1〉, 〈b → a, 1〉 ∈ θ we obtain 〈�a → �b, 1〉, 〈�b → �a, 1〉 ∈ θ
(this holds in every Hilbert algebra: see [25, Prop. 4.14]). Then we obtain
〈�a,�b〉 ∈ θ by applying again Lemma 4.1.

(ii). This was shown in [25, Prop. 4.14].
(iii). Let A = 〈A; ∧,→,�, 1〉 be a nuclear implicative semilattice. Then

the reduct 〈A; →,�, 1〉 is a Lax Hilbert algebra, and by item (i) we know
that Con(〈A; →,�〉) = Con(〈A; →〉). To conclude the proof, it remains to
show that Con(〈A; ∧,→〉) = Con(〈A; →〉). Let us then assume that θ ∈
Con(〈A; →〉) and 〈a, b〉 ∈ θ. Thus, by Lemma 4.1, we have 〈a → b, 1〉, 〈b →
a, 1〉 ∈ θ. Since the identity x → (y ∧ z) = (x → y) ∧ (x → z) holds on every
implicative semilattice [10], for all c ∈ A, we have (a∧c) → (b∧c) = ((a∧c) →
b)∧ ((a∧c) → c) = ((a∧c) → b)∧1 = (a∧c) → b ≥ a → b. As noted in item
(i), this and the assumption 〈a → b, 1〉 ∈ θ give us 〈(a ∧ c) → (b ∧ c), 1〉 ∈ θ.
A similar reasoning shows that 〈(b ∧ c) → (a ∧ c), 1〉 ∈ θ as well, so we
can apply Lemma 4.1 to conclude that 〈a ∧ c, b ∧ c〉 ∈ θ. Since we are in
a semilattice, this is sufficient to establish that θ is compatible with ∧, as
required.

(iv). Now let A = 〈A; ∧,⊕,→, 0, 1〉 be a ⊕-implicative semilattice and
θ ∈ Con(〈A; →〉). We know by item (iii) above that θ is compatible with
∧ (and with the nucleus �, which is given by �x := x ⊕ x). To conclude
the proof, it suffices to show that θ is compatible with ⊕ as well. To this
end, assume 〈a, b〉 ∈ θ and let c ∈ A. By Lemma 4.1, our assumptions imply
〈a → b, 1〉, 〈b → a, 1〉 ∈ θ. We claim that 〈(a ⊕ c) → (b ⊕ c), 1〉 ∈ θ. To



Intuitionistic modal algebras

see this, observe that a → b ≤ a → (b ⊕ c) and c → (b ⊕ c) = 1 hold
by Definition 3.14 (v) Thus we have 〈a → (b ⊕ c), 1〉, 〈c → (b ⊕ c), 1〉 ∈ θ,
which give us 〈(a → (b ⊕ c)) ∧ (c → (b ⊕ c)), 1〉 ∈ θ. By Lemma 3.17 (ii)
we have b ⊕ c = �(b ⊕ c), so we can apply Lemma 3.17 (v) to compute:
(a → (b ⊕ c)) ∧ (c → (b ⊕ c)) = (a → �(b ⊕ c)) ∧ (c → �(b ⊕ c)) ≤ (a ⊕ c) →
�(b ⊕ c) = (a ⊕ c) → (b ⊕ c). Thus, the assumption 〈(a → (b ⊕ c)) ∧ (c →
(b ⊕ c)), 1〉 ∈ θ gives us 〈(a ⊕ c) → (b ⊕ c), 1〉 ∈ θ. A similar reasoning allows
us to conclude 〈(b ⊕ c) → (a ⊕ c), 1〉 ∈ θ, so (again by Lemma 4.1) we have
〈a ⊕ c, b ⊕ c〉 ∈ θ. Since the operation ⊕ is commutative, this is sufficient to
establish that θ is compatible with ⊕, as required.

Given an algebra A with a partial order ≤ and maximum 1, we shall say
that an element a ∈ A is the penultimate element of A if a �= 1 and, for all
b ∈ A such that b < 1, it holds that b ≤ a.

Lemma 4.3. ([4], Thm. 56, [25], Thm. 4.22). A Hilbert algebra A is subdi-
rectly irreducible if and only if (the underlying order of) A has a penultimate
element.

From Proposition 4.2 and Lemma 4.3 we immediately obtain the following
result.

Corollary 4.4. Let A be either a Lax Hilbert algebra, an nH-semigroup,
an implicative semilattice (with a nucleus) or a ⊕-implicative semilattice.
Then A is subdirectly irreducible if and only if its underlying order has a
penultimate element.

Congruences correspond, of course, to special (i.e. surjective) homomor-
phisms; thus the result of Proposition 4.2 does not necessarily extend to
arbitrary homomorphisms. This, however, does hold for nH-semigroups, as
shown below.

Proposition 4.5. A map h : S → S′ between nH-semigroups S and S′ is a
homomorphism (i.e. preserves �,→, 0 and 1) if and only if h is a bounded
Lax Hilbert algebra homomorphism between the corresponding bounded Lax
Hilbert algebra reducts (i.e. preserves �,→, 0 and 1).

Proof. It obviously suffices to prove that every Lax Hilbert algebra ho-
momorphism preserves the semigroup operation. Let h : S → S′ be a Lax
Hilbert algebra homomorphism, and let a, b ∈ S. We have:

(h(a) � h(b)) → h(a � b) = �h(a) → (�h(b) → h(a � b)) by Def. 3.9.v

= h(�a → (�b → (a � b))) h preserves →,�
= h((a � b) → (a � b)) by Def. 3.9.v
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= h(1) = 1.

Thus, h(a) � h(b) ≤ h(a � b). On the other hand,

h(a � b) → (h(a) � h(b))

= (h(a � b) → �h(a)) � (h(a � b) → �h(b)) by Lemma 3.11.iii

= h((a � b) → �a) � h((a � b) → �b) h preserves →,�
= h(1) � h(1) by Lemma 3.11.v

= 1 � 1 = �1 = 1 by Def. 3.9.vii.

So we get h(a � b) ≤ h(a) � h(b), as desired.

From Proposition 4.5 and the observation that every implicative semilat-
tice 〈A; ∧,→, 0, 1〉 is an nH-semigroup where ∧ = � and � is the identity
map, it is easy to adapt the preceding result to (not necessarily bounded)
implicative semilattices (with a nucleus).

Corollary 4.6. A map h : S → S′ between implicative semilattices S and
S′ is a homomorphism (i.e. preserves ∧ and →) if and only if h is a Hilbert
algebra homomorphism between the corresponding Hilbert algebra reducts
(i.e. preserves →).

Corollary 4.7. A map h : S → S′ between (bounded) nuclear implicative
semilattices S and S′ is a homomorphism (i.e. preserves ∧,→,�, 1 and, if
present, the bottom element 0) if and only if h is a Lax Hilbert algebra homo-
morphism between the corresponding (bounded) Lax Hilbert algebra reducts
(i.e. preserves →,�, 1 and, if present, the bottom element 0).

The preceding results suggest that, when we consider (most of) the pre-
ceding classes of algebra from a categorical point of view (see Sect. 5), the
central notion we will have to look at with regards to morphisms will be that
of Lax Hilbert algebras homomorphism. For weak implicative semilattices,
we shall also consider the weaker notion of semi-homomorphism.

Definition 4.8. A map h : S → S′ between weak implicative semilattices
S and S′ is a semi-homomorphism if, for all a, b ∈ S,

(SH1) h(0) = 0,

(SH2) h(1) = 1,

(SH3) h(a ∧ b) = h(a) ∧ h(b),

(SH4) h(a ⇀ b) ≤ h(a) ⇀ h(b).

Thus a semi-homomorphism is a bounded meet semilattice homomorphism
that further satisfies (SH4). We shall say that h is a homomorphism if h
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preserves all operations, that is, h is a semi-homomorphism that further
satisfies:

(SH5) h(a) ⇀ h(b) ≤ h(a ⇀ b).

Lemma 4.9. A map h : S → S′ between weak implicative semilattices S and
S′ is a semi-homomorphism if and only if h is a bounded meet semilattice
homomorphism such that h(�a) ≤ �h(a) for all a ∈ S.

Proof. For the non-trivial direction, assume h(�a) ≤ �h(a), for all a ∈ S.
Let a, b ∈ S. Since h is a meet semilattice homomorphism h(a)∧h(a⇀b) =
h (a ∧ (a ⇀ b)), and as h is monotonic, h (a ∧ (a ⇀ b)) ≤ h(�b) ≤ �h(b).
Thus, h(a) ∧ h(a ⇀ b) ≤ �h(b), i.e., h(a ⇀ b) ≤ h(a) ⇀ h(b).

5. Dualities

We are now ready to obtain representations and topological dualities for
the above-mentioned classes of intuitionistic modal algebras. We begin by
recalling the main definitions and results from the duality for Lax Hilbert
algebras introduced by Celani and Montangie in [11,12] (Subsect. 5.1); on
this we shall build our duality for nH-semigroups (Subsect. 5.2). Following
a similar strategy, we shall use the duality for (implicative) meet semilat-
tices developed in [7,8,13] by Celani and collaborators (Subsect. 5.3) as a
basis for our dualities for weak implicative (Subsect. 5.4) and ⊕-implicative
semilattices (Subsect. 5.5).

Let 〈X, ≤〉 be a poset. For each Y ⊆ X, let [Y ) = {x ∈ X : ∃y ∈ Y (y ≤ x)}
and (Y ] = {x ∈ X : ∃y ∈ Y (x ≤ y)}. We will say that Y is an upset of X (a
downset of X) if Y = [Y ) (Y = (Y ]). We will write [y) and (y] instead of
[{y}) and ({y}], respectively. We also write P(X) and Up(X) for the set of
all subsets and upsets of X, respectively. We note that 〈Up(X),∩,∪, ∅, X〉
is a bounded distributive lattice.

5.1. Lax Hilbert Algebras

The papers [11] and [12] introduce topological dualities for categories as-
sociated to Hilbert algebras with a modal operator, which can be easily
extended to nH-semigroups.

Let us begin by introducing Lax Hilbert spaces, which are special T0 spaces
〈X, τK〉 having a base of compact sets K enriched with a binary relation
R ⊆ X × X. Recall that the saturation of a set Y ⊆ X is given by:

sat(Y ) :=
⋂

{U ∈ K : Y ⊆ U};
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and the closure of Y ⊆ X is given by:

cl(Y ) :=
⋂

{U c : U ∈ K and Y ∩ U = ∅}.

We denote by ≤K, or by ≤, the dual specialization order given, for all
x, y ∈ X, by x ≤K y iff y ∈ cl(x). Recall that X is a T0 space if and only if ≤
is a partial order. Recall also that a subset Y ⊆ X is said to be irreducible
when, for all closed sets Y1, Y2 ⊆ X, we have that Y = Y1∪Y2 entails Y = Y1

or Y = Y2. A space is sober when, for every irreducible closed set Y ⊆ X,
there exists a unique x ∈ X such that Y = cl(x).

Let X and Y be sets and R ⊆ X × Y a binary relation. For every
(x, y) ∈ X×Y , we consider the sets R(x) = {y ∈ X2 : (x, y) ∈ R}, R−1(y) =
{x ∈ X1 : (x, y) ∈ R}, and R−1(U) = {x ∈ X : R(x) ∩ U �= ∅}, for U ⊆ X.
We define the map �R : P(Y ) → P(X) given by

�R(U) = {x ∈ X : R(x) ⊆ U} ;

for every U ∈ P(Y ). Recall that �R(Y ) = X, and �R(U ∩ V ) =
�R(U) ∩ �R(V ), for every U, V ∈ P(Y ).

Definition 5.1. ([12], Def. 7). A Lax Hilbert space (or LH-space) is a struc-
ture 〈X, τK, Q〉 such that:

(i) 〈X, τK〉 is a topological space having a base of compact sets K.

(ii) sat(U ∩ V c) ∈ K for all U, V ∈ K.

(iii) 〈X, τK〉 is sober.

(iv) Q is a binary relation on X such that Q(x) is a τK-closed set for all
x ∈ X.

(v) Q−1(U) ∈ K for all U ∈ K.

(vi) Q ⊆ ≤K.

(vii) Q = Q ◦ Q.

Definition 5.2. ([12], Def. 3; [11], Defs. 2.6 and 3.9). Let 〈X, τK, Q〉 and
〈X ′, τK′ , Q′〉 be LH-spaces. We say that R ⊆ X × X ′ is an LH-relation if:

(i) R−1(U) ∈ K for all U ∈ K′.

(ii) R(x) is a τK′-closed set for all x ∈ X.

An LH-relation is functional whenever 〈x, x′〉 ∈ R entails R(y) = [x′) for
some y ∈ X with x ≤ y.

Let LHSp denote the category of Lax Hilbert spaces with LH-relations,
and let LHSpF be the subcategory of LHSp having Lax Hilbert spaces as
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objects and functional LH-relations as morphisms. Correspondingly, let LHA
denote the category having Lax Hilbert algebras as objects and Lax Hilbert
algebra semi-homomorphisms as morphisms (Definition 5.3).

Definition 5.3. ([12], Def. 3; [11], Defs. 2.6 and 3.9). A map h : H → H ′

between Lax Hilbert algebras 〈H; →,�, 1〉 and 〈H ′; →′,�′, 1′〉 is a semi-
homomorphism if, for all a, b ∈ H,

(i) h(1) = 1′

(ii) h(�a) = �′h(a)

(iii) h(a → b) ≤′ h(a) →′ h(b).

We denote by LHAH the subcategory of LHA having the same objects
but requiring the morphisms to be algebraic homomorphisms, i.e. further
satisfying h(a → b) = h(a) →′ h(b).

To obtain an equivalence, define functors X : LHA → LHSp and
H : LHSp → LHA as follows.

Given a Lax Hilbert algebra 〈H; →,�〉, we define an (implicative) filter
as a non-empty subset F ⊆ H that is closed under →-modus ponens, that
is, for all a, b ∈ H such that a ∈ F and a → b ∈ F , we have b ∈ F . A
filter F is irreducible when, for all filters F1, F2 such that F = F1 ∩ F2, we
have F1 = F or F2 = F . The set of all irreducible filters of an algebra H is
denoted by X(H).

Consider the map σ given by a �→ {x ∈ X(H) : a ∈ X} for all a ∈ H.
Then the family:

KH := {(σ(a))c : a ∈ H}
is the base for a topology τKH

. Further defining:

QH := {〈x, y〉 ∈ X(H) × X(H) : �−1(x) ⊆ y}
we have an LH-space 〈X(H), τKH

, QH〉 on which the dual specialization
order is the inclusion relation on X(H).

Given Lax Hilbert algebras 〈H; →,�〉, 〈H ′; →′,�′〉 and a semi-
homomorphism h : H → H ′, we have that

X(h) := {〈x′, x〉 ∈ X(H ′) × X(H) : h−1(x′) ⊆ x}
is an LH-relation, and X(h) is functional if and only if h is an LH-algebra
homomorphism.

Conversely, given an LH-space 〈X, τK, Q〉, the Lax Hilbert algebra
〈H(X);→K,�Q〉 has the set

H(X) := {U c : U ∈ K}
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as universe and operations given, for all U, V ∈ H(X), as follows:

U →K V := (U ∩ V c]c = {x ∈ X : [x) ∩ U ⊆ V }
�QU := {x ∈ X : Q(x) ⊆ U}.

Given LH-spaces 〈X, τK, Q〉, 〈X ′, τK′ , Q′〉 and an LH-relation R ⊆ X × X ′,
we have that the map H(R) : H(X ′) → H(X) given by
H(R)(U ′) := {x ∈ X : R(x) ⊆ U ′} for all U ∈ H(X ′) is a semi-homomor-
phism of LH-algebras; furthermore, as expected, H(R) is an LH-algebra
homomorphism if and only if R is functional.

For every Lax Hilbert algebra 〈H; →,�〉, the mapping σ : H → H(X(H))
is an isomorphism of Lax Hilbert algebras. Conversely, every LH-space
〈X, τK, Q〉 is homeomorphic to the space 〈X(H(X)), τKH(X) , QH(X)〉 through
the map HX given, for all x ∈ X, by:

HX(x) := {U ∈ H(X) : x ∈ U}.

Joining together these observations we have the announced equivalence(s).

Theorem 5.4. ([12], Thm. 2; [11], Thm. 3.13). The categories LHSp and
LHA are dually equivalent via the functors H and X, and so are the cate-
gories LHSpF and LHAH.

5.2. nH-Semigroups

The notion of filter of an nH-semigroup S = 〈S; �,→, 0, 1〉 can be taken to
be the same as that of an (implicative) filter of the Hilbert algebra reduct
〈S; →, 1〉. This is suggested by the observation that any (implicative) filter F
of 〈S; →, 1〉 is closed under the semigroup operation of S. Indeed, assuming
a, b ∈ F we have �a,�b ∈ F because F is increasing. Then we can apply
Lemma 5.5 below to conclude a � b ∈ F .

Lemma 5.5. Let S = 〈S; �,→, 0, 1〉 be an nH-semigroup, F ⊆ S a filter and
a, b ∈ S. The following are equivalent:

(i) a � b ∈ F .

(ii) �a ∈ F and �b ∈ F .

Proof. Assume (i) holds, so a� b ∈ F . By Definition 3.9.v and the proper-
ties of the intuitionistic implication, we have (a � b) → �a = �a → (�b →
�a) = 1 ∈ F . Thus, by →-modus ponens, we obtain �a ∈ F . A symmetric
reasoning allows us to conclude that �b ∈ F .

Conversely, assume (ii) holds, so �a,�b ∈ F . Using again Definition 3.9.v,
we have �a → (�b → (a�b)) = ((a�b) → (a�b)) = 1 ∈ F . Thus, applying
→-modus ponens twice, we obtain a � b ∈ F , as required.
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Let X be a set. We recall that a binary relation R on X is serial if
R(x) �= ∅ for each x ∈ X, and R is dense if R ⊆ R ◦ R.

Proposition 5.6. Let S = 〈S; �,→, 0, 1〉 be an nH-semigroup, and let
〈X(S), τKS

, QS〉 be the LH-space dual to the Lax Hilbert algebra reduct
〈S; →, 1〉. Then,

(i) X(S) ∈ KS (hence, 〈X(S), τKS
〉 is compact).

(ii) QS is serial (i.e. for all x ∈ X(S), there is y ∈ X(S) such that 〈x, y〉 ∈
QS).

(iii) Q−1
S (U ∪ V ) ∈ KS for all U, V ∈ KS.

Proof. For the first two items, see [11, p. 52 and Thm. 4.5]. To prove
(iii), let U, V ∈ KS. Then there are a, b ∈ S such that U = (σ(a))c and
V = (σ(b))c. We claim that Q−1

S (U ∪ V ) = Q−1
S ((σ(a))c ∪ (σ(b))c) =

Q−1
S ((σ(a) ∩ σ(b))c) = (σ(a � b))c. Observe that, on the one hand, we have

x ∈ Q−1
S ((σ(a)∩σ(b))c) iff there is y ∈ X(S) such that �−1(x) ⊆ y and either

a /∈ y or b /∈ y. On the other hand, by Lemma 5.5, we have x ∈ (σ(a � b))c

iff �a /∈ x or �b /∈ x. The required result then follows from [11, Lemma 3.5],
which states that �a /∈ x iff there is y ∈ X(S) such that �−1(x) ⊆ y and
a /∈ y.

Definition 5.7. An nH-space is an LH-space that further satisfies the three
items in Proposition 5.6.

By Definition 5.7, the space dual to (the Lax Hilbert algebra reduct
of) every nH-semigroup S is an nH-space. Conversely, given an nH-space
〈X, τK, Q〉, the nH-semigroup 〈H(X);�Q,→K,�Q〉 is defined as for LH-
spaces, with the extra operation �Q being given, for all U, V ∈ H(X), by:

U �Q V := �Q(U ∩ V ) = �Q(U) ∩ �Q(V ) = {x ∈ X : Q(x) ⊆ U ∩ V }.

Proposition 5.8. For every nH-space 〈X, τK, Q〉, the algebra
〈H(X);�Q,→K,�Q〉 is an nH-semigroup.

Proof. We know that 〈H(X);→K,�Q〉 is a Lax Hilbert algebra that more-
over (by item (i) of Proposition 5.6) is bounded. To complete the proof, it
suffices to show that the operation �Q is well defined on H(X) and satisfies
the remaining identities of nH-semigroups. Regarding the former claim, let
U, V ∈ H(X), so that U c, V c ∈ K. Then, by the property stated in item
(iii) of Proposition 5.6, we have Q−1(U c ∪ V c) ∈ K. The result then follows
because (U �Q V )c = Q−1(U c ∪ V c).

Let us now look at the properties in Definition 3.9. We know from the
duality for Lax Hilbert algebras that items (i) and (iii) are satisfied. As for
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item (ii), commutativity of �Q is clear; associativity easily follows from the
observation that U �QV = �Q(U)∩�Q(V ). In fact, for all U, V, W ∈ H(X),
we have:

(U �Q V ) �Q W = �Q(U �Q V ) ∩ �Q(W )

= �Q�Q(U ∩ V ) ∩ �Q(W )

= �Q(U ∩ V ) ∩ �Q(W )

= �Q(U) ∩ �Q(V ) ∩ �Q(W )

= �Q(U) ∩ �Q(V ∩ W )

= U �Q (V �Q W ).

For item (iv), we need to show that, for all U, V ∈ H(X),

{x ∈ X : Q(x) ⊆ U ∩ V } = {x ∈ X : Q(x) ⊆ U ∩ (U ∩ V c]c}.

Let us verify that U ∩ V = U ∩ (U ∩ V c]c . Let a ∈ U ∩ V . As a ∈ V and
V is increasing, [a) ⊆ V . So, [a)∩U ⊆ V , i.e, [a)∩U ∩V c = ∅, which entails
a ∈ (U ∩ V c]c. Thus, U ∩ V ⊆ U ∩ (U ∩ V c]c.

If a ∈ U ∩ (U ∩ V c]c, then a ∈ U and [a) ∩ U ⊆ V . Since U is increasing,
[a) ⊆ U . So, [a) ∩ U = [a) ⊆ V , and thus a ∈ V . Then we have proved that
U ∩ (U ∩ V c]c ⊆ U ∩ V .

For item (v), observe that U →K (V →K W ) = (U ∩ V ) →K W holds for
all U, V,W ∈ H(X). Then,

�Q(U) →K (�Q(V ) →K W ) = (�Q(U) ∩ �Q(V )) →K W = (U �Q V ) →K W

as required. Item (vi) easily follows from the observation that Q is serial.
Finally, item (vii) is immediate.

Proposition 5.9. For every nH-semigroup 〈S; �,→, 0, 1〉, the mapping
σ : S → H(X(S)) is an isomorphism of nH-semigroups.

Proof. Since we know that σ is a (Lax) Hilbert algebra isomorphism, it
suffices to show that σ preserves 0 and the operation �. Regarding the
former, we have σ(0) = ∅ because no proper implicative filter contains 0.
Regarding the latter, we need to check that σ(a � b) = σ(a) �QS

σ(b) for
all a, b ∈ S. Assume x ∈ σ(a � b), so a � b ∈ x. By Lemma 5.5, this gives
us �a,�b ∈ x. Then, for every y ∈ QS(x), we have a, b ∈ y, as required.
On the other hand, assuming x /∈ σ(a � b), we can again apply Lemma 5.5
to conclude that �a /∈ x or �b /∈ x. Assume the former is the case (a
similar reasoning applies if �b /∈ x). Then x /∈ σ(�a) = �QS

σ(a). Thus,
QS(x) �⊆ σ(a), which means that there is y ∈ QS(x) such that a /∈ y. Hence,
x /∈ σ(a) �QS

σ(b), as required.



Intuitionistic modal algebras

Let nH be the category of nH-semigroups with algebraic homomorphisms,
and let nHSp be the category having nH-spaces as objects and nH-relations
for morphisms, defined as follows.

Definition 5.10. We say that an LH-relation (Definition 5.2) R ⊆ X ×X ′

between nH-spaces 〈X, τK, Q〉 and 〈X ′, τK′ , Q′〉 is an nH-relation iff R is
functional and serial.

Given nH-spaces 〈X, τK, Q〉, 〈X ′, τK′ , Q′〉 and an nH-relation R ⊆ X×X ′,
we have that the map H(R) : H(X ′) → H(X) defined as in the case of
LH-algebras is an nH-semigroup homomorphism. Indeed, H(R) preserves
the bounds (because R is serial) and the � operation as well because of
Proposition 4.5.

The previous observations entail that every nH-space 〈X, τK, Q〉 is home-
omorphic to the space 〈X(H(X)), τKH(X) , QH(X)〉 through the map HX

given as before. Joining together these observations we obtain the announced
equivalence.

Theorem 5.11. The categories nHSp and nH are dually equivalent via the
functors H and X.

5.3. Meet Semilattices

The next objective is to present a topological duality for the class of weak
implicative semilattices. Since the underlying semilattice of these algebras
is not distributive we need to appeal to another duality for semilattices
that are not necessarily distributive. In this section we will use the duality
developed in [13] for bounded semilattices.

Let S = 〈S; ∧, 0, 1〉 be a bounded semilattice. A filter is a non-empty set
F ⊆ S that is increasing with respect to the semilattice order and closed
under finite meets. The set of all filters on S is denoted by Fi(S).

As before, a filter P of S is irreducible when, for all F1, F2 ∈ Fi(S) such
that P = F1∩F2, one has P = F1 or P = F2. The set of all irreducible filters
on S is denoted by X(S). A filter P is prime when, for all F1, F2 ∈ Fi(S)
such that F1 ∩ F2 ⊆ P , one has F1 ⊆ P or F2 ⊆ P . Every prime filter is
irreducible, while the converse need not hold (cf. Proposition 5.13 below).
The following characterizations are quite useful in practice (see [7,8]). A
filter F is irreducible iff for every a, b /∈ F there exists f ∈ F and c /∈ F such
that a ∧ f ≤ c and b ∧ f ≤ c. A filter P is prime iff, for every a, b /∈ F , there
exists c /∈ F such that a ≤ c and b ≤ c.

An order ideal of S is a set I ⊆ S that is decreasing and such that for all
a, b ∈ I, there exists c ∈ I with a, b ≤ c. It is easy to see that a filter F is
irreducible iff F c = S − F is an order ideal.
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The following result shows that every proper filter of a semilattice is the
intersection of irreducible filters.

Theorem 5.12. ([7], Thm. 8). Let S be a semilattice. Let F be a filter and
let I be an order ideal of S such that F ∩ I = ∅. Then there exists P ∈ X(S)
such that F ⊆ P and P ∩ I = ∅.

There are different generalizations of the notion of distributivity from
lattices to semilattices. Here we are going to say that a semilattice S is
distributive iff for all a, b, c ∈ S such that a ∧ b ≤ c, there exist a′, b′ ∈ S
such that a ≤ a′, b ≤ b′, and a′ ∧ b′ = c (see [8,13]). As expected, a bounded
lattice 〈L; ∨,∧, 0, 1〉 is distributive (as a lattice) if and only if 〈L,∧, 1〉 is a
distributive semilattice according to our definition.

Proposition 5.13. ([7]). Let S = 〈S; ∧, 1〉 be a semilattice. The following
conditions are equivalent:

(i) S is distributive.

(ii) Fi(S) is a distributive lattice.

(iii) Every irreducible filter of S is prime.

Given a non-empty set X, consider a family K ⊆ P(X) such that X =⋃ K. In this section we denote by τK the topology on X taking as subbase
the family K. It is well known that τK consists of ∅, X, all finite intersections
of members of K and all arbitrary unions of these finite intersections.

Let 〈X, τK〉 be a topological space. We consider the following collection
of subsets of X:

S(X) = {U ⊆ X : U c ∈ K} .

Let CK(X) be the closure system on X generated by S(X), i.e., CK(X) =
{⋂ D : D ⊆ S(X)}. The closure operator associated to CK(X) is denoted by
clK. The elements of CK(X) are closed, but not every closed set is of this
form, since K is only a subbase. Thus, in general cl(Y ) ⊆ clK(Y ) for any
Y ⊆ X, but cl(x) = clK(x), for any x ∈ X. The elements of CK(X) will
be called subbasic closed subsets of X. It is clear that S(X) is closed under
finite intersections iff K is closed under finite unions. Thus, if K is closed
under finite unions and ∅, X ∈ K, then S(X) = 〈S(X),∩, ∅, X〉 is a bounded
semilattice, called the dual semilattice of 〈X, τK〉.

Consider a topological space 〈X, τK〉. From now on we will always assume
that the subbase K is closed under finite unions and that ∅, X ∈ K.

We are now going to define the dual spaces of (bounded) semilattices;
the definition we propose does not coincide with the one given in [13], but
it is easily seen to be equivalent (see Lemma 3.7 and Prop. 3.8 of [13]).
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Definition 5.14. An S-space is a topological space 〈X, τK〉 satisfying the
following:

(S1) 〈X, τK〉 is a T0 space.

(S2) K is a subbase of compact open subsets that is closed under finite
unions, and ∅, X ∈ K.

(S3) For each x ∈ X, the set HX(x) = {U ∈ S(X) : x ∈ U} is an irreducible
filter of S(X).

(S4) The map HX : X → X(S(X)) is onto.

It is clear that, if 〈X, τK〉 is an S-space, then S(X) = 〈S(X);∩, ∅, X〉 is a
bounded semilattice called the dual semilattice of 〈X, τK〉.

Now we will see how to construct the dual space of a bounded semilattice
S. Let X(S) be the poset of all irreducible filters of S. We consider the map
σ : S → Up(X(S)) given σ(a) = {x ∈ X(S) : a ∈ x}, for each a ∈ S. Let
KS = {σ(a)c : a ∈ S}. It is easy to see that KS is a subbase for a topology on
X(S), closed under finite unions, and ∅, X(S) ∈ KS. Then the topological
space 〈X(S), τKS

〉 is an S-space, and the map σ : S → S(X(S)) is an
isomorphism of bounded semilattices [13, Prop. 3.10].

Let 〈X, τK〉 be an S-space and let 〈X(S(X)), τKS(X)〉 be the dual S-space
of S(X). By [13, Prop. 3.12] the map HX : X → X(S(X)) is a homeomor-
phism between the S-spaces. Moreover, KS(X) = {HX [U ] : U ∈ K}.

We shall consider the notion of meet-relation introduced in [13]. Let
〈X1, τK1〉 and 〈X2, τK2〉 be two S-spaces. A relation r ⊆ X1 × X2 is said
to be a meet-relation if

(R1) For all U ∈ S(X2), �r(U) = {x ∈ X1 : r(x) ⊆ U} ∈ S(X1).

(R2) For every x ∈ X1, r(x) ∈ CK2(X2).

We say that a meet-relation r ⊆ X1 × X2 is serial if

(R3) r(x) �= ∅, for each x ∈ X1.

If r ⊆ X1 × X2 is a serial meet-relation, then the map
�r : S(X2) → S(X1) is a bounded meet-homomorphism. The condition
(R3) guarantees that �r(∅) = ∅.

Definition 5.15. ([8,13]). Let 〈Xi, τKi
〉, with i = 1, 2, 3, be S-spaces, and

let R ⊆ X1 × X2 and T ⊆ X2 × X3 be meet-relations. Let

R ◦ T = {(x, z) ∈ X1 × X3 : ∃y ∈ X2 ((x, y) ∈ R and (y, z) ∈ T )} .
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We define the composition ∗ between T and R as

T ∗ R = {(x, z) ∈ X1 × X3 : for every U ∈ S(X3), (T ◦ R) (x) ⊆ U implies z ∈ U} .

Let h : S1 → S2 be a bounded semilattice homomorphism. Then the
relation rh ⊆ X(S2) × X(S1) given by

(x, y) ∈ rh iff h−1(x) ⊆ y,

for all (x, y) ∈ X(S2) × X(S1) is a meet-relation.
We consider the category SP whose objects are S-spaces and whose mor-

phisms are the serial meet-relations, where the identity morphism is the dual
of the specialization order, and the composition is ∗. Let us denote by BMS
the category of bounded semilattices and homomorphisms (that is, maps
preserving finite meets and the bounds).

Theorem 5.16. ([13]). The categories BMS and SP are dually equivalent.

We next recall the duality for bounded distributive semilattices, which
we view as a special case of the preceding duality for semilattices [7,8]. A
topological space 〈X, τ〉 is called a DS-space if it is sober and the set of
all compact open subsets KO(X) of X is a base for τ . If 〈X, τ〉 is a DS-
space, then 〈S(X);∩, ∅, X〉 is a distributive semilattice. If D = 〈D; ∧, 1〉
is a distributive semilattice, then the space 〈X(D), τD〉, whose topology
is generated by the base {σ(a)c : a ∈ D}, is a DS-space. Thus, every DS-
space is an S-space [7,8]. The notion of meet-relation between DS-spaces
is the same as for S-spaces. Let BDS be the category whose objects are
bounded distributive semilattices and whose morphisms are bounded meet-
homomorphisms, and let DSP be the category whose objects are compact
DS-spaces and whose morphisms are meet-relations.

Theorem 5.17. ([13]). The categories BDS and DSP are dually equivalent.

Recall that, given a poset 〈X, ≤〉, the algebra 〈Up(X);∩,→, ∅, X〉 is an
implicative semilattice where the intuitionistic implication is defined, for all
U, V ∈ Up(X), by

U → V = {x ∈ X : [x) ∩ U ⊆ V } .

A spectral duality for implicative semilattices can be obtained by combin-
ing the duality for distributive semilattices [7], the duality for Hilbert alge-
bras [5,6], and the representation results given in [10]. We recall that an im-
plicative space, or IS-space, is a DS-space 〈X, τ〉 such that
U → V := (U ∩ V c]c ∈ S(X) where the order ≤ is the specialization dual
order of 〈X, τ〉. The dual implicative semilattice of an implicative space is
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〈S(X);∩,→, X〉. If the IS-space 〈X, τ〉 is compact, then 〈S(X);∩,→, ∅, X〉 is
a bounded implicative semilattice. Recall from [10] that a functional meet-
relation is a meet-relation R between two IS-spaces X, Y such that, for
every pair (x, y) ∈ X × Y , if (x, y) ∈ R, then there exists z ∈ X such that
x ≤ z and R(z) = [y).

Let IS be the category of compact IS-spaces where the morphisms are
the functional meet-relations. By the results of [8,10], we have that the cat-
egory BIM bounded implicative semilattices whose morphisms are bounded
implicative homomorphisms is dually equivalent to the category IS.

Given a semilattice S = 〈S; ∧, 1〉, we shall say that a map � : S → S is a
modal operator if it satisfies the identities �(x ∧ y) = �x ∧ �y and �1 = 1
(so every nucleus is, in particular, a modal operator: cf. Definition 2.5). The
algebra 〈S; ∧,�, 1〉 will be called a modal semilattice. A �-homomorphism
between modal semilattices S1,S2 is a meet-homomorphism h : S1 → S2

such that h(�1a) = �2h(a), for all a ∈ S1. Since a modal operator � on a
semilattice S is a particular case of meet-homomorphism, we have that the
relation R� ⊆ X(S) × X(S) given by (x, y) ∈ R� iff �−1(x) ⊆ y is a meet-
relation. We are now going to characterize dually the �-homomorphisms.

Lemma 5.18. Let S1 and S2 be modal semilattices. Then a meet-
homomorphism h : S1 → S2 is a �-homomorphism iff R�2 ◦ rh = rh ◦ R�1.

Proof. Let a ∈ S1 and suppose that h(�1a) � �2h(a). Then there exists
x ∈ X(S2) such that h(�1a) ∈ x and �2h(a) /∈ x. As �−1

2 (x) is a filter,
there is y ∈ X(S2) such that �−1

2 (x) ⊆ y and h(a) /∈ y. Again, since h−1(y)
is a filter of S1, there exists z ∈ X(S1) such that h−1(y) ⊆ z and a /∈ z.
Then (x, z) ∈ R�2 ◦ rh. So, there exists k ∈ X(S1) such that (x, k) ∈ rh and
(k, z) ∈ R�1 . But as h(�1a) ∈ x, we have �1a ∈ k, and so a ∈ z, which is
a contradiction. Thus h(�1a) ≤ �2h(a), for all a ∈ S1. The proof for the
other inequality is similar.

We prove the inclusion R�2 ◦ rh ⊆ rh ◦ R�1 . The proof of the other
inclusion is similar. Let x, y ∈ X(S2), and z ∈ X(S1) such that (x, y) ∈ R�2

and (y, z) ∈ rh, i.e., �−1
2 (x) ⊆ y and h−1(y) ⊆ z. Consider the filter h−1(x)

of S1. It is easy to check that the set �1(zc) = {�1a : a /∈ z} is an order
ideal. We prove that h−1(x) ∩ �1(zc) = ∅. Suppose that there exists a ∈
h−1(x) ∩ �1(zc). Then h(a) ∈ x and there exists b /∈ z such that a = �1b.
So, h(a) = h(�1b) = �2(h(b)) ∈ x, and as �−1

2 (x) ⊆ y, we have h(b) ∈ y.
So, b ∈ z, which is a contradiction. Thus, by Theorem 5.12, there exists
w ∈ X(S1) such that h−1(x)⊆w and �−1

1 (w)⊆z, i.e., (x, z) ∈ rh ◦ R�1 .

Note that the preceding characterization remains valid for distributive
semilattices and implicative semilattices with a modal operator.
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5.4. Weak Implicative Semilattices

In this section we are going to prove a representation theorem for weak im-
plicative semilattices and subsequently study the corresponding dual spaces.

Lemma 5.19. Consider a structure 〈X, ≤, R〉 such that 〈X, ≤〉 is a poset
and R ⊆ X × X is a relation. The following conditions are equivalent:

1. (≤ ◦R) ⊆ (R◦ ≤).

2. �R(U) = {x ∈ X : R(x) ⊆ U} ∈ Up(X), for any U ∈ Up(X).

3. X → �R(U) = �R(U), for all for all U ⊆ X.

Proof.

(1) ⇒ (2) Let U ∈ Up(X). Let x, y ∈ X such that x ≤ y and x ∈ �R(U).
We prove that R(y) ⊆ U . Let z ∈ R(y). Then (x, z) ∈ (≤ ◦R). By
hypothesis there exists k ∈ X such that (x, k) ∈ R and k ≤ z. As
k ∈ R(x) ⊆ U and U ∈ Up(X), we get z ∈ U . Thus, y ∈ �R(U).

(2) ⇒ (3) Let x ∈ X. Then x ∈ X → �R(U) iff [x) ∩ X = [x) ⊆ �R(U) iff
x ∈ �R(U), for any U ⊆ X.

(3) ⇒ (1) Let x, y, z ∈ X such that x ≤ y and (y, z) ∈ R. Consider the
upset U = [R(x)) = {l ∈ X : ∃k ∈ R(x) (k ≤ l)}. Then R(x) ⊆ U , and
thus x ∈ �R(U). By hypothesis, X → �R(U) = �R(U). This means
that �R(U) is an upset. As x ≤ y, we get y ∈ �R(U). So, R(y) ⊆
U and thus z ∈ U = [R(x)). Then there exists k ∈ R(x) such that
k ≤ z.

The preceding characterization gives us one of the ingredients that we
need for our definition of weak implicative semilattice (WIS)-frame.

Definition 5.20. A WIS-frame is a relational structure 〈X, ≤, R〉, where
〈X, ≤〉 is a poset and R ⊆ X × X is a dense and serial relation on X such
that (≤ ◦R) ⊆ (R◦ ≤) and R ⊆ ≤.

Lemma 5.21. Let 〈X, ≤, R〉 be a WIS-frame. Then Up(X)=
〈Up(X);∩,⇀, ∅, X〉 is a weak implicative semilattice where U ⇀ V := U →
�R(V ) for all U, V ∈ Up(X).

Proof. We already know that 〈Up(X);∩, ∅, X〉 is a bounded semilattice.
By definition of ⇀ we get that U ⇀ V ∈ Up(X), for any U, V ∈ Up(X). By
Lemma 5.19 we have that X → �R(U) = �R(U), and thus �R(U) ∈ Up(X),
for any U ∈ Up(X).

It is easy to check that that the conditions R ⊆≤ and R ⊆ R ◦ R,
imply that U ⊆ �R(U), and �R(�R(U)) ⊆ �R(U), for all U ∈ Up(X),
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respectively. We prove that �R(∅) = ∅. If there exists x ∈ X such that
x ∈ �R(∅), then R(x) ⊆ ∅, which is a contradiction, because R is serial i.e.,
R(x) �= ∅. Thus, �R(∅) = ∅.

Let U, V ∈ Up(X). We prove that �R (U ⇀ V ) = U ⇀ V , i.e,

�R (U → �R(V )) = U → �R(V ). (1)

We note that

�R(U → �R(V )) ⊆ �R(U) → �R(�R(V )) ⊆ �R(U) → �R(V ) ⊆ U → �R(V ).

For the other inclusion we take x ∈ U → �R(V ), i.e., [x) ∩ U ⊆ �R(V ).
Let y ∈ R(x). For each z ∈ [y) ∩ U we get x ≤ y ≤ z (because R ⊆≤). Thus
z ∈ [x) ∩ U , and this implies that z ∈ �R(V ). Therefore we have proved
that U → �R(V ) ⊆ �R (U → �R(V )).

The equality (1) entails the remaining properties. Thus, Up(X) is a weak
implicative semilattice as claimed.

The next step is to construct a frame associated with a weak implicative
semilattice, and prove that for every weak implicative semilattice S there
exists a frame 〈X, ≤, R〉 such that S is isomorphic to a subalgebra of Up(X).
For this we are going to give some technical results that will allow us to
obtain the representation Theorem 5.28.

Let S be a weak implicative semilattice. We recall that
S� := {a ∈ S : a = �a}. It is easy to verify that S� is the universe
of a subalgebra 〈S�; ∧,⇀, 0, 1〉 which is a bounded implicative semilattice
(i.e. the operation ⇀ is the relative pseudo-complement on S�).

Furthermore, for each weak implicative semilattice S, consider the (irre-
ducible, prime) filters of the corresponding bounded semilattice reduct. As
before, the (po)set of all (semilattice) filters on S is denoted by Fi(S), while
X(S) denotes the (po)set of the irreducible ones. It is easy to see that, for
each F ∈ Fi(S),

�−1(F ) = {a : �a ∈ F} ∈ Fi(S).

We define on Fi(S) a binary relation R� as follows:

(F,G) ∈ R� iff �−1(F ) ⊆ G.

Lemma 5.22. Let S be weak implicative semilattice. Then the relation R�
on X(S) is serial, dense and, for each P,Q ∈ X(S), if (P, Q) ∈ R�, then
P ⊆ Q.

Proof. As �0 = 0, we have that R� is serial. By the inequality a ≤ �a
we have R� is included in the set-theorical relation ⊆. We prove that R�
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is dense. Let (P,Q) ∈ R�. Consider the subset (�(Qc)] = {a ∈ S : ∃q /∈ Q
(a ≤ �q)}. As Q is irreducible, (�(Qc)] is an order ideal. We prove that
�−1(P ) ∩ (�(Qc)] = ∅. Otherwise, there exists a ∈ �−1(P ) and q /∈ Q such
that a ≤ �q. Then, �a ≤ ��q = �q. So, �q ∈ P , and as (P, Q) ∈ R�, we
get q ∈ Q, which is a contradiction. Thus, there exists D ∈ X(S) such that
�−1(P ) ⊆ D and �−1(D) ⊆ Q, i.e., R� is dense.

Let S be a weak implicative semilattice with associated implicative semi-
lattice S�. We consider the following families of filters:

Fi∗(S) =
{
F ∈ Fi(S) : �−1(F ) = F

}

and

X∗(S) =
{
x ∈ X(S) : �−1(x) = x

}
= Fi∗(S) ∩ X(S).

Proposition 5.23. For every weak implicative semilattice S, there exists
an order isomorphism between the posets (Fi∗(S),⊆) and (Fi(S�),⊆), which
restricts to an order isomorphism between (X∗(S),⊆) and (X(S�),⊆).

Proof. For each F ∈ Fi∗(S), we have that F ∩ S� ∈ Fi(S�). And for each
H ∈ Fi(S�) it is easy to see that �−1(H) ∈ Fi∗(S). Moreover it easy to see
that F1 ⊆ F2 iff F1 ∩ S� ⊆ F2 ∩ S�, for any F1, F2 ∈ Fi∗(S). Thus, the map
α : Fi∗(S) → Fi(S�) given by α(F ) = F ∩ S� is an order isomorphism.

Let x ∈ X∗(S). We prove that x ∩ S� is an irreducible filter of S�. Let
a, b ∈ S� such that a, b /∈ x. As x is irreducible, there exist c ∈ x and there
exists d /∈ x such that a∧c ≤ d and b∧c ≤ d. Then a ≤ c⇀d and b ≤ c⇀d. If
c⇀d ∈ x, then c∧ (c ⇀ d) ≤ �d ∈ x, but as �−1(x) = x, we get that d ∈ x,
which is impossible. So, c ⇀ d /∈ x, and thus x ∩ S� is prime. We recall that
in implicative semilattices the notions of prime filter and irreducible filter
coincide.

Let x ∈ X(S�). We prove that �−1(x) is an irreducible filter of S. Let
a, b /∈ x. Then there exists d /∈ x such that a ≤ d and b ≤ d. As d = �d ∈ S�,
we get d /∈ �−1(x). If we take c = 1, we have that a ∧ 1 ≤ d and b ∧ 1 ≤ d,
and thus �−1(x) is an irreducible filter of S.

Let S be a semilattice. For each D ⊆ S the filter generated by a subset
D of S is denoted by Fg(D).

Lemma 5.24. Let S be a weak implicative semilattice. Let F ∈ Fi(S) and
y ∈ X∗(S) such that �−1(F ) ⊆ y. Then there exists z ∈ X(S) such that
F ⊆ z and �−1(z) ⊆ y.

Proof. Consider the family F =
{
H ∈ Fi(S) : F ⊆ H and �−1(H) ⊆ y

}
.

We note that F �= ∅, because F ∈ F . Then by Zorn’s lemma, there exists a
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maximal element z in F . We prove that z is irreducible. Let a, b /∈ z. Consider
the filters za = Fg (z ∪ {a}) and zb = Fg (z ∪ {b}). Then za, zb /∈ F . So,
�−1(za) � y and �−1(zb) � y. Then there are c, d ∈ S such that �c ∈ za,
�d ∈ zb, and c, d /∈ y. By the description of the filter generated by a subset
we can assert that there exists an element l ∈ z such that l ∧ a ≤ �c and
l ∧ b ≤ �d. As y is irreducible, there are q ∈ y and u /∈ y such that c∧ q ≤ u
and d∧q ≤ u. Then �(c∧q) = �c∧�q ≤ �u and �(d∧q) = �d∧�q ≤ �u.
So, �c ≤ �q ⇀ �u = q ⇀ u and �d ≤ �q ⇀ �u = q ⇀ u. Then

l ∧ a ≤ �c ≤ q ⇀ u and l ∧ b ≤ �d ≤ q ⇀ u.

We note that q ⇀ u /∈ z. Otherwise, as q ∈ y, q ⇀ u = �(q ⇀ u) ∈ z and
�−1(z) ⊆ y, we get q ∧ (q → u) ∈ y. So, �u ∈ y, and since y = �−1(y) ∈
X∗(S), we have that u ∈ y, which is a contradiction. Therefore we have
found an element l ∈ z, and an element q ⇀ u /∈ z such that l ∧ a ≤ q ⇀ u
and l ∧ b ≤ q ⇀ u. Thus, z is irreducible.

Lemma 5.25. Let S be a weak implicative semilattice and F ∈ Fi(S). Let
a ∈ S such that �a /∈ F . Then there exist x ∈ X(S) and y ∈ X∗(S) such
that F ⊆ x, (x, y) ∈ R� and a /∈ y.

Proof. Let �a /∈ F . Consider the filter F ∩S�. Then �a /∈ F ∩S�, and thus
there exists an irreducible filter D of S� such that F ∩S� ⊆ D and �a /∈ D.
So, �−1(F ) ⊆ �−1(D) = y and a /∈ y. As �−1(F ) ⊆ y by Lemma 5.24 there
exists x ∈ X(S) such that F ⊆ x and �−1(x) ⊆ y, i.e., (x, y) ∈ R�.

Lemma 5.26. Let S be a weak implicative semilattice. Let F ∈ Fi(S). Then
a ⇀ b /∈ F iff there exists y ∈ X(S) and z ∈ X∗(S) such that F ⊆ y,
(y, z) ∈ R�, a ∈ y, and b /∈ z.

Proof. Assume that a ⇀ b /∈ F . We note that Fg (F ∪ {a}) ∩ (�b] = ∅,
because if there exists f ∈ F such that f ∧ a ≤ �b, then f ≤ a ⇀ �b =
a⇀b ∈ F , which is impossible. Thus there exists x ∈ X(S) such that F ⊆ x,
a ∈ x and �b /∈ x. By Lemma 5.25, there exists y ∈ X(S) and z ∈ X∗(S)
such that x ⊆ y, (y, z) ∈ R�, and b /∈ z.

Suppose that there exists y ∈ X(S) and z ∈ X∗(S) such that F ⊆ y,
(y, z) ∈ R�, a ∈ y, and b /∈ z. If a ⇀ b ∈ F , then a ∧ (a ⇀ b) ∈ y, and so
�b ∈ y. As (y, z) ∈ R� we get b ∈ z, which is a contradiction.

Let S be a weak implicative semilattice. The filter and the downset gen-
erated by a subset D of S� are denoted Fg(D)S� and (D]S�

, respectively.

Lemma 5.27. Let S be a weak implicative semilattice. Let F ∈ Fi(S) and let
G ⊆ S� such that (G]S�

is an order ideal of S�. If Fg(F∩S�)S�∩(G]S�
= ∅,

then there exists x ∈ X∗(S) such that �−1(F ) ⊆ x and x ∩ G = ∅.
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Proof. Since Fg(F ∩ S�)S� ∩ (G]S�
= ∅ and S� is an implicative semi-

lattice, there exists a prime filter y of S� such that Fg(F ∩ S�)S� ⊆ y and
y∩(G]S�

= ∅. Then F ∩S� ⊆ y and �−1(y)∩G = ∅. So, �−1(F ) ⊆ �−1(y).
By Proposition 5.23 �−1(y) = x ∈ X∗(S). Thus, �−1(F ) ⊆ x and x ∩ G
= ∅.

Let S be a weak implicative semilattice. We define a map
σ : S → Up(X(S)) as

σ(a) = {x ∈ X(S) : a ∈ x} ,

for each a ∈ S. It is clear that σ is a bounded semilattice homomorphism,
i.e., σ(0) = ∅, σ(1) = X(S), and σ(a ∧ b) = σ(a) ∧ σ(b), for every a, b ∈ S.

Theorem 5.28. (Representation theorem). Let S be a weak implicative
semilattice. Then the structure 〈X(S),⊆, R�〉 is a WIS-frame, and the map
σ : S → Up(X(S)) is an injective weak implicative semilattice homomor-
phism, i.e., σ(a ⇀ b) = σ(a) ⇀ σ(b), for all a, b ∈ S.

Proof. By Theorem 5.12, σ is an order-isomorphism, i.e., a ≤ b iff σ(a) ⊆
σ(b), for every a, b ∈ S. Thus, σ is injective. It is easy to see that (⊆ ◦R�) ⊆
(R�◦ ⊆). By Lemma 5.22 we have that 〈X(S),⊆, R�〉 is a WIS-frame. Let
a, b ∈ S. We prove that σ(a⇀b) = σ(a)⇀σ(b). Let x ∈ X(S) and we suppose
that a⇀b /∈ x. Then by Lemma 5.26 there exist y, z ∈ X(S) such that x ⊆ y,
(y, z) ∈ R�, a ∈ y and b /∈ z. So y ∈ [x) ∩ σ(a) but y /∈ �R�(σ(a)). Thus,
x /∈ σ(a) ⇀ σ(b). So, we have shown that σ(a) ⇀ σ(b) ⊆ σ(a ⇀ b).

Suppose a ⇀ b ∈ x, and let y, z ∈ X(S) be such that x ⊆ y, (y, z) ∈ R�,
and a ∈ y. Then a ∧ (a ⇀ b) ≤ �b ∈ y, and as (y, z) ∈ R� we have b ∈ z.
Then, σ(a ⇀ b) ⊆ σ(a) ⇀ σ(b).

Thus, S is isomorphic to a subalgebra of Up(X(S)) =
〈Up(X(S));∩,∪,⇀, ∅, X〉.

Our next aim is to identify the S-spaces (Definition 5.14) that correspond
to weak implicative semilattices.

Theorem 5.28, together with the duality for bounded semilattices, moti-
vates the following definition.

Definition 5.29. An implicative S-space is a triple 〈X,R, τK〉 such that
〈X, τK〉 is an S-space, and R ⊆ X × X is a relation such that:

(IS1) R is dense, serial and R ⊆≤, where ≤ is the dual specialization order
of 〈X, τK〉.

(IS2) R(x) ∈ CK(X), for each x ∈ X.
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(IS3) For U, V ∈ S(X), U ⇀ V = {x ∈ X : [x) ∩ U ⊆ �R(V )} ∈ S(X).

(IS4) (≤ ◦R) ⊆ (R◦ ≤).

Remark 5.30. If 〈X,R, τK〉 is an implicative S-space, then 〈X, ≤, R〉 is a
WIS-frame (see Definition 5.20) and 〈S(X),∩,⇀, ∅, X〉 is subalgebra of the
weak implicative semilattice Up(X) = 〈Up(X);∩,⇀, ∅, X〉.
Proposition 5.31. Let S be a weak implicative semilattice. Then
〈X(S), R�, τS〉 is an implicative S-space, and the map σ : S → S(X(S))
is an isomorphism of weak implicative semilattices.

Proof. The result easily follows from the duality for bounded semilattices,
Lemma 5.19, and Theorem 5.28.

Proposition 5.32. Let 〈X,R, τK〉 be an implicative S-space. Then the map
HX : X → X(S(X)) is a homeomorphism between the implicative S-spaces
〈X,R, τK〉 and 〈X(S(X)), R�R

,τKS(X)〉 such that,

(x, y) ∈ R iff (HX(x), HX(y)) ∈ R�R
,

for every x, y ∈ X.

Proof. By the duality for bounded semilattices it is clear that the map
HX is a homeomorphism. Let x, y ∈ X. If (x, y) ∈ R, then it is easy to
see that �−1

R (HX(x)) ⊆ HX(y), i.e., (HX(x), HX(y)) ∈ R�R
. Suppose that

(x, y) /∈ R. Then y /∈ R(x) and as R(x) ∈ CK(X), then there exists U ∈ S(X)
such that R(x) ⊆ U and y /∈ U . So, �R(U) ∈ HX(x) and U /∈ HX(y). Thus,
(HX(x), HX(y)) /∈ R�R

.

As shown in [13, Thm. 4.8], the compact DS-spaces are precisely the
compact S-spaces 〈X, τK〉 such that K is a base for τK. It is possible to
prove that, under these conditions, K is the set of all compact and open
subsets of 〈X, τK〉. This fact is used in the next result.

Lemma 5.33. Let 〈X,R, τK〉 be an implicative S-space. Let X∗ = {x ∈ X :
(x, x) ∈ R}. Then the subspace 〈X∗, τX∗〉, where τX∗ = {U ∩ X∗ : U ∈ τK},
is a compact DS-space.

Proof. Let 〈X,R, τK〉 be an implicative S-space. By duality we can assert
that there exists a weak implicative semilattice S such that X = X(S). By
results on general topology, K∗ = {U ∩ X∗ : U ∈ K} is a subbase of τX∗ .

We prove that K∗ is base for τX∗ . Let U, V ∈ K. We need to prove that
U ∩ V ∩ X∗ is union of elements of K∗. Then there exist a, b ∈ S such
that U = σ(a)c and V = σ(b)c. If x ∈ U ∩ V ∩ X∗ = σ(a)c ∩ σ(b)c ∩ X∗,
then a, b /∈ x and as (x, x) ∈ R, we get �a,�b /∈ x. So, �a,�b /∈ x ∩
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S� and by Proposition 5.23, the set x ∩ S� is an irreducible filter of the
implicative semilattice S�. By Proposition 5.13, x∩S� is prime. Then there
exists c ∈ S� such that c /∈ x ∩ S�, �a ≤ c and �b ≤ c. Taking into
account that σ(�d)c ∩ X∗ = σ(d)c ∩ X∗, for any d ∈ S, we have that
σ(c)c ∩ X∗ ⊆ σ(�a)c ∩ X∗ = σ(a)c ∩ X∗ and σ(c)c ∩ X∗ ⊆ σ(�b)c ∩ X∗ =
σ(b)c ∩ X∗. Thus, K∗ is a base for τX∗ . Since X ∈ K, then X∗ ∈ K∗.
Then 〈X∗, τX∗〉 is a compact S-space where K∗ is a base for τX∗ . Thus,
〈X∗, τX∗〉 is a compact DS-space, i.e., is the space of a bounded distributive
semilattice [7,8].

We prove that R =≤ on X∗. Always, R ⊆≤. Let x, y ∈ X∗ such that
x ≤ y. Suppose that y /∈ R(x). By condition (IS2) of Definition 5.29 there
exists U ∈ S(X) such that R(x) ⊆ U and y /∈ U . Then x ∈ �R(U). As
(y, y) ∈ R and y /∈ U we have y /∈ �R(U), which is a contradiction, be-
cause �R(U) ∈ Up(X). As a consequence of this fact we get that, U ⇒
V = U → V , for every U, V ∈ S(X∗) = {U ⊆ X∗ : (X∗ − U) ∈ K∗}. Thus,
〈S(X∗),→ ∩,→, ∅, X∗〉 is a bounded implicative semilattice.

Our next aim is to extend the representation of weak implicative semi-
lattices through implicative S-spaces to a full categorical duality. To this
end, we need to specify which are the morphisms between two objects in the
respective categories.

Proposition 5.34. Let S1 and S2 be weak implicative semilattices, and
let h : S1 → S2 be a bounded meet homomorphism. Then the following
conditions are equivalent:

1. h(�1a) ≤ �2h(a), for all a ∈ S1.

2. R�2 ◦ rh ⊆ rh ◦ R�1.

Proof. (1) ⇒ (2) Let x, y ∈ X(S2), and z ∈ X(S1) such that (x, y) ∈ R�2

and h−1(y) ⊆ z. We prove that �−1
1

(
h−1(x)

) ⊆ z. Let a ∈ �−1
1

(
h−1(x)

)
.

Then, �1a ∈ h−1(x), i.e, h(�1a) ∈ x. Since h(�1a) ≤ �2h(a), we get
h(a) ∈ �−1

2 (x). So, h(a) ∈ y and thus a ∈ z. By Lemma 5.24 there exists
w ∈ X(S1) such that h−1(x) ⊆ w and (w, z) ∈ R�1 .

(2) ⇒ (1) Suppose that there exists a ∈ S1 such that h(�1a) � �2h(a).
Then there exist x ∈ X(S2) such that h(�1a) ∈ x and �2(h(a)) /∈ x. Then
there exists y ∈ X(S2) such that (x, y) ∈ R2 and h(a) /∈ y. Again, there
exists z ∈ X(S1) such that h−1(y) ⊆ z, and a /∈ z. By hypothesis, there
is w ∈ X(S1) such that h−1(x) ⊆ w and (w, z) ∈ R�1 . As h(�1a) ∈ x,
�1a ∈ w, and since (w, z) ∈ R�1 , we have that a ∈ z, which is impossible.
Thus, h(�1a) ≤ �2h(a), for all a ∈ S1.
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In the following result we need to recall the Definition 4.8 of semi-
homomorphism between weak implicative semilattices.

Proposition 5.35. Let S1 and S2 be weak implicative semilattices. Let h :
S1 → S2 be a bounded semi-homomorphism. Then the following conditions
are equivalent:

1. h(a) ⇀2 h(b) ≤ h(a ⇀1 b), for all a, b ∈ S1.

2. For all x ∈ X(S2), y ∈ X(S1), and z ∈ X∗(S1), if h−1(x) ⊆ y and
(y, z) ∈ R�1, then there exists w ∈ X∗(S2) such that (x,w) ∈ R�2 and
z = h−1(w).

Proof. (1) ⇒ (2) Let x ∈ X(S2), y ∈ X(S1), and z ∈ X∗(S1) such that
h−1(x) ⊆ y and (y, z) ∈ R�1 . We prove that the subset

(
h(zc) ∩ (S2)�2

]

(S2)�2

=
{
a ∈ S2 : ∃c /∈ z

(
a ≤ h(c) ∈ (S2)�2

)}

is an order ideal of S�2 . Let a, b ∈ (
h(zc) ∩ (S2)�2

]

(S2)�2

. Then there exist

c1, c2 /∈ z such that h(c1), h(c2) ∈ (S2)�2
, a ≤ h(c1) and b ≤ h(c2). As z is

an irreducible filter of S1, there are d ∈ z and c /∈ z such that c1 ∧d ≤ c and
c2 ∧ d ≤ c. Then c1 ≤ d ⇀1 c and c2 ≤ d ⇀1 c. We note that d ⇀1 c1 /∈ z,
because otherwise we would get d∧ (d ⇀1 c) ≤ �1c ∈ z, and as z = �−1

1 (z),
we have c ∈ z, which is impossible. Then, a ≤ h(c1) ≤ h(d ⇀1 c) and
b ≤ h(c2) ≤ h(d ⇀1 c). As

�2h(c ⇀1 c) = 1 ⇀2 h(d ⇀1 c) = h(1) ⇀2 h(d ⇀1 c) ≤ h(1 ⇀1 (d ⇀1 c))

= h(d ⇀1 c)

we have that h(d ⇀1 c) ∈ (S2)�2
. Therefore we have proved that

(
h(zc) ∩ (S2)�2

]

(S2)�2

is an order ideal of S�2 .

We consider in S�2 the filter Fg(Z) ∩ (S2)�2 where Z = �−1
2 (x) ∪ h(z).

We prove that

Fg(Z) ∩ (S2)�2 ∩ (
h(zc) ∩ (S2)�2

]

(S2)�2

= ∅. (2)

Assume otherwise. Then there exists f ∈ Fg(Z) ∩ (S2)�2 and c /∈ z such
that f ≤ h(c) and �2h(c) = h(c). So, there exist a ∈ �−1

2 (x) and b ∈ z such
that a ∧ h(b) ≤ f ≤ h(c). So, a ≤ h(b) ⇀2 h(c) ≤ h(b ⇀1 c). Then �2a ≤
�2 (h(b) ⇀2 h(c)) = h(b) ⇀2 h(c) ∈ x. Since h(b) ⇀2 h(c) ≤ h(b ⇀1 c) ∈ x,
we have b ⇀1 c ∈ y, because h−1(x) ⊆ y. As (y, z) ∈ R�1 , we get y ⊆ z.
So, b ∧ (b ⇀1 c) ≤ �1c ∈ z. But as z = �−1

1 (z), we have c ∈ z, which is an
absurd. Then (2) is valid.
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Thus by Lemma 5.27 there exists w ∈ X∗(S2) such that Fg(Z) ⊆ w and
w ∩ h(zc) ∩ (S2)�2

= ∅. As Z ⊆ Fg(Z) ⊆ w, we have �−1(x) ⊆ w and
h(z) ⊆ w. So, z ⊆ h−1(w).

We prove that h−1(w) ⊆ z. Let a ∈ h−1(w). Then h(a) ∈ w, and as
�−1

2 (w) = w, we get

�2h(a) ∈ w. (3)

Suppose that a /∈ z. As �−1
1 (z) = z, �1a /∈ z. Then

h(�1a) ∈ h(zc). (4)

On the other hand, we note that

�2h(�1a) = 1 ⇀2 h(�1a) = h(1) ⇀2 h(�1a) ≤ h(1 ⇀1 �1a)

= h(�1�1a) = h(�1a).

As h(�1a) ≤ �2h(�1a), we get that �2h(�1a) = h(�1a), i.e.,

h(�1a) ∈ (S2)�2
. (5)

Then by (3), (4), and (5), we have that h(�1a) ∈ w ∩ h(zc) ∩ (S2)�2
, which

is a contradiction. Therefore we have found a filter w ∈ X∗(S2) such that,
�−1(x) ⊆ w and z = h−1(w).

(2) ⇒ (1) Suppose that there exist a, b ∈ S1 such that h(a) ⇀2 h(b) �
h(a ⇀1 b). Then there exists x ∈ X(S2) such that h(a) ⇀2 h(b) ∈ x and
h(a ⇀1 b) /∈ x, i.e., a ⇀1 b /∈ h−1(x). As h is a meet-homomorphism, h−1(x)
is a filter of S1. Then by Lemma 5.26 there are y ∈ X(S1) and z ∈ X∗(S1)
such that h−1(x) ⊆ y, a ∈ y, (y, z) ∈ R�1 , and b /∈ z. By hypothesis,
there exists w ∈ X∗(S2) such that (x,w) ∈ R�2 and z = h−1(w). As
h(a) ⇀2 h(b) ∈ x, and (x,w) ∈ R�2 , so we have that h(a) ⇀2 h(b) ∈ w.
Since a ∈ y ⊆ z, we have h(a) ∈ w. Then, (h(a) ⇀2 h(b)) ∧ h(b) ∈ w, and
this implies �2h(b) ∈ w, but as w ∈ X∗(S2), h(b) ∈ w. So, b ∈ h−1(w) = z,
which is impossible. Thus, h(a) ⇀2 h(b) ≤ h(a ⇀1 b), for all a, b ∈ S1.

Taking into account Propositions 5.35 and 5.34, we can consider two
notions of morphism between weak implicative semilattices. It is easy to see
that the composition of (semi-)homomorphisms is a (semi-)homomorphism.
We can therefore consider two categories:

Objects Arrows
WISS = weak implicative semilattices + semi-homomorphisms
WISH = weak implicative semilattices + homomorphisms.

Remark 5.36. We recall that if h : S1 → S2 is a bounded meet-
homomorphism then the relation rh ⊆ X(S2) × X(S1) given by (x, y) ∈ rh
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iff h−1(x) ⊆ y is a meet-relation. Given z ∈ X(S1) the following conditions
are equivalent:

1. There exists w ∈ X(S2) such that z = h−1(w).

2. There exists w ∈ X(S2) such that rh(w) = [z).

Indeed. We note that if there exists w ∈ X(S2) such that z = h−1(w), then
y ∈ rh(w) iff h−1(w) ⊆ y iff z ⊆ y. Thus, rh(w) = [z). If there is w ∈ X(S2)
such that rh(w) = [z), then it is clear that h−1(w) ⊆ z. If there exists a ∈ z
such that a /∈ h−1(w), then there exists y ∈ X(S1) such that h−1(w) ⊆ y
and a /∈ y. But this implies that y ∈ rh(w) = [z), i.e., z ⊆ y. Then a ∈ y,
which is a contradiction. Thus z = h−1(w).

Let 〈X1, R1, τK1〉 and 〈X2, R2, τK2〉 be implicative S-spaces. Let X∗
1 =

{x ∈ X1 : (x, x) ∈ R1} and X∗
2 = {x ∈ X2 : (x, x) ∈ R2}. Let r ⊆ X1 × X2

be a meet-relation. We consider the following conditions:

(R1) If (x, y) ∈ R1 and (y, z) ∈ r, then there exists w ∈ X2 such that
(x,w) ∈ r and (w, z) ∈ R2.

(R2) If (x, y) ∈ r, (y, z) ∈ R2 and z ∈ X∗
2 , then there exists w ∈ X∗

1 such
that (x,w) ∈ R1 and r(w) = [z).

Propositions 5.35 and 5.34, give us the following corollary.

Corollary 5.37. Let S1 and S2 be weak implicative semilattices, and let
h : S1 → S2 be a bounded meet-homomorphism. Consider the meet-relation
rh ⊆ X(S2) × X(S1) defined by (x, y) ∈ rh iff h−1(x) ⊆ y. Then:

(i) h is a semi-homomorphism iff rh satisfies (R1).

(ii) h is a homomorphism iff rh satisfies (R1) and (R2).

Let ISp be the class of implicative S-spaces. It is easy to see that the
composition of meet-relations satisfying (R1) or (R2) is a meet-relation sat-
isfying (R1) or (R2), respectively. Thus, we can define the following two
categories with the same objects.

Objects Arrows
ISpS = ISp + meet-relations satisfying (R1)
ISpH = ISp + meet-relations satisfying (R1) and (R2).

By the categorical duality for semilattices given in [13], together with
Propositions 5.31, 5.32, 5.35 and 5.34, we have the following result.

Theorem 5.38. The categories WISS (resp. WISH) and ISpS (resp. ISpH)
are dually equivalent.
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5.5. ⊕-Implicative Semilattices

To conclude the section, we shall extend the duality for bounded implicative
semilattices to the case of the ⊕-implicative semilattices.

Let S = 〈S; ∧,⊕,→, 0, 1〉 be a ⊕-implicative semilattice. Since �x :=
x ⊕ x is a nucleus and thus is a modal operator, we can define a binary
relation R� ⊆ X(S) × X(S) as (x, y) ∈ R� iff �−1(x) ⊆ y.

Proposition 5.39. Let S be a ⊕-implicative semilattice. Then R� is dense,
R� is included in the set-theorical inclusion ⊆, and σ(a ⊕ b) =
�R� (σ(a) ∪ σ(b)), for any a, b ∈ S.

Proof. As the modal operator � is a nucleus, we have that R� ⊆ R� ◦
R� and R� is included in ⊆. Let x ∈ σ(a ⊕ b), i.e., a ⊕ b ∈ x. Suppose
that (x, y) ∈ R� but a, b /∈ y. As y is irreducible and S is a distributive
semilattice, there exists c /∈ y such that a, b ≤ c. So, a ⊕ b ≤ c ⊕ c = �c ∈ x,
and so c ∈ y, which is a contradiction. Therefore, a ∈ y or b ∈ y. Then,
σ(a ⊕ b) ⊆ �R� (σ(a) ∪ σ(b)).

Let a, b ∈ S and we suppose that a ⊕ b /∈ x. Consider the order ideal
(a ⊕ b]. Then it is easy to see that �−1(x) ∩ (a ⊕ b] = ∅. Thus there exists
an irreducible filter y such that �−1(x) ⊆ y and a ⊕ b /∈ y. As a, b ≤
a ⊕ b, we get a, b /∈ y. So, x /∈ �R� (σ(a) ∪ σ(b)), i.e, �R� (σ(a) ∪ σ(b)) ⊆ σ
(a ⊕ b).

Let S be a ⊕-implicative semilattice. Recall that Fi∗(S) = {F ∈ Fi(S) :
�−1(F ) = F

}
and X∗(S) = {x ∈ X(S) : (x, x) ∈ R�}.

Lemma 5.40. Let S be a ⊕-implicative semilattice. The following conditions
are equivalent:

1. x ∈ X∗(S).

2. x ∈ Fi∗(S), and for all a, b ∈ S, one has a ⊕ b ∈ x iff a ∈ x or b ∈ x.

Proof. (1) ⇒ (2). Let a, b ∈ S be such that a ⊕ b ∈ x. By Proposition 5.39
we have x ∈ σ(a ⊕ b) = �R� (σ(a) ∪ σ(b)), and as x ∈ R�(x), we get
x ∈ σ(a) ∪ σ(b), i.e, a ∈ x or b ∈ x. The converse is immediate because
a, b ≤ a ⊕ b. We note that this condition implies that x is irreducible.

(2) ⇒ (1). Let �a ∈ x. Since �a = a ⊕ 0 ∈ x, and 0 /∈ x, we have a ∈ x.
So, �−1(x) ⊆ x, and hence x ∈ X∗(S).

Lemma 5.41. Let S be a ⊕-implicative semilattice. Let F ∈ Fi∗(S). If
a /∈ F , then there exists x ∈ X∗(S) such that F ⊆ x and a /∈ x.
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Proof. Let F ∈ Fi∗(S) and suppose that a /∈ F . Consider the family

F = {H ∈ Fi∗(S) : F ⊆ H and a /∈ H} .

Then F �= ∅. It is clear that we can apply Zorn’s Lemma. So, there exists
a maximal element x in F . It is easy to see that x is an irreducible filter.
Thus, x ∈ X∗(S).

Motivated by the duality for implicative semilattices and Proposition
5.39, we introduce the following definition.

Definition 5.42. A ⊕-space is a structure 〈X,R, τ〉 such that:

1. 〈X, τ〉 is a compact IS-space.

2. R ⊆ X ×X is a dense relation such that R ⊆ ≤, where ≤ is the special-
ization order.

3. R(x) is a closed subset of 〈X, τ〉, for each x ∈ S.

4. �R(U ∪ V ) ∈ S(X), for any U, V ∈ S(X).

Proposition 5.43. If S = 〈S; ∧,⊕,→, 0, 1〉 is a ⊕-implicative semilattice,
then 〈X(S), R�, τS〉 is ⊕-space, where the topology τS is generated by the
base {σ(a)c : a ∈ S}.
Proof. That 〈X(S), τS〉 is a compact IS-space follows from the duality for
bounded implicative semilattices. Let x ∈ X. Since R(x) =

⋂ {σ(a) :�a ∈ x},
we get that R(x) is a closed subset of 〈X(S), τS〉. By the properties of �,
we have that R� is dense and R� ⊆≤.

We prove (4). Let U, V ∈ S(X). Then there exist a, b ∈ S such that
U = σ(a) and V = σ(b). So, by Proposition 5.39

�R�(U ∪ V ) = �R�(σ(a) ∪ σ(b)) = σ(a ⊕ b).

Thus, �R�(U ∪ V ) ∈ S(X).
Finally condition (4) follows by Proposition 5.39.

Proposition 5.44. Let 〈X,R, τ〉 be a ⊕-space. Then 〈S(X);∩,⊕,→, ∅, 〉
is a ⊕-implicative semilattice, where ⊕ is given by U ⊕ V = �R(U ∪ V ),
for each U, V ∈ S(X), and the map HX : X → X(S(X)) is a homeomor-
phism between the ⊕-spaces 〈X,R, τ〉 and 〈X(S(X)), R�R

, τS(X)〉 satisfying
the condition

(x, y) ∈ R iff (HX(x), HX(y)) ∈ R�R
,

for every x, y ∈ X.
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Proof. Since U ⊕∅ = �R(U), and R is serial and dense, R ⊆≤, we get that
〈S(X),∩,�R,→, ∅, X〉 is a bounded implicative semilattice with a nucleus
�R. It is immediate to see that the other conditions of Definition 3.14 are
satisfied. By the duality for compact IS-spaces we have that the map HX :
X → X(S(X)) is a homeomorphism. In the same way as what was done
in Proposition 5.32 we can prove that HX satisfies the condition (x, y) ∈
R iff (HX(x), HX(y)) ∈ R�R

, for all x, y ∈ X.

Let S1 and S2 be two ⊕-implicative semilattices. A ⊕-homomorphism is
a bounded implicative homomorphism h : S1 → S2 such that h(a ⊕ b) =
h(a) ⊕ h(b), for every a, b ∈ S1.

We recall that if a map h : S1 → S2 between two implicative semilattices
S1 and S2 is a bounded implicative homomorphism, then h−1(F ) is a filter
of S1 for every filter F of S2. This fact will be used in the following result.

Proposition 5.45. Let S1 and S2 be two ⊕-implicative semilattices. Let
h : S1 → S2 be a bounded implicative homomorphism. Then the following
conditions are equivalent:

1. h(a ⊕ b) ≤ h(a) ⊕ h(b), for every a, b ∈ S1.

2. h−1(x) ∈ X∗(S1), for every x ∈ X∗(S2).

3. For each x ∈ X∗(S2) there exists y ∈ X∗(S1) such that rh(x) = [y).

Proof. (1) ⇒ (2) Let x ∈ X∗(S2). As h is a bounded implicative ho-
momorphism, then h−1(x) is a proper filter. We will use Lemma 5.40. Let
a, b ∈ S1 such that a ⊕ b ∈ h−1(x). Then h(a ⊕ b) ≤ h(a) ⊕ h(b) ∈ x, and
as (x, x) ∈ R�, h(a) ∈ x or h(b) ∈ x. Then, a ∈ h−1(x) or b ∈ h−1(x). We
prove that h−1(x) ∈ Fi∗(S1). Let a ∈ �−1(h−1(x)).Then h(�a) = h(a⊕0) ≤
h(a) ⊕ h(0) = h(a) ⊕ 0 = �h(a) ∈ x. As x ∈ X∗(S2), we have h(a) ∈ x. So,
h−1(x) ∈ Fi∗(S1). Thus, h−1(x) ∈ X∗(S1).

(2) ⇒ (1) Suppose that there exist a, b ∈ S1 such that h(a ⊕ b) � h(a) ⊕
h(b). Then there is z ∈ X(S2) such that h(a ⊕ b) ∈ z and h(a) ⊕ h(b) /∈ z.
As h(a) ⊕ h(b) = �(h(a) ⊕ h(b)), then h(a) ⊕ h(b) /∈ �−1(z). As �−1(z) ∈
Fi∗(S2), by Lemma 5.41, there exists x ∈ X∗(S2) such that �−1(z) ⊆ x and
h(a) ⊕ h(b) /∈ x. Then h(a), h(b) /∈ x. As �−1(z) ⊆ x implies z ⊆ x, then
h−1(z) ⊆ h−1(x). Since h(a⊕b) ∈ z, we have a⊕b ∈ h−1(x). By hypothesis,
h−1(x) ∈ X∗(S1). So, a ∈ h−1(x) or b ∈ h−1(x), i.e, h(a) ∈ x or h(b) ∈ x,
which is a contradiction. Thus, we have proved that h(a ⊕ b) ≤ h(a) ⊕ h(b),
for every a, b ∈ S1.

The equivalence (2) ⇔ (3) follows by Remark 5.36.
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Proposition 5.46. Let S1 and S2 be two ⊕-implicative semilattices. Let
h : S1 → S2 be a bounded implicative homomorphism. Then the following
conditions are equivalent:

1. h(a) ⊕ h(b) ≤ h(a ⊕ b), for every a, b ∈ S1.

2. rh ◦ R�1 ⊆ R�2 ◦ rh.

Proof. (1) ⇒ (2) Let x ∈ X(S2), and y, z ∈ X(S1). Suppose that h−1(x) ⊆
y and (y, z) ∈ R�1 . We prove that there exists w ∈ X(S2) such that (x,w) ∈
R�2 and (w, z) ∈ rh. Consider the order-ideal (h(zc)] = {b ∈ S2 : ∃c /∈ z
(b ≤ h(c))}. We prove that �−1

2 (x) ∩ (h(zc)] = ∅. Otherwise, there exists
�2a ∈ x, and c /∈ z such that a ≤ h(c). Then �2a = a ⊕ 0 ≤ �2h(c) =
h(c)⊕ 0 ≤ h(c⊕ 0) = h(�1c) ∈ x. Since h−1(x) ⊆ y, �1c ∈ y, and as(y, z) ∈
R�1 , we get c ∈ z, which is an absurd. Thus, there exists w ∈ X(S2) such
that (x,w) ∈ R�2 and h−1(w) ⊆ z.

(2) ⇒ (1) Suppose that there exist a, b ∈ S1 such that h(a) ⊕ h(b) �
h(a ⊕ b). Then there exists x ∈ X(S2) such that h(a) ⊕ h(b) ∈ x and
h(a ⊕ b) /∈ x. So, a ⊕ b /∈ h−1(x), and as h−1(x) is a filter of S1 there
is y ∈ X(S1), such that h−1(x) ⊆ y and a ⊕ b /∈ y. By Proposition 5.39,
there exists z ∈ X(S1) such that �−1

1 (y) ⊆ z, and a, b /∈ z. By hypothesis,
there exists w ∈ X(S2) such that �−1

2 (x) ⊆ w and h−1(w) ⊆ z. Since
h(a) ⊕ h(b) = �2 (h(a) ⊕ h(b)) ∈ x we get h(a) ∈ w or h(b) ∈ w. Since
h−1(w) ⊆ z, we have a ∈ z or b ∈ z, which is a contradiction. Thus,
h(a) ⊕ h(b) ≤ h(a ⊕ b), for every a, b ∈ S1.

Let S1 and S2 be two ⊕-implicative semilattices. Let h : S1 → S2

be a bounded implicative homomorphism. We shall say that h is a ⊕-
homomorphism if h(a ⊕ b) = h(a) ⊕ h(b) for all a, b ∈ A. Let IS⊕ be the
category whose objects are ⊕-implicative semilattices and whose morphisms
are ⊕-homomorphisms.

Let h : S1 → S2 be a ⊕-homomorphism. Since h is a bounded im-
plicative semilattice, the relation rh ⊆ X(S2) × X(S1) given by (x, y) ∈
rh iff h−1(x) ⊆ y, for all (x, y) ∈ X(S2)×X(S1) is a functional meet-relation
[10].

Definition 5.47. Let 〈Xi, Ri, τi〉, for i = 1, 2, be ⊕-spaces. Let X∗
i =

{x ∈ Xi : (x, x) ∈ Ri}. Let r ⊆ X1 × X2 be a relation. We shall say that
r is a ⊕-relation if r is a functional meet-relation satisfying the following
conditions:

(OR1) R1 ◦ r ⊆ r ◦ R2.

(OR2) For each x ∈ X∗
1 there exists y ∈ X∗

2 such that r(x) = [y).
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Propositions 5.45 and 5.46 give us the following corollary.

Corollary 5.48. Let S1 and S2 be two ⊕-semilattices. Let h : S1 → S2 be
a bounded implicative homomorphism. Consider the functional meet-relation
rh ⊆ X(S2) × X(S1) defined by (x, y) ∈ rh iff h−1(x) ⊆ y. Then h is a ⊕-
homomorphism iff rh is a ⊕-relation.

It is easy to see that the composition ∗ between ⊕-relations given in
Definition 5.3 is a ⊕-relation. Thus we have a category ISp⊕ whose objects
are ⊕-spaces and whose morphism are ⊕-relations.

From the categorical duality already established for implicative semilat-
tices in [7,10,13], together with Propositions 5.39, 5.43, 5.44, and Corol-
lary 5.48 we have the following result.

Theorem 5.49. The categories IS⊕ and ISp⊕ are dually equivalent.

6. Concluding Remarks

The present study has been proposed as a contribution towards a topolog-
ical understanding of a few classes of intuitionistic modal algebras. These
structures, as we have seen, arise as subreducts of nuclear Heyting algebras
expanded with certain term definable operations whose definitions can be
motivated within the study of fragments of quasi-Nelson logic.

Considering nuclear Heyting algebras in the expanded language

{∧,∨,→,�,⊕,⇀,�, 0, 1},

where the operations are interpreted as indicated in the previous sections,
we recall that we have here focused on the following fragments:

(i) {�,→, 0, 1}, corresponding to the nH-semigroups of Subsect. 5.2;

(ii) {∧,⇀, 0, 1}, corresponding to the weak implicative semilattices of
Subsect. 5.4;

(iii) {∧,⊕,→, 0, 1}, corresponding to the ⊕-implicative semilattices of
Subsect. 5.5.

As mentioned in the Introduction, the above classes of algebras arise as
factors in the twist representation of the subreducts of quasi-Nelson algebras
corresponding, respectively, to the following fragments:

(i) {⇒2,∼}, i.e. quasi-Nelson implication algebras [25];

(ii) {∗,∼}, i.e. quasi-Nelson monoids [27];
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(iii) {∧,⇒2,∼}, i.e. quasi-Nelson semihoops [27].

The study developed in the previous sections can be straightforwardly
extended to algebras arising from other fragments of the quasi-Nelson lan-
guage, such as:

(iv) {∧,∨,¬,∼}, corresponding to the quasi-Kleene algebras with weak
pseudo-complement introduced in [26], or twist-algebras over pseudo-
complemented lattices endowed with a nucleus;

(v) {∧,∨,∼, 0, 1}, corresponding to the quasi-Kleene algebras introduced
in [28], or twist-algebras over distributive lattices endowed with a
nucleus;

(vi) {∗,⇒2,∼}, corresponding to the quasi-Nelson pocrims introduced
in [27], or twist-algebras over nuclear implicative semilattices.

We leave the above as suggestions for future research, and we take this
opportunity to indicate two further fragments of the quasi-Nelson language
(which have not been singled out yet) as potentially interesting ones:

(vii) {∨,⇒2,∼}, whose corresponding algebras (we anticipate) ought to
arise as twist-algebras over nH-semigroups expanded with a join
operation;

(viii) {∗,∨,∼}, whose corresponding algebras (we anticipate) ought to
arise as twist-algebras over weak implicative semilattices expanded
with a join, i.e. (basic) weak Heyting algebras.

We also believe that a deeper universal algebraic study of the vari-
eties considered in the present paper—in particular a classification of their
subvarieties—would also deserve further study.

Lastly, we should like to mention that an investigation of the logics associ-
ated to intuitionistic modal algebras might also turn out to be worth pursu-
ing. For most of the classes of algebras at hand, the corresponding assertional
logic will be algebraizable in the sense of Blok and Pigozzi, and may there-
fore be easily studied by algebraic means; in other cases, however—consider
e.g. the logic of weak implicative semilattices, but also the order-preserving
consequence relation associated to any of the above-mentioned varieties—it
is not hard to see that the corresponding logic will not be algebraizable. In
any case, the topological considerations developed in the present paper may
provide a suitable setting for a study of these logics from the point of view
of relational semantics.
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