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• DMS, its oxidation products, and aero-
sols were measured in the Antarctic at-
mosphere.

• Emission and oxidation of DMS were
highly source region dependent.

• DMS emission was associated with the
abundance of DMS producers in source
regions.

• DMS oxidation was primarily affected
by atmospheric BrO levels in source re-
gions.

• First-year sea ice accelerates particle
formation by acting as DMS and BrO
source.
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Dimethyl sulfide (DMS) produced bymarine algae represents the largest natural emission of sulfur to the atmo-
sphere. The oxidation of DMS is a key process affecting new particle formation that contributes to the radiative
forcing of the Earth. In this study, atmospheric DMS and its major oxidation products (methanesulfonic acid,
MSA; non-sea-salt sulfate, nss-SO4

2–) and particle size distributions were measured at King Sejong station
located in the Antarctic Peninsula during the austral spring–summer period in 2018–2020. The observatory
was surrounded by open ocean and first-year and multi-year sea ice. Importantly, oceanic emissions and atmo-
spheric oxidation of DMS showed distinct differences depending on source regions. A highmixing ratio of atmo-
spheric DMS was observed when air masses were influenced by the open ocean and first-year sea ice due to the
abundance of DMS producers such as pelagic phaeocystis and ice algae. However, the concentrations of MSA and
nss-SO4

2–were distinctively increased for air masses originating from first-year sea ice as compared to those orig-
inating from the open ocean and multi-year sea ice, suggesting additional influences from the source regions of
atmospheric oxidants. Heterogeneous chemical processes that actively occur over first-year sea ice tend to accel-
erate the release of bromine monoxide (BrO), which is the most efficient DMS oxidant in Antarctica. Model-
estimates for surface BrO confirmed that high BrO mixing ratios were closely associated with first-year sea ice,
thus enhancing DMS oxidation. Consequently, the concentration of newly formed particles originated from
first-year sea ice, which was a strong source area for both DMS and BrO was greater than from open ocean
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(high DMS but low BrO). These results indicate that first-year sea ice plays an important yet overlooked role in
DMS-induced new particle formation in polar environments, where warming-induced sea ice changes are
pronounced.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dimethyl sulfide (DMS) is mostly of a marine origin and is the largest
source of natural sulfur to the atmosphere (Simó, 2001). Biogenic DMS is
produced by the enzymatic cleavage of dimethylsulfoniopropionate
(DMSP) (Stefels et al., 2007). Marine algaemetabolize DMSP as a defense
mechanism that acts as an osmolyte, cryoprotectant, antioxidant, and
predator suppressor (Kirst et al., 1991; Strom et al., 2003; Sunda et al.,
2002). DMS production in marine environments is closely linked with
both the biomass and taxonomic composition of marine algae because
the production of algal DMSP and its degradation into DMS are highly
species-specific (Keller et al., 1989; Park et al., 2018; Park et al., 2014).
The Southern Ocean has a greater potential for DMS and DMSP produc-
tion during the austral spring–summer period, largely owing to a mas-
sive bloom of strong DMS producers (Curran and Jones, 2000; Lana
et al., 2011). Thus, sea surface DMS concentrations in the Southern
Ocean are estimated to be the highest on the globe, with mean values
of >5 nM during the austral spring-summer period (Jarníková et al.,
2018; Lana et al., 2011).

Airborne DMS is oxidized into other sulfur compounds, including sul-
fur dioxide (SO2), methanesulfonic acid (MSA), and hydroperoxymethyl
thioformate (HPMTF), through radical-initiated reactions with atmo-
spheric oxidants (Chen et al., 2018; von Glasow and Crutzen, 2004;
Veres et al., 2020). Several oxidants, including hydroxyl radical (OH), ni-
trate radical (NO3), and halogen radicals (such as bromine monoxide
and chlorine), are involved in atmospheric DMS oxidation processes
(Barnes et al., 2006). Importantly, the relative contributionof these key at-
mospheric oxidants to the DMS oxidation process shows latitudinal and
seasonal variations (Boucher et al., 2003). Gas-phase sulfuric acid
(H2SO4), a more oxidized form of SO2, and MSA can trigger new particle
formation via homogeneous and heterogeneous nucleation with H2O
andN compounds. DMS-derived sulfurous particles can also induce parti-
cle growth by condensingwith pre-existing particles due to their low vol-
atility (Hodshire et al., 2018; Holmes, 2007; Veres et al., 2020). The
formation and growth of these sulfurous aerosol particles can then in-
crease the cloud condensation nuclei (CCN) concentration due to their
high hygroscopicity, thereby affecting the microphysical properties of
clouds (Boucher and Lohmann, 1995; Charlson et al., 1987; Mahajan
et al., 2015; Park et al., 2021; Sanchez et al., 2018).

Marine aerosols aremajor components thatmodulate radiative forc-
ing on climate systems in the remote marine atmosphere (Brooks and
Thornton, 2018). Themajor components ofmarine aerosols are primary
sea spray aerosols emitted directly from the sea surface microlayer and
secondary marine aerosols formed via chemical oxidation processes of
volatile organic compounds (Brooks and Thornton, 2018; Piller-Little
and Guzman, 2018). Among the climate forcers, aerosols and their pre-
cursors contribute to a significant portion of the negative radiative forc-
ing by scattering downward solar radiation (direct effect) and
modifying the microphysical properties of clouds (indirect effect)
(Carslaw et al., 2013; Haywood and Boucher, 2000). The physiochemi-
cal properties ofmarine aerosols are tightly connectedwith the seasonal
progression of marine biota (O'Dowd et al., 2004). Particularly, biogenic
DMS can play major roles in the formation and growth of aerosol parti-
cles during the productive period in polar regions where the existing
condensation sink is small (Chang et al., 2011; Jang et al., 2019;
Leaitch et al., 2013; Park et al., 2017).

Considering that the Antarctic Peninsula is the one of the fastest-
warming areas on Earth (Tuckett et al., 2019), severe environmental
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changes (e.g., sea surface warming, stratification, and sea ice retreat)
can alter the sea ice biogeochemistry and marine ecosystem, which
are closely linked with DMS-induced particle formation in the pristine
marine atmosphere (Browse et al., 2014; Dall'Osto et al., 2017a; Yan
et al., 2020a). However, the quantitative association of DMS-induced
particle formation with algal assemblages and sea-ice properties re-
mains poorly studied in the Southern Ocean. Moreover, the ocean–
cryosphere–atmosphere interactions that affectmarine aerosols remain
largely unknown due to their complexity and geographical characteris-
tics (i.e., low accessibility and harsh environment) that limit research in
Antarctica.

In this study, atmospheric DMS, MSA, and non-sea salt sulfate (nss-
SO4

2–) as well as aerosol size distributions were measured at the King
Sejong station (62.2o S, 58.8o W) in the Antarctic Peninsula during the
austral spring–summer period from 2018 to 2020. We also analyzed
the air mass transport history, satellite-based estimates of environmen-
tal parameters (including chlorophyll and DMSP concentrations, taxo-
nomic compositions of phytoplankton, and sea ice properties), and
model-estimates for reactive halogen species to determine the main
source-appointment regions that dominantly influence DMS oxidation.
Ultimately, this study provides in-situmeasurements of physiochemical
properties of aerosols, satellite- and model-estimates for multiple envi-
ronmental variables to discuss source region-dependent oceanic DMS
emissions and atmospheric DMS oxidation, and DMS-induced particle
formation process in the Antarctic environment.

2. Materials and methods

2.1. Atmospheric measurements

King Sejong station (62.2° S, 58.8° W) is located in the Antarctic
Peninsula, surrounded by open ocean and first-year and multi-year
sea ice (Fig. 1a). The atmospheric observatory is approximately
10 m above sea level and 400 m northwest of the main facilities of
King Sejong station. Concurrent observations of atmospheric DMS
mixing ratios, aerosol size distributions, andmeteorological parame-
ters were conducted from December 2018 to April 2019 and from
November 2019 to February 2020.

The atmospheric DMSmixing ratios weremeasured at 20min to 1 h
intervals using a DMS analyzer consisting of a custom-made DMS trap-
ping and thermal desorption system, a gas chromatograph (7890B GC,
Agilent Technologies, Inc.), and a pulsed flame photometric detector
(PFPD5383, OI Analytical, Inc.) (Jang et al., 2016). Tomeasure the chem-
ical properties of the aerosol particles, a high-volume air sampler (HV-
1000R, Sibata Scientific Technology, Inc.), equipped with a PM2.5

impactor (collecting particles <2.5 μm in aerodynamic diameter), was
used to collect aerosol particles at 1–3-day intervals from January to
February 2019 and fromDecember 2019 to January 2020. Aerosol parti-
cles were collected on pre-baked quartz filters at a flow rate of
1000 Lmin–1. Awind sector controller was used to suspend the air sam-
pling under pollution sector conditions (i.e., when the wind direction
was in the range of 355–55° or at wind speeds <2 m s–1) to minimize
the influence of local emissions from the power generators and inciner-
ator (Kim et al., 2019a; Kim et al., 2017). Tomeasure themajor ions, the
47mm (diameter) quartz filter was collected, and themajor ions in the
disk filter were concentrated into 20 mL of Milli-Q water. The concen-
trations of themajor ions, including Na+, SO4

2–, andMSA, were detected
by ion chromatography (Dionex AQUION fitted with a CS12A IonPac

http://creativecommons.org/licenses/by/4.0/


Fig. 1. (a)Mean sea ice concentration overlainwith the six clusters of the 2-day airmass back trajectory (C1:western Antarctic Peninsula,WAP; C2–C4: Antarctic open ocean, AOO; C5 and
C6: eastern Antarctic Peninsula, EAP) during the study period (December 2018 to April 2019 and November 2019 to February 2020). The white dashed line represents themaximum sea
ice extent observed inAugust 2018 and 2019. (b) 2-day airmass back trajectories collected at hourly intervals during the study period. Blue, orange, and yellow lines denote the trajectories
categorized into three groups: AOO,WAP, and EAP, respectively. The red star symbol shows the location of the observation site, King Sejong station (62.2°S, 58.8°W). (c) Percentage of air
mass retention time over the four terrains, including the pelagic zone, first-year ice zone, multi-year ice zone, and land in the AOO,WAP, and EAP. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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column for cations and Dionex ICS-1100 fitted with an AS19 column
for anions, Thermo Fisher Scientific, Inc.). The concentration of nss-
SO4

2– was calculated based on the following equation: [nss-SO4
2–] =

[SO4
2–]total – [Na+] × 0.252, where 0.252 is the ratio of SO4

2– to Na+ in
seawater (Keene et al., 1989).

The aerosol size distributions between 10 and 300 nm of mobility
equivalent diameter weremeasured at 3min intervals using a scanning
mobility particle sizer (SMPS), consisting of a condensation particle
counter (CPC3772, TSI, Inc.) and a differential mobility analyzer
(LDMA 4210, HCT, Inc.). The black carbon concentrations were mea-
sured at 10 min intervals using two aethalometers (AE16 in 2019 and
AE33 in 2020; Magee Scientific, Inc.) from aerosol absorption coeffi-
cients at a frequency of 880 nm. The datasets from the SMPS that met
the conditions of the pollution sector or those with a black carbon con-
centration of >50 ngm–3 were excluded from the analysis to avoid local
influences.

2.2. Air mass origin classification

The hybrid single-particle Lagrangian integrated trajectory
(HYSPLIT) model and global meteorological archives obtained from
the global data assimilation system (GDAS) were used to generate 2-
day air mass back trajectories (Stein et al., 2015). The backward time
of 2-day was selected given the DMS loss rates of 38–68% day–1 in the
polar atmosphere (Sharma et al., 1999). To identify the main air mass
transport pathway, cluster analysis was conducted using 2-day air
mass back trajectories during the study period. The optimum number
of clusters was determined from the change in total spatial variations
(Stein et al., 2015).

The daily geographical data including sea ice, ocean, and land were
obtained from the National Snow and Ice Data Center (NSIDC). In this
3

study, we defined the domains of pelagic, first-year ice, and multi-year
ice zones based on the following criteria:

(1) pelagic zone: open ocean area that does not include first-year or
multi-year ice zones.

(2) first-year ice zone: the area between themaximum (austral win-
ter; August) and minimum (at measured day) seasonal ice limit,
plus the transition area where the sea ice concentration is <80%
(Strong and Rigor, 2013).

(3) multi-year ice zone: pack-ice area where the sea ice concentra-
tion is >80% (Strong and Rigor, 2013).

Then, the results for the air mass back trajectory analysis and geo-
graphical information were combined to elucidate the potential source
region of air masses reaching the observation site (Choi et al., 2019;
Park et al., 2020). For each 2-day air mass back trajectory, the number
of trajectory time points (n = 1–48) assigned to one of three domains
was divided by the total trajectory time points (n = 48) to calculate
the percentage of the air mass retention time over the pelagic, first-
year ice, and multi-year ice zones.

2.3. Satellite- and model-estimates for environmental variables

The 8-day composite products of the chlorophyll concentration de-
rived from the moderate resolution imaging spectroradiometer on the
Aqua satellite (MODIS-Aqua) were used to indicate phytoplankton bio-
mass. The 8-day mean total DMSP concentrations (DMSPt) were re-
trieved from the DMSPt algorithm (Galí et al., 2015). The monthly
climatology maps with dominant frequencies of the five phytoplankton
groups, including nanoeukaryotes, prochlorococcus, synechococcus, dia-
toms, and phaeocystis were obtained from the PHYSAT algorithm

Image of Fig. 1
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(Alvain et al., 2008). The surface mixing ratios of the reactive halogen
species including bromine monoxide (BrO) and iodine monoxide (IO)
were obtained from the halogen version of the Community Atmosphere
Model with Chemistry (CAM-Chem) model (Fernandez et al., 2019).

3. Results

3.1. Classification of air mass origin

Six clusters of air masses were obtained from 5016 hourly air mass
back trajectories and were reclassified into three groups representing
the Antarctic open ocean (AOO; C2, C3, and C4), western Antarctic Pen-
insula (WAP; C1), and eastern Antarctic Peninsula (EAP; C5 and C6)
(Fig. 1a and b). The air masses assigned for AOO (n = 1983), WAP
(n=1675), and EAP (n=1358) showed different origins: AOOmostly
originated from the open ocean (pelagic zone 91%, first-year ice zone
7%, andmulti-year ice zone 2%),whileWAP and EAPwere characterized
by longer air mass exposures to ice-related areas (pelagic zone 32%,
first-year ice zone 64%, andmulti-year ice zone 3% for theWAP; pelagic
zone 23%, first-year ice zone 44%, and multi-year ice zone 23% for the
EAP) (Fig. 1c). The WAP and EAP were most exposed to the first-year
ice zone during the study period; the WAP had the highest exposure
to the first-year ice zone, at 9.1- and 1.5-fold greater than that of the
AOO and EAP, respectively. Air masses assigned for the EAP had the
highest air mass retention time over the multi-year ice zone, 11.5- and
7.7-fold greater than that of the AOO and WAP, respectively. Thus, the
Fig. 2. (a) Mixing ratios of the hourly mean atmospheric DMS (blue circles and line) and the n
diameter) (orange circles and line). (b) Concentrations of non-sea salt SO4

2– (nss-SO4
2–) (grey li

mixing ratios, (d) concentrations of sulfur compounds (S; nss-SO4
2– andMSA), and (e) sulfur com

AOO, WAP, and EAP. In the box plots, the solid middle lines, circles, box edges, and whiskers
interpretation of the references to colour in this figure legend, the reader is referred to the we
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AOO, WAP, and EAP regions were considered to represent the zones of
being pelagic dominant, being the first-year ice dominant, and being
the first-year and multi-year ice dominant, respectively.

3.2. In-situ measurements for atmospheric DMS, its oxidative products, and
aerosol particles

The hourly DMSmixing ratios ranged from 1.0 to 593.2 pptv, with a
mean value of 43.7 ± 36.7 pptv (Fig. 2a). These temporal variations
were similar to those observed at other Antarctic sites, including the
Palmer station (64.8°S, 64.1°W; 6–595 pptv) (Berresheim et al., 1998)
and the Halley station (75.6°S, 26.6°W; 5–286 pptv) (Read et al.,
2008). As confirmed in other studies, the short-term variability of atmo-
spheric DMS levels is closely associated with the strength of oceanic
DMS sources and meteorological conditions (e.g., Berresheim et al.,
1998; Jang et al., 2021; Mungall et al., 2016; Park et al., 2013; Read
et al., 2008). The concentrations of MSA and nss-SO4

2– varied from
44.6–196.9 and from 85.5–558.8 ng m–3, respectively (Fig. 2b), with
corresponding mean values of 96.3 ± 32.8 and 225.5 ± 97.4 ng m–3.
Temporal variations in MSA and nss-SO4

2- were comparable to
previous observation at the King Sejong station (73.1 ± 58.7 ng m-3

and 140.1 ± 69.7 ng m-3, respectively) (Hong et al., 2020) and
Marambio station (64.2°S, 56.7°W; monthly mean variations of 19–78
and 133–430 ng m-3, respectively) (Asmi et al., 2018). Sulfate particles
in the atmosphere have multiple sources including sea salt, biogenic
DMS, and anthropogenic SO2, while atmospheric MSA in the remote
umber concentration of the hourly mean newly formed particles (CN10–25; 10 to 25 nm in
ne) and MSA (green line) during the study period. Box plots for the (c) atmospheric DMS
pounds (the sumof nss-SO4

2– andMSA)-to-DMSmixing ratios (S-to-DMS) assigned for the
represent the median, mean, 25th, and 75th percentile, and Q1 and Q3, respectively. (For
b version of this article.)
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marine boundary layer originated only from the oxidation of DMS
(Chen et al., 2018). Here, positive correlation between the MSA and
nss-SO4

2- (r2 = 0.71, n = 24) indicated that both species were mostly
formed via biogenic DMS oxidation (Fig. 3). All of the in-situ measure-
ments for the atmospheric DMS and its oxidative products (i.e., MSA
and nss-SO4

2–) showed similar temporal variations to those of previous
studies conducted at other Antarctic sites during the spring–summer
period (e.g., Berresheim et al., 1998; Read et al., 2008; Asmi et al., 2018).

All atmospheric DMS mixing ratios and the concentrations of MSA
and nss-SO4

2– in the AOO, WAP, and EAP showed notable differences
(Fig. 2c and d). The highest mean atmospheric DMS mixing ratio origi-
nated from the AOO (57.7 ± 36.9 pptv, n = 1742), comparable with
that from the WAP (47.8 ± 41.7 pptv, n = 1185) (Fig. 2c). Air masses
originating from the EAP showed the lowest mean atmospheric DMS
mixing ratios (24.0 ± 19.8 pptv, n = 1493) (Fig. 2c). In contrast, the
concentrations of MSA and nss-SO4

2– were the highest for air masses
from theWAP (142.9± 39.5 and 352.2± 139.4 ngm–3 (n=4), respec-
tively), followed by those from the AOO (99.6 ± 17.9 and 209.4 ±
78.0 ng m–3, (n = 10), respectively) and EAP (74.4 ± 20.0 and
190.9 ± 54.2 ng m–3, (n = 10), respectively) (Fig. 2d). Consequently,
the biogenic sulfurous particles (sum of nss-SO4

2– and MSA)-to-DMS
ratios, which can imply the conversion efficiency of gaseous DMS into
sulfurous particles, were more than two-fold higher in the WAP
(4.1 ± 2.8) and EAP (3.3 ± 1.9) than those in the AOO (1.4 ± 1.0)
(Fig. 2e). In a previous study carried out at the same location during
the austral spring–summer period in 2013–2014, remarkably higher
concentrations of MSA and nss-SO4

2- were also detected in the PM2.5

and PM10 samples for air masses originated from the western part of
the Antarctic Peninsula (Hong et al., 2020). Further, recent shipboard
observations in the pelagic Southern Ocean (covering 40°–76°S,
170°E–110°W) reported extremely low biogenic sulfurous particles-
to-DMS (ranging from 0.012–0.33 ratios in February and March 2018
(Yan et al., 2020b). The MSA-to-DMS ratio measured at the Halley sta-
tion (approximately 0.63 in 2004 and 0.24 in 2005) (Read et al.,
2008), located in coastal Antarctica, was slightly lower than that of our
study, but ten-fold higher than that in the pelagic SouthernOcean, as re-
ported by Yan et al. (2020b).

The nucleationmode particle through the gas-to-particle conversion
is defined as a particle <25 nm in diameter (Kerminen et al., 2018). In
this study, the number concentrations of the aerosol particles in the
range of 10–25 nm (CN10–25) were used as an indicator of newly
formed aerosol particles. Considerable short-term variability (~10 to
>104 cm–3) with a mean value of 128± 476 cm–3 was observed during
the study period (Fig. 2a). The highestmeanCN10–25was detected in the
WAP (177±777 cm–3, n=779), followed by the EAP (131±287 cm–3,
Fig. 3. Linear regression plot between the concentrations of MSA and nss-SO4
2–during the

study period. The red solid line indicates the best fit. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

5

n=892) and the AOO (73± 74 cm–3, n=767) (Figs. 4f and S1). Nota-
bly, the differences in nano-size particles depending on air mass origin
are consistent with the results of recent studies which show a higher
frequency of new particle formation events for ice-influenced air
masses in polar regions (Brean et al., 2021; Dall'Osto et al., 2017b;
Jokinen et al., 2018; Lachlan-Cope et al., 2020).

3.3. Environmental parameters related to the emissions and oxidation
of DMS

Trajectory frequencies were calculated from the number of trajec-
tory time points in each grid cell (0.5° resolution) divided by the total
number of trajectories (Rolph et al., 2017). We limited our analysis to
areas with trajectory frequencies of >2% to minimize the analytical
bias caused by the grid cellswith low trajectory frequencieswhen calcu-
lating the satellite-and model-estimates for the AOO, WAP, and EAP re-
gions (Fig. S2). An intensive phytoplankton bloom was observed near
the west coast of the Antarctic Peninsula and Scotia Sea (Fig. S3).
Thus, the 8-day mean sea surface chlorophyll concentration was the
highest in the EAP (0.40 ± 0.20 mg m–3), followed by the WAP
(0.35 ± 0.10 mg m–3) and AOO (0.29 ± 0.10 mg m–3) (Figs. 4a and
S3a). The DMSP-to-chlorophyll ratios had notable differences between
the three groups; AOO had the highest ratio (111.4 ± 35.5 mmol g–1),
followed by the WAP (87.6 ± 22.0 mmol g–1) and EAP (72.1 ±
13.8 mmol g–1) (Figs. 4b and S3b). Similar to the spatial patterns of
the DMSP-to-chlorophyll ratio, the relative dominance of phaeocystis
in the three regions had the following order: AOO (36.7 ± 18.1%),
WAP (16.2 ± 12.5%), and EAP (10.2 ± 3.6%); however, that of the dia-
toms showed the opposite trend (11.2 ± 10.5, 22.5 ± 12.8, and
27.6 ± 15.0% for the AOO, WAP, and EAP, respectively) (Figs. 4c and
S3c). The monthly mean surface BrO mixing ratio, as estimated by the
CAM-Chem model, was highest during the austral spring period
(0.9–2.0 pptv from September–November); the lowest mixing ratios
occurred during the austral winter period, with monthly mean
values of <0.1 pptv near the Antarctic Peninsula (50°–80° S, 20°–
100° W) (Fig. S4a). The surface BrO mixing ratios were the highest in
the WAP (0.67 ± 0.36 pptv), followed by the EAP (0.43 ± 0.13 pptv)
and AOO (0.18 ± 0.10 pptv) during the study period (Fig. 4d). Year-
round field observation of BrO at the Halley station represented similar
seasonal variations with distinct short-term (< few hours) variations
depending on air mass origin (Saiz-Lopez et al., 2007).

4. Discussion

4.1. Oceanic DMS emissions depending on source regions

Phaeocystis (DMSP-rich) and diatoms (DMSP-poor), which have op-
posite DMS and DMSP productivity, are major phytoplankton groups
and are competitively dominant in the pelagic Southern Ocean (Arrigo
et al., 2010). Thus, the dominance of DMSP-rich phaeocystis and
resulting higher DMSP-to-chlorophyll ratio in the AOO and WAP could
contribute to an increase in atmospheric DMS in the air masses that
originate from these areas (Fig. 3b and c). Together, the larger expanse
of first-year sea ice in the WAP could also contribute to the release of
biogenic DMS into the atmosphere during the austral spring–summer
period. Because an intensive ice algae bloom, which was frequently ob-
served in the first-year sea ice, can serve as a significant source of atmo-
spheric DMS (Koga et al., 2014; Levasseur, 2013; Trevena and Jones,
2006). In contrast, the lower atmospheric DMS level in the EAPwas pos-
sibly associated with the relatively higher dominance of DMSP-poor di-
atoms and longer retention time of the air mass over themulti-year sea
ice and land areas, which released less DMS, despite the highest mean
chlorophyll concentration (Fig. 4a–3c). Consequently, the growth of
strongDMSproducers and the passage of airmasses over theproductive
sites largely controlled the atmospheric DMSmixing ratios measured in
the Antarctic Peninsula.

Image of Fig. 3


Fig. 4. Box plots for the (a) chlorophyll concentration, (b) DMSP-to-chlorophyll ratio, and (c) dominant phytoplankton groups including diatoms (DIA), prochlorococcus (PRO),
synechococcus (SLC), nanoeukaryotes (NEU), and phaeocystis (PHA), (d) surface BrO mixing ratios, and (e) surface IO mixing ratios. (f) Bootstrapping estimation for the number
concentration of newly formed particles (CN10–25) for the AOO, WAP, and EAP during the study period. In the box plots, the solid middle lines, circles, box edges, and whiskers
represent the median, mean, 25th, and 75th percentile, and Q1 and Q3, respectively.
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4.2. Atmospheric DMS oxidation depending on source regions

Atmospheric DMS oxidation is largely controlled by the key oxi-
dants, including OH, NO3, and BrO (Barnes et al., 2006). Typically, the
roles of OH and NO3 in the Antarctic are relatively insignificant
compared with tropical and temperate regions, owing to lower water
vapor and UV radiation, as well as lower local anthropogenic emissions
of nitrogen oxides (NOx) (Chen et al., 2018). In contrast, reactive
halogen species (containing chlorine, bromine, or iodine) significantly
contribute to atmospheric oxidation processes in remote polar
environments (Saiz-Lopez and von Glasow, 2012). Recent studies
revealed unique natural processes, such as heterogeneous reactions of
inorganic halide, halide fractionation in aerosolized seawater droplets,
and photochemical decomposition of biogenic halocarbons, that affect
the supply of reactive halogen species to the polar marine boundary
layer (Guzman et al., 2012; Hughes et al., 2012; Lieb-Lappen and
Obbard, 2015; Piller-Little et al., 2013; Pratt, 2019). Among these
species, BrO is a well-known oxidant involving 50–60% DMS oxidation
in the Antarctic boundary layer (Breider et al., 2010; von Glasow and
Crutzen, 2004; Read et al., 2008). Importantly, BrO at sub-ppt levels in
themarine boundary layer can have a significant impact on DMS oxida-
tion at high latitudes (Boucher et al., 2003). As the lifetime of BrO in the
boundary layer is less than 2 h, atmospheric levels of BrO are strongly
influenced by the air mass origin (Saiz-Lopez et al., 2007). The surface
BrO mixing ratios in the WAP and EAP were 3.7- and 2.3-fold higher
than that in the AOO during the study period (Fig. 4d). High surface
BrO mixing ratios were particularly consistent with the first-year sea
ice (Figs. 1a and S5a). This is because the release of reactive halogen spe-
cies is strongly activated by photochemical reactions and heteroge-
neous recycling that occur in the frost flower, brine channels, and
snow-covered saline ice (Lieb-Lappen and Obbard, 2015; Saiz-Lopez
et al., 2008; Simpson et al., 2007; Yang et al., 2008). Heterogeneous
recycling of inorganic bromine species leads to the releases of
more gas-phase Br2 from the icy surface (i.e., the so-called bromine
explosion) (Simpson et al., 2007). Then, the gas-phase Br2 rapidly
undergoes photolysis, releasing Br atoms that form BrO by reacting
with ozone. This photochemical heterogeneous production of
6

reactive halogen species is highly accelerated in a frozen solution
(i.e., brine layers and ice-grain boundary) due to the freeze concentration
effects of multiple solutes (Kim et al., 2019b; Kim et al., 2016). This phe-
nomenon occurs because ice has the property of being selectively intol-
erant to impurities (Robinson et al., 2006). These findings indicate that
chemical processes occurring in icy areas, particularly first-year sea ice,
can facilitate the release of reactive halogen species, including BrO.
Thus, the prolonged airmass exposure over thefirst-year ice zone can in-
duce atmospheric BrO enrichment, which thereby strengthens the DMS
oxidation capacity as observed for WAP and EAP zones.

4.3. DMS-induced particle formation

The measured CN10–25 from theWAP and EAP was 2.4- and 1.8-fold
greater than that of the AOO, respectively (Fig. 4f). These results indicate
that new particles, possibly derived from DMS and other gaseous pre-
cursors, were more intensively formed when the air masses passed
through ice-related zones. Particularly, the moderate balance between
the key aerosol precursor (i.e., DMS) and efficient oxidant (i.e., BrO),
which were actively released from the first-year ice zones, can provide
favorable conditions to trigger the oxidation of DMS and form new
DMS-induced particles. The 8-year (2009–2016) field observations of
the physical properties of the aerosol particles at the same observation
site also showed clear differences in new particle formation events de-
pending on the origin of air masses (Kim et al., 2019a; Kim et al.,
2017). For example, the number concentrations of nano-size particles
(2.5–10 nm in diameter) from air masses originating from the western
part of Antarctic Peninsula (~400 cm-3)were higher than those originat-
ing from the eastern (~340 cm-3) and northern Antarctic Peninsula
(i.e., pelagic Southern Ocean; ~20 cm-3) (Kim et al., 2017). Moreover,
more thanhalf of the newparticle formation eventswith higher particle
formation rates (> 3 cm-3 s-1) were observed when the air mass origi-
nated from the western part of the Antarctic Peninsula (Kim et al.,
2019a). Recent shipboard measurements of the chemical properties of
submicron aerosol particles and onboard aerosol generation experi-
ments in the Southern Ocean also support that aerosol particles
originate from sympagic areas predominated by secondary organic

Image of Fig. 4
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aerosols, including nss-SO4
2–, MSA, and N compounds. In contrast, the

aerosol particles from the pelagic ocean were enriched with primary
aerosols, including lipids, sugars, and sea salt (Dall'Osto et al., 2017b;
Decesari et al., 2020; Rinaldi et al., 2020).

Although the atmospheric DMS mixing ratios in the EAP were ap-
proximately two-fold lower than those in the WAP and AOO, the
CN10–25 in the EAP was two-fold higher than that in the AOO and only
35% lower than that in the WAP (Fig. 4f). This indicates that a fraction
of the newly formed particles from the EAP andWAP could possibly re-
sult from gaseous precursors other than DMS. Among the aerosol pre-
cursors, iodine oxide particles (IOP) are known to significantly
increase the formation of new particles in the polar regions (Allan
et al., 2015; Baccarini et al., 2020; Roscoe et al., 2015). Results from
the CAM-Chem model showed that the highest monthly mean surface
IO mixing ratios were in the EAP (0.16 ± 0.08 pptv), followed by the
WAP (0.10 ± 0.04 pptv) and AOO (0.08 ± 0.03 pptv) (Figs. 3e and
S5b). Although our field observations did not account for the contribu-
tion of other aerosol precursors (e.g., N-compounds) to particle forma-
tion and growth, we expect significant IOP formation in the EAP region.

5. Conclusions and implications

In this study, we provided new insights into the role of DMS in
forming aerosols in coastal Antarctica based on an analysis of source
region-dependent emissions and oxidation of DMS. Our results indicate
the following: (1) Atmospheric DMS levels could be modulated by the
taxonomic compositions of pelagic phytoplankton and ice algal blooms.
(2) Higher DMS oxidation capacity driven by BrO could intensify DMS-
derived new particle formation in the Antarctic Peninsula. (3) Biological
and chemical processes actively occurring in the first-year ice zone
could enhance DMS-derived particle formation by supplying both key
aerosol precursors and efficient oxidants into the Antarctic boundary
layer. Consequently, these results provide a process-level understand-
ing of DMS-induced particle formation depending on source regions
and suggest that future changes in sea ice properties could have a signif-
icant impact on sulfurous particle formation in the Antarctic Peninsula.

The Antarctic Peninsula, especially the western portion, has been
warming faster than the rest of the planet since the 20th century
(Sato et al., 2021; Tuckett et al., 2019). A change in the sea ice coverage
and its properties (i.e., decline in the total extent, reduced sea ice season
duration, and shift from multi-year sea ice to first-year sea ice) can af-
fect the formation of DMS-derived particles in the Antarctic Peninsula;
the magnitude and direction of these effects may vary in different re-
gions. Thus, a regional-scale understanding of the DMS-induced particle
formation in concert with comprehensive investigations of multiple en-
vironmental variables in Antarctica is imperative to improve climate
change predictions. Emissions of biogenic volatile organic compounds
and their reaction with atmospheric oxidants are important in
aerosol-formation processes as well as to radiative climate forcing
(Brooks and Thornton, 2018; Piller-Little and Guzman, 2018). Hence,
long-term observations of gas- and aqueous-phase aerosol precursors,
reactive halogen species, and the physiochemical properties of aerosol
particles are necessary to provide a better understanding of ocean–
cryosphere–atmosphere interactions and their association with climate
feedbacks in fragile Antarctica.
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