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a b s t r a c t 

In the semi-arid Central Andes of Argentina, the water from snowmelt runoff plays a fundamental role as a 
provider of ecosystem services. Nowadays, the global climate change has an observable negative impact on 
this area, due, principally, to the decrease in both liquid and solid rainfall, with the consequent decrease in 
water availability. In this context, runoff prediction acquires vital importance for the integrated water resources 
management. The aim of this study is to investigate the performance of the Support Vector Regression (SVR) 
technique in predicting monthly discharges with 1-month lead-time in the Tupungato River basin in the Central 
Andes of Argentina. This methodology has never been applied before in this mountainous region. Different inputs, 
like meteorological data and satellite-based snow cover area estimates from MODIS, were analyzed in order to 
identify the suitable inputs predictors to forecast monthly streamflow. The results were compared against the 
results derived from a Classification and Regression Tree (CART) model and, also, against an Auto-regressive 
Integrated Moving-average (ARIMA) model. Different metrics were used to evaluate the performance of the SVR 
tests in reproducing streamflow observations at the basin outlet. The coefficient of determination for each of the 
analyzed tests lays between 0.75 and 0.89 in the validation set. The comparison with the other models showed 
a significant improvement in performance of SVR in respect of CART and ARIMA model. SVR models proved a 
promising approach to support water management and decision making for productive activities, potentially also 
in other basins in the region. 
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. Introduction 

The water supplied by the rivers draining the drier hillside of the
entral Andes (i.e. the Argentine hillside) strongly determined the set-
lement of the populations. Irrigated areas (locally known as oases)
over 4.8% of the area while concentrate 98% of the population. In
his regard, the Mendoza province has an extensive irrigation infras-
ructure, necessary to carry out the typical agricultural activities in this
rea ( Abraham et al., 2005 ). These productive and industrial activities,
lso the local domestic consumption, are highly dependent on the avail-
bility of snowmelt water draining from the Andes range. 

Besides, Mendoza’s productive oases are areas vulnerable to climate
hange. Climate change has significant consequences, like the glaciers
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etreat, less surface of snow accumulation, loss in ice masses and, con-
equently, alterations of the hydrographs of the Andean rivers. 

Accordingly, the problem of water scarcity in arid and semi-arid re-
ions, not only in this region, but also in the world, encourages the
xploration of new methodologies that improve the integrated water
esources management. 

Effective water resources management in the Central Andes requires
ccess to accurate streamflow forecasting. In accordance with this, the
nowledge of the streamflow regime is an important key to understand
 wide range of problems and activities related to the river system,
ike hydropower generation or flood control, and, also, providing a
etter understanding of the runoff fluctuations due to climate change
 Ferguson, 1999 ; Dong, 2018 ). 
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Fig. 1. Study Area. Top left: the map shows the entire Mendoza River basin. 
Top right: The location of the study area in Argentina. Center: the map shows 
the Tupungato River basin, used for this study. 
Hydrological models attempt to capture the complex behavior of
he variables involved in the streamflow production by using historical
ata. They can be expressed using probabilistic, deterministic or stochas-
ic approaches, depending of the study purpose ( Raghavendra and
eka, 2014 ). However, there are some constraints related to the spa-

ial and temporal availability of hydrometeorological data in mountain
reas like the Andes range, due to the difficulties in accessing, installing,
nd maintaining in situ networks. Therefore, the general scarcity of the
n-situ data on these areas increases the relevance of remote sensing
ata, especially on the monitoring and variability fluctuations of the
now cover area (SCA). 

The SCA has a large impact on these basins as an input for improving
unoff forecasting. For instance, Maza et al. (1995) performed flow sim-
lations in the Tupungato River basin using LANDSAT remote sensing
ata as an input to the deterministic SRM model with reliable perfor-
ance. 

The use of machine learning techniques for prediction of water avail-
bility has been expanded to successfully solve forecasting problems
 Wang et al., 2009 ). The capability of these techniques for analyzing
ong series and large-scale data has increased the interest among re-
earchers in water resources studies. Both parametric (e.g. Bayesian
pproach) and non-parametric methods, like Artificial Neural Network
ANN) or regression tree (e.g. CART), can handle the non-linearity be-
ween input and output variables, but the principal limitation is the need
f a large training database for a robust performance ( Bhattacharya and
olomatine, 2005 ; Apaydin et al., 2020 ). 

In Argentina, Dolling and Varas (2002) developed a model based
n ANN for monthly streamflow prediction (spring and summer flows).
he model was tested on a mountain watershed of San Juan Province,
sing 30 inputs variables as precipitation, temperature, relative humid-
ty, effective sunshine hours, maximum snow depth, etc. The results
btained had a better performance than alternatives procedures. More-
ver, Pierini et al. (2012) contributed with a daily flow forecast using an
NN algorithm and historical runoff data in the Colorado River basin,

mproving the results obtained through the use of an autoregressive
odel (AR). 

Within these machine learning techniques, the support vector ma-
hine (SVM) has proved to be much more robust in several applica-
ions related to forecasting of hydrologic time series ( Maity et al., 2010 ;
allegari et al., 2015 ). SVM is a data-driven model based on learning
ystems that can handle different kinds of input, reaching a good per-
ormance even when few data are available. The application of this
echnique for regression, called support vector regression (SVR), was
ntroduced by Vasnik in 1995 ( Asefa et al., 2006 ) and improved by
rucker et al. (1997) . Since then, the application of this technique in
iverse research fields has attracted much attention. 

Working with SVR has several benefits. Firstly, this method can
anage different kinds of inputs and does not require to have a large

mount of data to achieve a good performance, as in the case of
ther non-parametric methods like ANN or Genetic Algorithms, which
eed a large training dataset. The SVR technique was tested also in
ater resources engineering, rainfall-runoff modeling ( Dibike et al.,
001 ) and bio-physical parameters retrieval ( Pasolli et al., 2011 ).
oncerning the runoff forecasting, several approaches have been pre-
ented for testing the capability of the SVR on hydrological applica-
ions ( Asefa et al., 2006 ; Behzad et al., 2009 ). In the European Alps,
allegari et al. (2015) and De Gregorio et al. (2017) analyzed the perfor-
ance of monthly river discharge forecasting using the SVR technique

n several basins, exploiting diverse input features and improving the
esults obtained with simple linear alternatives. In a snow dominated
atershed of Iran, Sedighi et al. (2016) investigated the capability of

he SVR and ANN models to simulate the rainfall-runoff processes using
emote sensing data as input. 

This paper assesses the performance of the support vector regression
SVR) for the runoff prediction with 1-month lead time in a snow regime
atchment of the Central Andes of Argentina, by taking advantage of the
2 
vailability of remote sensing data. The lead time was selected based on
he fact that 1-month lead forecasts are useful from the point of view of
ater managers for most of the local activities. 

The objectives of the current study are: 

1) To develop a novel 1-month lead forecast model to predict the water
resource availability in a mountain catchment. 

2) To assess a proper feature selection of the input parameters to be
used in the complex environment considering the peculiarity of
mountain areas. 

3) To test the efficiency of the machine learning approach in respect of
other models 

Although the methodology was tested in other catchments over the
orld, the originality of this research leads on the developing of 1-month

ead forecasting using easily accessible variables. Instead, other works
pplied machine learning techniques using several variables that are
sually unavailable, especially in less developed countries. This idea is
ased on the fact that in the Andes range the number of meteorological
tations is limited and the need of assessing water availability is high. In
his way, also the possibility to use remote sensing data on hydrological
pplications is outstanding. 

The result of this research contributes to support the water man-
gement of the region, particularly for the development of productive
ctivities like irrigation agriculture, hydroelectricity generation, and for
ocal domestic consumption. In fact, the proposed approach is developed
y using readily available observations of variables like air temperature,
recipitation, discharge, and SCA from MODIS Terra and Aqua satellites,
hich allows the application to basins with limited ground measure-
ents. Moreover, the method can be easily recalibrated to be adapted

o different snow dominated catchments. 
This method has not yet been tested in Argentinian basins and will

otentially be a significant contribution to the water management of the
egion. 

. Study area and dataset 

.1. Study area 

The selected area for this study is the Tupungato River basin in the
pper part of the Mendoza River basin in the homonymous province,
n Argentina ( Fig. 1 ). The Mendoza River basin concentrates the largest
art of the province population. With a drainage area of approximately
035 km 

2 and an elevation ranging from 2300 to 6500 masl, the up-
er basin of the Mendoza River (including the Tupungato basin) is the
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Fig. 2. Example of a linear vector regression. The black dots correspond to the 
support vectors, the optimal hyperplane corresponds to the regression line. 𝜀 
and – 𝜀 are the size of the 𝜀 -insensitive tube. 
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ain water supplier for the development of most of the agricultural,
ndustrial, and human activities. 

The hydrology is characterized by a snow-glacier regime. The largest
mount of solid precipitation occurs during the southern winter months
from June to September). At the beginning of spring and during the
arm season, the accumulated snow melts, increasing the flow rate of

he river and shaping a unimodal hydrograph with a maximum value
n December and January ( Bruniard and Moro, 1994 ). Towards the end
f the southern summer, the water contribution of the glaciers situated
n the upper basin becomes more important, especially during dry years
hen the snow contribution decreases considerably ( Masiokas et al.,
006 ). 

.2. Dataset 

The dataset used for this study covers the period from December
001 to June 2017. It includes time series of discharge, meteorological
ariables and snow cover area from MODIS as detailed below: 

• Discharge time series (Q) 

In this study, the discharge time series from Punta de Vacas station
as used. This station is sited right upstream from the confluence of

he Tupungato River with the Mendoza River, at an elevation of about
500 masl. The data correspond to the monthly mean flow rates. In
rder to improve the results, monthly mean flow rates were processed
o compute the average discharge of each one of the twelve months of
he year (Qav) and used as a seasonal time series. 

• Snow cover area (SCA) 

The Snow Cover Area can be estimated from optical sensors due to
he difference in reflectance between the visible and infrared bands of
he spectrum. The most widely used index for snow detection is the Nor-
alized Snow Difference Index (NDSI) ( Riggs et al., 2015 ). This index

s usually calculated at the top of the atmosphere , based on the digital
umbers (DN) measured on the frequency of channel 2 and 6 (MODIS
ata). 

The SCA map is a Boolean product derived from NDSI, using a thresh-
ld to identify the snow presence in each pixel of information per image
 Bergeron et al., 2014 , Roy et al., 2010 ). 

The main issue about snow detection through optical sensors is the
oss of information due to cloud coverage. In this work, we used a fully
lled product derived from the combination of two identical optical sen-
ors (MODIS Terra & Aqua) with a daily temporal resolution (one image
er satellite per day). The mentioned product uses the Aqua satellite
roduct (MYD10A1) to fill the Terra satellite product (MOD10A1) gaps,
ay by day. The information lost by both sensors is filled with data
f previous days ( Cara et al., 2016 ). Cara, 2018 checked the product
ccuracy using two ground stations of snow measurement (Toscas and
orcones Stations, in the Mendoza River basin), through a confusion
atrix analysis. Obtaining a correct overall rating above 91% (94%)

n 5039 (3063) images analyzed for Toscas and Horcones respectively
 Cara, 2018 ). 

• Meteorological data 

The meteorological variables used were air temperature (T) and pre-
ipitation (PP), also from de Punta de Vacas station located in the basin
utlet. Since the meteorological data were available at daily steps, an
ggregation had to be performed in order to get the monthly mean air
emperatures and the monthly cumulative precipitation values. 

. Short introduction to SVR theory 

This section briefly presents some theoretical concepts of the SVR. A
ore detailed explanation can be found in Smola and Schölkopf, 2004 .
he idea of this machine learning technique is to select the regressive
yperplane that best fits the selected training data. For this, a margin
3 
istance is considered ( 𝜀 ), so that the samples are in a band or tube
round the hyperplane, i.e. they are at a distance of less than 𝜀 from
he hyperplane. These samples will constitute the support vectors. The
amples that fall outside the range are those that control the error made
y the regression ( 𝜁) ( Fig. 2 ). 

In case of a linear function, the formula is the following: 

 ( x ) = ⟨𝑤, 𝑥 ⟩ + 𝑏 (2)

Where w are the support vector weights with the same dimensions
s those of the explanatory variables x, and b is a scalar that is esti-
ated based on the conditions of Karush-Kuhn-Tucker (KKT). The sim-
lest function is found by minimizing the sum of absolute value of the
rrors above a certain threshold 𝜀 . 

In this way, for the i th sample the 𝜀 -insensitive loss function (L 𝜀 i ) is
ntroduced as: 

 𝜀𝑖 = 

{ 

0 , 𝑖𝑓 
|||𝑓 (𝑥 𝑖 ) − 𝑦 𝑖 

|| ≤ 𝜀 |||𝑓 (𝑥 𝑖 ) − 𝑦 𝑖 
|| − 𝜀, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(3)

In order to find f(x), the following function (called the regulated risk
unction) has to be minimized: 

𝑅 reg ( 𝑓 ) = 

1 
2 
𝑤 

2 + 𝐶 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝐿 𝜀𝑖 ( 𝑓 

) 

(4) 

In the previous equation, C is an indicator of the complexity of the
unction f(x) and determines the trade-off between this complexity and
he tolerance of deviations larger than 𝜀 . This minimization illustrates
he main idea of the structural risk minimization theory ( Behzad et al.,
009 ). 

In general, f(x) is not linear and has the following general form: 

 ( 𝑥 ) = 

𝑁 ∑
𝑖 =1 

∝𝑖 ⟨Φ(
𝑥 𝑖 
)
, Φ( 𝑥 ) ⟩ + 𝑏 (5)

here ∝i (with i = 1 ⋯ N) are constant coefficients. Under certain condi-
ions ( Smola and Schölkopf, 2004 ) the scalar product Φ( 𝑥 𝑖 ) , Φ( 𝑥 ) can be
ewritten using nonlinear functions named “kernel ”. They can be rep-
esented as 𝐾( 𝑥 𝑖 , 𝑥 ) = Φ( 𝑥 𝑖 ) , Φ( 𝑥 ) . Some of the common kernels are:
inear, polynomial, sigmoid and radial basis function (RBF). 

. Methodology 

According to the presented objectives, the methodology can be sum-
arized in three steps: (1) Feature selection and data splitting, (2) Setup

f model parameters, (3) Implementation of SVR. 



S.A.T. Korsic, C. Notarnicola, M.U. Quirno et al. Environmental Challenges 10 (2023) 100680 

Fig. 3. Methodology flowchart. In the Feature Se- 
lection we selected the best variables (Discharge, 
Meteo Data and SCA) and their correspondent lags 
to build models. In the next step we setup de model 
parameters for all test (represented with the rectan- 
gle) and splits (A,B and C). Finally we implemented 
the three models and evaluated the performance. 
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To find the final model that best simulates runoff, different tests were
arried out with different inputs (tests 1 to 9). The training and valida-
ion set were generated by considering three different splits of the total
ata set (the splits are named A, B and C). The aim of this procedure is
o assess the influence of data selection on the result. With each split,
everal tests were carried out by exploiting different inputs, resulting in
hree different tests in each split. 

Fig. 3 shows the scheme that was applied in the procedure to perform
he test with the different splits and inputs. 

.1. Feature selection and data splitting 

The selection of the model inputs in the SVR techniques values plays
 significant role ( Smola and Schölkopf, 2004 ). 

Three methods were used to select the input variables of the differ-
nt tests for model definition: linear model, correlation function and
ecursive feature selection (RFE). First, an exploratory analysis of the
orrelation between the observed streamflow and the SCA at different
ags was carried out by analyzing the correlation function of the poten-
ial inputs. The linear model and the correlation function were applied
o establish a first selection of input variables and to avoid redundancy
n the input parameters, identifying the best T and SCA lags related to
he runoff. Then, to improve the selection a RFE was done to the dataset,
ncluding the meteorological data (T, PP). The RFE is a popular wrapper
ethod used to eliminate irrelevant features from the training set and

o identify the best input combination of the model ( Chandrashekar and
ahin, 2014 ). 

Furthermore, to test the influence of the historical runoff data and to
mprove the overall prediction performance, the observed seasonal be-
avior described by the average monthly mean flow (Q av ) was included
s an additional input, as well as the Q t-1 series. 

A usual strategy for model training is to split the data in two sub-
ets, called training and validation set. The objective of the training
et is to optimize the parameter vector by solving the algorithm prob-
em. The k-fold cross validation technique is often used for split data
 Chandrashekar and Sahin, 2014 ; Callegari et al., 2015 ). In this tech-
ique, the data is randomly divided in training and validation set. In
his experiment, instead of this technique three combinations of train-
ng and validation sets were selected to enhance the training process.
he idea behind these combinations is to include the whole range of
treamflow fluctuations along the annual cycle, over the hydrological
ear. Hence, the splits were selected as follows: 

• Split A: It was selected in a way that ensures that both high and
low flows are included in the training and validation hydrographs,
resulting in sets of ten and six years, respectively. 

• Split B: The training set was composed by the first five years and
the last six of the time series. The validation set included the five
intermediate years. 

• Split C: A simple split-sample method was applied, consisting of the

first ten years for training and the last six for validation. t  

4 
Finally, with the selected variables, three different tests (1,2,3) were
mplemented for each split (A, B, C) with different combinations of in-
uts. 

.2. Model parameter selection 

For the implementation of the SVR it was necessary to tune the
odel parameters. For this purpose, a suitable kernel function and the

orresponding hyper parameters of the model were selected. The ker-
el function is intended to perform a linear separation by transform-
ng the data into a higher dimensional feature space ( Langhammer and
esák, 2016 ). The performance of the SVR depends considerably on this
election ( Behzad et al., 2009 ). Hence, in the training phase of the SVR,
our types of kernel functions were compared: linear, polynomial, radial
nd sigmoidal. The coefficient of determination was calculated for each
ype of Kernel function, in order to select the most suitable. 

Also, there are two basic versions of SVR to select: epsilon-SVR and
u-SVR. The difference between the two is that while the nu has control
ver how many data vectors from the data set becomes support vectors,
he other version does not have this control. 

Finding optimal hyper-parameters ( 𝛾, 𝜀 and ∁) is still a challenge
nd there is no compromise regarding the best parameters setting
 Raghavendra and Deka, 2014 ). 

For the purpose of tuning the parameters for the SVR model, a k-fold
ross validation technique was applied on the training set of the three
plits, and the best combinations of hyper-parameters were selected for
ach one during the model calibration ( Kuhn, 2014 ). 

.3. Implementation of the SVR 

The last step of this approach was the testing of different inputs for
ach split, and the evaluation of the model efficiency and the impact of
ncluding different variables. The e1071 R package was used to run all
odels ( Meyer et al., 2019 ) with the selected parameters, as described

n Section 4.1 . 
For each data split (A, B and C), three tests were run with the selected

nputs. 
For the model performance evaluation, the following metrics were

sed: the coefficient of determination (R 

2 ), the mean average error
MAE), the Root Mean Square Error (RMSE), and the Index of Volu-
etric Fit (IVF). The IVF computes the degree of volumetric agreement

etween the observed and the modeled flows ( Tan and O’Connor, 1996 ).
Another performance criterion used to express the model accu-

acy is the Nash Sutcliffe Efficiency coefficient (NSE) ( Nash and Sut-
liffe, 1970 ). This coefficient is dimensionless and ranges from minus
nfinity (poor model) to one (perfect model). A unit value of NSE means
 perfect performance. A value of zero indicates that the measured mean
Q ̅) is as good a predictor as the model, while negative values indicate
hat the measured mean is a better predictor than the model itself. It
s known that the NSE coefficient is sensitive to extreme values. Given
hat water resource management is particularly interested in periods
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Table 1 

Coefficient of determination (R 2 ) of the different kernel functions and two 
types of regression analyses, Eps-regression and nu-regression. 

Eps - Regression Nu- Regression 

Type of Kernel Split A Split B Split C Split A Split B Split C 

Linear 0.51 0.57 0.55 0.60 0.60 0.58 
Polynomial 0.57 0.49 0.58 0.59 0.52 0.60 
Radial 0.76 0.75 0.71 0.76 0.75 0.71 

Sigmoidal 0.55 0.51 0.11 0.14 0.11 0.15 
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f low flows, the Nash-Sutcliffe efficiency was also calculated on the
ogarithmic transformation of modeled and observed discharge series
NSE(ln)). As a result, the peaks are flattened while the low flows are
ept at approximately the same level, so that the influence of low flows
s increased in comparison to that of the flow peaks. 

.4. Comparison with the CART algorithm 

In order to compare the SVR results with another machine learn-
ng technique, a Classification and Regression Tree (CART) algorithm
as implemented. The CART algorithm is a non-parametric approach

hat builds a decision tree through repeated dataset division. The algo-
ithm is constructed by splitting the data set using all predictor vari-
bles. The splitting rule is based on the squared residuals minimiza-
ion algorithm, decreasing the Gini coefficient and variance ( Lee and
im, 2020 ). The primary output of CART is a hierarchy binary struc-

ure, which classifies the data set into groups. Further information can
e found in Breiman, et al., 2014 . 

For this comparison purpose, the rpart library of the R software was
sed to applicate the CART algorithm to the dataset ( Therneau and
tkinson, 2019 ). The algorithm was run for all splits and inputs. The
nalysis of variance (ANOVA) method was used to grow the tree. For
ll tests, the principal node of the tree selected by the algorithm was
CA (t-5) . 

.5. Comparison with an ARIMA model 

The Autoregressive Integrated Moving Average (ARIMA) model
akes into account the dependence of the previous measurements in a
oving-average form. In order to choose the appropriate ARIMA model,

he first step was to calculate the autocorrelation function (ACF) and the
artial autocorrelation function (PACF) to identify the order of the au-
oregressive model. The final model was chosen using the auto.arima
unction, included in the forecast library in R ( Hyndman and Khan-
akar, 2008 ). 

In this case, the training set was composed by data from December
001 to June 2011 and the testing set from August 2011 to July 2017
in correspondence with split C). 

Afterwards, the residuals were analyzed, and the Ljung-Box test was
erformed to validate the model with suitable results, confirming the
ccuracy of the ARIMA model order. 

. Results 

.1. Feature selection 

The feature selection was an important step to understand the contri-
ution of each input feature in the model and to select the most signifi-
ant variable to build different tests and evaluate the performance of the
VR. The correlation function between the streamflow and the lagged
CA presents a maximum at a 5-month (R 

2 = 0.67). Also, a linear model
egression was analyzed with all input variables and lags ( p < 0.05).
n this case, the SCA t-5 resulted also the best predictor ( p = 0.0005), in
onjunction with the 1-month lag temperature ( p -value = 0.0003), and
he 2-month lag SCA ( p = 0.02). 

The results obtained with the recursive feature elimination algorithm
RFE) showed that the SCA with a 5-month (SCA t-5 ) lag was the most
xplicative variable. The precipitation did not show a correlation with
he discharge; therefore it was discarded. 

Thus, considering these results, different experiments were done
ith the inputs features and the addition of historical runoff data (Q (t-1) 
nd Q (av) ), resulting in the following tests: 

Test 1: T (t-1) , SCA (t-2) , SCA (t-5) 
Test 2: T (t-1) , SCA (t-2) , SCA (t-5), Q (t-1) 

Test 3: T (t-1) , SCA (t-2) , SCA (t-5), Q (t-1), Q (av) t  

5 
.2. SVR model parameters 

As explained in Section 4.2 , a type of kernel function and model
election parameter was performed. 

Table 1 illustrates the coefficient of determination (R 

2 ) of the ker-
el function tested in the training set (split C), assessing the epsilon-
egression and nu-regression performances. 

Although the R 

2 have similar values in the nu and epsilon-regression,
n the Radial function the epsilon-regression was selected. This regres-
ion method is one of the most commonly used modeling methods
 Sedighi et al., 2016 ). 

Concerning the analysis of the different types of kernel functions,
e concluded that the best performance was obtained with the radial

unction (or RBF) ( Table 1 ). Thus, all simulations were done using this
ernel function, whose mathematical form is: 

 ( 𝑥, 𝑧 ) = exp ( 𝛾𝑥 − 𝑧 2 ) (6)

In the previous equation, 𝛾 is a user-defined constant. The sigma
arameter is part of the selected radial function. The C parameter rep-
esents the trade-off between the flatness of the regression function and
he quantity up to which deviations greater than a predetermined error
re tolerated. 

.3. Model implementation 

As it can be seen in Table 2 , the coefficient of determination fluctu-
tes between 0.75 and 0.89, where the test C.3 has the best performance,
ith also lower values of RMSE and MAE, and the best NSE coefficient.
he best IVF was reached by the tests A2 and A.1. The NSE(ln) values
esulted between 0.82 and 0.97, improving the NSE values on the vali-
ation set, except on split C. 

.4. Comparison with the classification and regression tree (CART) model 

Fig. 4 summarizes the results of the SVR in comparison with the
ART model for all tests. 

It can be seen that the SVR model has a better performance for all
ests and splits than the RT model. The test B.1 results on similar values
or the three metrics and we do not observe a change or an improvement
ith the addition of the Q (t-1) and Q av , as it can be seen on the SVR
odel. 

.5. Comparison with ARIMA 

The resulted ARIMA model had a (1,0,1) x (2,1,0) structure. This
esult was consistent with the fact that the time series has a seasonal
omponent, which explains why a seasonal ARIMA model was used.
urthermore, the results were in accordance with what can be observed
n the ACF and PACF, which shows significant values at lags of an integer
umber of 12 months ( Fig. 5 ). Table 3 shows the different performance
etrics for this model. The selected training and validation sets were

he same as those used by the C split with the SVR and CART model. 
Finally, with the purpose of comparing the temporal behavior of all

he models with the observed data, Fig. 6 presents the hydrographs re-



S.A.T. Korsic, C. Notarnicola, M.U. Quirno et al. Environmental Challenges 10 (2023) 100680 

Table 2 

Performance metrics for all tests (1, 2, 3) and splits (A, B, C) in the training set (T) and in 
the validation set (V). 

Test Inputs T/V R 2 RMSE MAE IVF NSE NSE(ln) 

A.1 T (t-1) , SCA (t-2) , SCA (t-5) T 0.81 9 5.35 0.95 0.79 0.85 
V 0.75 10 6.47 1.02 0.75 0.82 

A.2 T (t-1) , SCA (t-2) , SCA (t-5), T 0.89 7 4.19 0.96 0.88 0.90 
Q (t-1) V 0.83 9 5.06 1.01 0.82 0.89 

A.3 T (t-1) , SCA (t-2) , SCA (t-5), T 0.92 6 3.45 0.95 0.91 0.94 
Q (t-1), Q (av) V 0.89 7 4.34 0.96 0.87 0.93 

B.1 T (t-1) , SCA (t-2) , SCA (t-5) T 0.76 10 6.05 0.96 0.75 0.85 
V 0.77 10 6.00 0.89 0.75 0.81 

B.2 T (t-1) , SCA (t-2) , SCA (t-5), T 0.85 8 4.90 0.96 0.84 0.90 
Q (t-1) V 0.89 7 4.34 0.91 0.86 0.87 

B.3 T (t-1) , SCA (t-2) , SCA (t-5), T 0.90 7 3.92 0.97 0.90 0.93 
Q (t-1), Q (av) V 0.86 8 4.39 0.95 0.86 0.87 

C.1 T (t-1) , SCA (t-2) , SCA (t-5) T 0.83 10 5.90 0.94 0.81 0.87 
V 0.77 9 6.53 1.22 0.72 0.70 

C.2 T (t-1) , SCA (t-2) , SCA (t-5), T 0.89 8 4.60 0.98 0.89 0.91 
Q (t-1) V 0.83 7 4.64 1.09 0.84 0.81 

C.3 T (t-1) , SCA (t-2) , SCA (t-5), T 0.91 7 4.11 0.97 0.91 0.93 
Q (t-1), Q (av) V 0.89 5 4.08 1.08 0.90 0.87 

Fig. 4. Coefficient of determination (R 2 ), RMSE and MAE 
of all splits and models. SVR model in blue and RT (CART) 
model in gray. 

Fig. 5. ( a) The autocorrelation function of the runoff se- 
ries (b) The partial autocorrelation function of runoff series 
in Punta de Vacas Station. 

6 
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Fig. 6. Comparison of flow hydrographs: observed (black line), SVR (red line) ARIMA (blue line), RT (green line). 

Table 3 

Performance metrics of the ARIMA model with fitted pa- 
rameters. 

ARIMA Model R 2 RMSE MAE IVF NSE 

(1,0,1) x (2,1,0) 0.72 12 7.83 1.02 0.72 
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ulting from the application of the SVR model, RT model (Test C.3) and
he ARIMA model over the validation period. 

. Discussion 

.1. SVR model for 1-month lead forecasting 

Several aspects shall be considered to evaluate the performance of
he previous tests. The selection of the performance metrics depends on
he applicability of the forecast. In this work we used some regression
etrics (R 

2 , RMSE and MAE), but we also added hydrological metrics.
o make a valuable contribution to the water management, it is nec-
ssary to estimate the hydrograph peaks and the time correctly, and to
ave an idea of the volume of the available water. 

As it can be seen in Table 2 , the results obtained in the training set,
or all the tests and metrics, were slightly better than the validation set.
n particular the IVF, that represents the volumetric agreement with the
bserved data, shows values between 0.89 and 1.22 for all models and
plits. 

Although model A.1 showed the lowest coefficient of determination
alue (0.75), the IVF was 1.02, which means a volume overestimation of
nly 2%. This means that a satisfactory performance was obtained also
n the test that performed worst. In the other extreme, test C.1 reached
he worst IVF (1.22, i.e. an overestimation of 22%) and an R 

2 of 0.77. 
Furthermore, the NSE in the validation set for all models exceeded

.75, while two thirds of them exceeded 0.80. The highest NSE was 0.90
test C.3). The other performance metrics (R 

2 , RMSE and MAE) showed
onsistency with the described results and are in agreement with ex-
eriments done in other catchments with this technique, using different
odel inputs ( Callegari et al., 2015 ; Guo et al., 2011 ; Maity et al., 2010 ;
hang et al., 2018 ). In terms of NSE(ln), performances were high, even
lightly higher than NSE in most of the cases, which is desirable in sit-
ations in which low flows are more critical than peak flows, as is the
ase of many water resource management applications. 

.2. Feature selection input parameters 

The feature selection has an important role on the final forecasting
erformance. This was also verified by other studies with diverse catch-
ent characteristics, where atmospheric patterns ( Asefa et al., 2006 ;
7 
allegari et al., 2015 ), rainfall ( Chanklan et al., 2018 ) or physical catch-
ent attributes ( Zhang et al., 2018 ) have an strong influence on the

unoff. Nevertheless, in this study only the temperature, SCA and his-
orical runoff information were considered. The feature selection results
howed a low correlation between the precipitation and the discharge,
herefore this variable was discarded as input for the model. The SCA
ith a lag time of 5 months resulted to have the strongest influence on

he runoff. This time lag is in concordance with climatological studies
ver the arid and semi-arid regions of the Andes range, that evidenced
he correlation between snow cover and runoff in climate studies over
he area ( Masiokas et al., 2010 ). 

.3. Comparison with other methods 

Most of the literature related to hydrological forecasting with ma-
hine learning techniques compared the SVR with ANN ( Chanklan et al.,
018 ; Guo et al., 2011 ; Sedighi et al., 2016 ; Wang et al., 2009 ). In this
ork, we chose a CART model in order to compare two types of super-
ised machine learning techniques for regression. 

Compared with the CART, the SVR showed a better performance in
ll cases, showing an improvement of 75% or higher. 

In Fig. 4 we can observe that the addition of Q (t-1) and Q av did not
ave an impact on the performance metrics of the RT. The R 

2 resulted
etween 0.69 and 0.78 without significant variations. In contrast, this
ddition significantly improves the results on the SVR in all splits, ob-
erving an increase in R 

2 and a notable decrease in RMSE. Both vari-
bles have a good correlation with the streamflow, which explains the
xpected results. 

Furthermore, the selection of the splits (A, B and C) did not have a
ignificant impact on the model performance. Indeed, the quality of the
esults was virtually the same irrespective of the splits, which is a good
ndicator of the robustness of the SVR model. 

Fig. 7 illustrates the results of three selected tests (A.1, B.2 and C.3)
ompared with the observed data, and the correlation between the dis-
harge estimated with the models and the observations, in order to con-
rast the shape of the hydrographs, their peaks, recessions and time
hifts. 

The SVR model forecast does not match the largest peak discharges
underestimation of about 30–40%), except for the C.3 model, the one
hat performed best. It should be noted that the split does not contain
he extreme discharge value of 100 m 

3 /s, like split A and B. 
However, all SVR models respected the temporal phase very closely,

ithout significant time shifts over the entire validation period. Also, it
s important to highlight that the IVF resulted between 0.95 and 1.22,
 performance of volumetric prediction that is acceptable for water re-
ources management 
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Fig. 7. Left: Hydrographs of the different val- 
idation set (months) compared with the ob- 
served discharge. Blue line: SVR model; green 
line: RT model and black line: observed dis- 
charge. Right: Respective scatter plots. Blue 
dots correspond to the discharge estimated 
with the SVR model and green dots correspond 
to the discharge estimated with the RT model. 
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Regarding the ARIMA model used as a benchmark, the results of all
VR models were exceeded, as is shown in Table 3 . 

It is worth noting that these results were obtained for a 1-month lead
ime forecasting. However, it is also possible to do different tests over
ifferent lead times, in order to find model structures for longer lead-
ime forecasts. A test was done with the same three splits used for the
-month lead forecasting and using the variables with no less than two
onths of lag as inputs. In this case, T (t-2) , SCA (t-2) and SCA (t-5) were
sed. The results ( Table 4 ) show also good agreement for a 2-months
ead time, in the three different splits. The results ( Table 4 ) show also
ood agreement for a 2-months lead time, in the three different splits.
s also observed in the 1-month lead case, the split selection did not
how a significant effect on the model performance. 

The present study leaves room for further application to longer lead
imes. For several productive uses of the water resource, longer lead
imes allow for an enhanced decision-making process, with the potential
or an optimized water management. 
Table 4 

Results of a 2-months lead forecast model. 

Model inputs: T (t-2), SCA (t-2) , SCA (t-5) 

Split R 2 RMSE MAE IVF NSE 

A 0.75 10.22 6.47 1.02 0.75 
B 0.77 10.19 6.00 0.89 0.75 
C 0.77 9.27 6.53 1.22 0.72 
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. Conclusion 

In this paper, the potential of the Support Vector Machine for flow
orecasting was explored in a mountain basin with snowmelt regime in
he Central Andes range of Argentina. The performance results indicate
hat the SVR outperforms the Classification and Regression Tree (CART)
odel and the auto-regressive model used as a benchmark. The results

re encouraging and demonstrate that this technique is promising in
ow forecasting. 

The selected inputs proved to be efficient, not only for 1-month lead
orecasting, but also for 2-months lead time. 

The SVR has several advantages over other forecasting techniques.
nce the parameters are calibrated, the model is easy and fast to run.
oreover, there is no need to have a large amount of data to obtain

uitable results, as it is the case with artificial neural networks or other
achine learning data-driven models. This characteristic is particularly

mportant in mountainous basins, where harsh weather conditions and
igh altitude make data collection challenging and expensive and, con-
equently, data are often scarce. 

In recent years, the area has endured a large water deficit, which
ntails great economic, social, and environmental impacts. The current
ontext of climate change threatens the productive model, based on ir-
igated agriculture that depends on snowmelt water in the upper basins.

This forecasting methodology, with inputs that are easily accessible
nd available for modeling, constitutes a great advance for the manage-
ent of the water resources of the study area and, potentially, of other

asins in the Andes with a snow-glacier regime. 
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Even though the developed model achieved good results for 1 and
-months lead forecasting, there are applications that require a longer
ead-time forecast. 

Future steps within this research line include implementation of
odels for longer lead times and in neighbor basins. Furthermore, the

lacier contribution to the runoff can be added as a model input. This can
mprove the water resource management. Decisions made with longer
nticipation can lead to an optimized provision of water for uses that
re often competing and/or conflicting. 
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