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ABSTRACT

A new inversion method to estimate high-resolution
amplitude-versus-angle attributes (AVA) attributes such as
intercept and gradient from prestack data is presented.
The proposed technique promotes sparse-spike reflectivities
that, when convolved with the source wavelet, fit the ob-
served data. The inversion is carried out using a hybrid
two-step strategy that combines fast iterative shrinkage-
thresholding algorithm (FISTA) and a standard least-squares
(LS) inversion. FISTA, which can be viewed as an extension
of the classical gradient algorithm, provides sparse solutions
by minimizing the misfit between the modeled and the
observed data, and the l1-norm of the solution. FISTA is
used to estimate the location in time of the main reflectors.
Then, LS is used to retrieve the appropriate reflectivity am-
plitudes that honor the data. FISTA, like other iterative solv-
ers for l1-norm regularization, does not require matrices in
explicit form, making it easy to apply, economic in computa-
tional terms, and adequate for solving large-scale problems.
As a consequence, the FISTA+LS strategy represents a
simple and cost-effective new procedure to solve the AVA
inversion problem. Results on synthetic and field data
show that the proposed hybrid method can obtain high-
resolution AVA attributes from noisy observations, making
it an interesting alternative to conventional methods.

INTRODUCTION

The analysis of the variations in amplitude of a reflected wave
versus angle of incidence (AVA) or versus offset (AVO) plays a cen-
tral role for hydrocarbon detection and lithology identification
(Chopra and Castagna, 2007), for these variations depend on the

contrasts between rock physical properties such as P-wave veloc-
ities, S-wave velocities, and densities. Given a plane wave that ar-
rives at an interface that separates two adjacent media, AVA changes
can be described by the Zoeppritz equations (Zoeppritz, 1919).
Because these equations are nonlinear, they are impractical for
applications such as data interpretation and inversion, and thus,
various authors have developed several “linear” approximations
over the last decades (e.g., Bortfeld, 1961; Aki and Richards,
1980; Shuey, 1985; Fatti et al., 1994). The coefficients of these ap-
proximations constitute AVA attributes that may provide important
information about fluid content, a key issue for the characterization
of hydrocarbon reservoirs (Ostrander, 1984; Castagna et al., 1998;
Smith and Gidlow, 2000; Chopra and Castagna, 2007).
Given a set of prestack data, it is possible to devise an inverse

strategy to retrieve the coefficients of these approximations, and ul-
timately, the model parameters that characterize the subsurface.
However, because in general the inverse problem is ill posed, while
there exist several sets of coefficients that honor the data equally
well (nonuniqueness), some of these might exhibit a huge l2-norm,
thus being unstable and meaningless solutions. Reliable solutions
can be obtained by regularization, that is, by promoting certain sol-
utions through the minimization of an appropriate norm used to take
into account useful prior information (Tarantola, 1987; Ulrych and
Sacchi, 2005). For example, sparseness is a property that can be
obtained using l1-norm regularization, and that has been effectively
applied to solve the seismic deconvolution problem by various au-
thors (e.g., Taylor et al., 1979; Oldenburg et al., 1983; Sacchi,
1997). Sparse solutions are desirable because they lead to sharply
resolved reflectors that overcome the band-limitation of classical
l2-norm solutions (Debeye and van Riel, 1990). Though we know
from impedance well logs that the real earth structure is continuous
rather than sparse-spike (Cooke and Schneider, 1983), it is also true
that in general, the distribution of the amplitudes of reflection co-
efficients is nongaussian (Walden and Hosken, 1986; Velis, 2003).
Moreover, analysis of well-bore-derived reflectivity sequences
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indicate that main lithological units can be associated with sparsely
distributed large reflection coefficients (Walden and Hosken, 1986).
These facts have a profound significance on deconvolution, as dem-
onstrated by the various approaches to deconvolution that rely on
the non-Gaussianity assumption (e.g., Wiggins, 1978; Oldenburg
et al., 1983; Robinson and Ebrom, 1996; Sacchi et al., 1996).
In the context of AVA inversion, methods that promote sparse-

spike solutions have been studied with very interesting results
by several authors. Some have proposed a Bayesian inversion where
sparseness is obtained through the use of appropriate long-tailed
prior probability distributions (Downton and Lines, 2003; Misra
and Sacchi, 2008; Alemie and Sacchi, 2011). Alternatively, sparse-
ness can be achieved by fixing the number of reflectors and using
global optimization algorithms such as simulated annealing to ob-
tain their locations, and least squares (LS) to estimate their ampli-
tudes (Pérez and Velis, 2011). However, the sparse-spike high-
resolution solutions provided by these techniques are achieved at
the expense of an increase in the mathematical complexity and com-
putational cost, important issues in current applications where data
volumes are huge.
With this motivation, the method proposed, which shares the

same objectives of techniques that honor the data (i.e., sparse-spike
solutions), introduces a simple and cost-effective new procedure
to solve the AVA inverse problem: the fast iterative shrinkage-
thresholding algorithm (FISTA). FISTA is a powerful algorithm that
has been presented very recently to minimize, together with the
misfit term, the l1-norm of the solution (Beck and Teboulle, 2009).
FISTA is based on the iterative shrinkage thresholding algorithm
(ISTA) (Daubechies et al., 2004), an extension of the classical gra-
dient algorithm to solve large-scale linear inverse problems in a sim-
ple way. At each iteration, only matrix-vector multiplications, and no
matrix inversions, are required. ISTA is known to have linear con-
vergence (Bredies and Lorenz, 2008), but FISTA is shown to be
faster by several orders of magnitude. In practice, the misfit and
the l1-norm are combined into a cost function by means of a
trade-off parameter. In this context, FISTA provides sparse-spike
solutions in a simple and effective way. However, in the case of
AVA inversion of noisy data, the solutions might be correct from
the mathematical point of view but physically meaningless, as it will
be shown in the numerical examples. This is not an issue of FISTA
alone, for it is just a tool for solving the optimization problem. The
issue arises because the various parameters involved in the inversion
(e.g., intercept and gradient when using Shuey’s [1985] two-term
approximation) may exhibit a different scale, and thus, their impact
on the l1-norm is not properly balanced. To alleviate this problem,
we propose to use the solution obtained by FISTA as a priori infor-
mation to perform, then in a second step, an LS inversion. This de-
biasing step (Figueiredo et al., 2007) leads to a hybrid technique that
promotes sparse-spike solutions which are much more robust from
the physical point of view than those obtained using l1-norm regu-
larization, with a negligible increase of the computational cost.
It is well known the inability of inversion methods to properly

invert the gradient without having a priori knowledge of their
response. Although intercept and gradient are sensitive to noise,
gradient shows higher sensitivity (Herrmann and Cambois, 2001;
Whitcombe et al., 2004). The variances of these two attributes
are partially controlled by the geometry of the data acquisition
(Downton et al., 2000). The standard-deviation of the gradient is
larger than the standard-deviation of the intercept and increases with

traveltime, making its conventional estimation inaccurate and its use
questionable (Cambois, 1998). Moreover, the inclusion of a third-
order term in the AVO analysis (e.g., curvature) may lead to even
higher inaccuracies and instabilities because data often do not
contain information to properly resolve the third-order term, except
for wide-azimuth data and high signal-to-noise ratios (S/Ns) (Cam-
bois, 2001). One way to alleviate the aforementioned problems is
via the inclusion of a covariance matrix or scale matrix that provides
a correlation between those parameters. This has been explored in
the context of Gaussian statistics (Downton and Lines, 2001, 2004;
Buland and Omre, 2003) and using sparse priors derived from a
multivariate Cauchy distribution (Alemie and Sacchi, 2011). How-
ever, these methods assume that one knows the correlation or scale
matrix that relate intercept and gradient behaviors. In this paper, we
circumvent knowing the correlation matrix of the unknown param-
eters by using the proposed hybrid approach. Due to the type of
angular aperture that we are using, we focus the analysis on the
two-term Shuey’s approximation, though the extension to higher-
order approximations is straighforward. In our method, sparsity
is used to estimate the position of the reflections by solving an
underdetermined problem where it is difficult to produce stable
and reliable estimates of the gradient. Then these traveltimes are used
to simultaneously estimate intercept and gradient by solving a more
stable, overdetermined LS problem. A key element of this paper is
that we can stabilize the inversion of the gradient without having to
include a covariance or scale matrix. This is important because, in
general, the covariance matrix is only known when we have borehole
measurements or a good understanding of the expected AVO classes
in the area of study (Downton, 2005).
The paper is organized as follows. First, we explain the proposed

method, setting up the necessary hypothesis and defining all rel-
evant equations. In addition, we provide a step-by-step description
of FISTA. Next, we test the method on normal-moveout (NMO)
corrected prestack synthetic data assuming the classical two-term
Shuey’s approximation (Shuey, 1985) of the Zoeppritz equations.
In the first numerical example, we show that, when the data are
noisy, FISTA alone is not capable of providing satisfactory solu-
tions to the intercept and gradient. Then, in a second numerical
example, we show that the solutions obtained using the proposed
hybrid method outperform the solutions obtained by FISTA, provid-
ing accurate estimates of intercept and gradient. Finally, we test the
hybrid algorithm using a 2D field data set. We show that reliable,
high-resolution intercept and gradient images that honor the ob-
served data can be obtained.

THEORY

As usual, we rely on the convolutional model of the seismic trace
and assume that the earth structure can be represented by a series of
horizontal layers of constant material properties separated by planar
interfaces (e.g., Yilmaz, 2001). Hence, an N-trace angle-gather can
be expressed as

sðθiÞ ¼ w � rðθiÞ þ nðθiÞ; i ¼ 1; · · · ; N (1)

where sðθiÞ is the seismic trace corresponding to the ith angle of
incidence θi, w is the source wavelet of dimension Lw, rðθiÞ is
the reflectivity of dimension Lr, nðθiÞ is the random noise, and
* denotes convolution. Both nðθiÞ and sðθiÞ have dimension
Ls ¼ Lw þ Lr − 1.
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Assuming that the gather has been NMO corrected, and consid-
ering the validity of the well-known approximation to the Zoeppritz
equations, the reflection coefficient as a function of incidence angle
for a reflector at time t can be written, in a general form, as

rtðθiÞ ¼
Xn
k¼1

xtkgkðθiÞ; (2)

where xtk are coefficients that depend on the physical properties of
the rocks on each side of the interface (velocities and densities), n is
the order of the chosen approximation (usually n ¼ 2 or 3), and
gkðθiÞ are functions that depend on the angle of incidence, which
must be less than the critical angle (Ikelle and Amundsen, 2005).
Combining equations 1 and 2, and omitting the noise term for

simplicity,

AðθiÞx ¼ sðθiÞ; i ¼ 1; · · · ; N; (3)

where x ¼ ðx11; · · · ; xLr1
; · · · ; x1n; · · · ; xLrnÞT and AðθiÞ is an aug-

mented matrix of dimension Ls × nLr that can be expressed as

AðθiÞ ¼ ½A1ðθiÞj · · · jAnðθiÞ�: (4)

Here, AkðθiÞ with k ¼ 1; · · · ; n are submatrices of dimension
Ls × Lr, whose elements are given by

fAkðθiÞghj ¼ gkðθiÞwh−jþ1; (5)

for h ¼ 1; · · · ; Ls and j ¼ 1; · · · ; Lr. Then, the N systems of equa-
tions given by expression 3 can be rearranged into the following
unique system:

Ax ¼ s; (6)

where A is a column block matrix with blocks given by AðθiÞ, and s
is a one-column block vector with blocks given by sðθiÞ, for
i ¼ 1; · · · ; N.
Equation 6 represents an overdetermined system of linear equa-

tions with nLr unknowns, which are the coefficients of the selected
Zoeppritz’s approximation given by expression 2. As in the case of
the deconvolution of reflection seismograms (Oldenburg et al.,
1983), a stable and sparse solution can be obtained using an l2-norm
misfit with l1-norm regularization. Thus, the problem reduces to
find the x that minimizes the cost function

J ¼ kAx − sk2 þ λkxk1: (7)

In this equation, the first term, which represents the error or
misfit, is used to measure the differences between the observed
and the modeled data. The second term is used to penalize non-
sparse solutions. The trade-off parameter λ is used to balance the
weight or impact of the two terms. Equation 7 can be minimized
using FISTA (Beck and Teboulle, 2009).
At this point, it is important notice that, as mentioned in the in-

troduction, the minimization of equation 7 under noisy conditions
may lead to solutions which are mathematically correct but unsta-
ble. This is because the different coefficients involved in the second
term of equation 7 may have different magnitudes, and thus their
impact on the minimization of J would be different. This issue will
be illustrated in the next section where we show that, for noisy data,

when λ is large, the solutions may honor the observed data but the
amplitudes of some of the estimated coefficients are severely under-
estimated. However, for λ small, the solutions may honor the data
but the amplitudes of some of the estimated coefficients are severely
overestimated. For these reasons, we propose to carry out the AVA
inversion by means of a two-stage procedure. In the first stage, we
use FISTA to minimize J using an appropriate value for λ such that
the solution is sufficiently sparse (in the following sections, we dis-
cuss how to select this trade-off parameter). The solution provided
by the first stage is then used as a priori information that provides
the “support” of the solution (i.e., the times associated with the non-
zero reflectors) that is to be used for the second stage. The second
stage consists of a LS optimization that optimizes the amplitudes of
the unknowns by minimizing the misfit term only. We point out that
the stability of the inversion is guaranteed provided the initial sol-
ution is sufficiently sparse. A similar two-stage strategy is proposed
by Velis (2008) for solving the sparse-spike deconvolution, but the
support was obtained, instead, using a much more computationally
intensive algorithm such as simulated annealing.

FISTA stage

FISTA is an iterative algorithm devised to solve equations in the
form of equation 7. Step-by-step, FISTA is summarized as follows:

1) Set α ≥ σmax, where σmax is the maximum eigenvalue of ATA.
2) Set z1 ¼ x0 and t1 ¼ 1, where x0 is an initial solution.
3) For each iteration k ¼ 1; 2; 3; · · · :

a)

xk ¼ Tλ∕2α

�
zk −

1

α
ATðAzk − sÞ

�
; (8)

where Tβf·g is a soft-thresholding function which is
applied to each element of its vectorial argument and
is defined by

Tβfgg ¼
�
gð1 − β∕jgjÞ; jgj ≥ β

0: jgj < β
; (9)

b)

tkþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2k

p
2

; (10)

c)

zkþ1 ¼ xk þ
tk − 1

tkþ1

ðxk − xk−1Þ; (11)

and
d) check convergence or stopping condition.

Step 1 is required to prevent the argument of the soft-thresholding
function from becoming negative. To find the maximum eigenvalue,
we use the Rayleigh’s power method (e.g., Larson and Edwards,
1999). For more details about FISTA, please refer to the work
by Beck and Teboulle (2009).

LS stage

Once the support of the solution has been obtained using FISTA,
we perform a debiasing step (Figueiredo et al., 2007) to adjust the
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amplitudes of the coefficients. Now, given the M nonzero compo-
nents at times τj of x (as output from FISTA, with M ≪ Lr),
their optimal amplitudes can be estimated using the classical LS
criterion.
Following the same procedure to obtain equation 6, but assuming

a sparse-spike model for the reflectivity, after some simple algebraic
steps, it is easy to show that the system of equations that relates the
data s with the unknown coefficients y becomes

By ¼ s; (12)

where y is the one-column vector formed by n blocks of dimension
M containing the coefficients of the approximation given by equa-
tion 2, and B is an augmented matrix of dimension Ls ×Mn formed
by submatrices Bk with elements given by

fBkðθiÞghj ¼ gkðθiÞwh−τjþ1; (13)

for h ¼ 1; : : : ; Ls, j ¼ 1; : : : ; M, and k ¼ 1; : : : ; n.
The solution to this new system of linear equations can be ob-

tained by minimizing the squared differences between the observed
and the modeled data, which leads to

y ¼ ðBTBÞ−1ðBTsÞ: (14)

Essentially, FISTA is used to select the number M and the times τj
of the spikes from the nonzero components of x, while the LS
inversion is used to estimate the values of their amplitudes.
In summary, the sparse-spike AVA-inversion procedure is as

follows:

1) A sparse solution x of the equation 6 is estimated using FISTA.
2) The values of M and the τj, j ¼ 1; · · · ;M, are determined by

the nonzero components of x.
3) Solution y is obtained by LS inversion (equation 14).

SYNTHETIC DATA NUMERICAL EXAMPLES

To illustrate the procedure, we generate a synthetic NMO-
corrected gather consisting of 13 traces with θi ∈ ð0°; 36°Þ, and
12 reflectors in a time window of 0.5 s. The AVA response is mod-
eled using the classical two-term Shuey’s approximation, and so
equation 2 becomes

rtðθiÞ ¼ At þ Bt sin
2ðθiÞ: (15)

The coefficients At and Bt, which are the unknowns of the inver-
sion, are known as intercept and gradient (Shuey, 1985). Figure 1a
and 1b shows the intercept and gradient used to generate the data
traces stðθiÞ. The data were obtained by convolving rtðθiÞ with a

Ricker wavelet (Ricker, 1940) of central fre-
quency f0 ¼ 30 Hz (Figure 1c). To test the
method against noisy data we added Gaussian
noise with standard deviation σ ¼ maxt;ijstðθiÞj∕
S=N, where S/N is the signal-to-noise ratio
(Figure 1d–1f).

First example: AVA inversion
using FISTA only

To analyze the behavior of FISTA, in this first
example, we perform the AVA inversion of the
noisy data shown in Figure 1 using FISTA only.
That is, we omit the LS stage described in the
previous section. For this purpose, we first need
to select an appropriate trade-off parameter λ in
equation 7. In general, the selection of this
parameter depends on the noise level of the data
at hand. Clearly, if λ is too large, a very sparse
solution would be obtained, but the data may
not be properly fit. Conversely, if λ is too small,
the noisy data would be overfit and the solution
becomes unstable. Therefore, an appropriate
strategy is required to select this key parameter.
In this sense, there are various methods reported
in the literature that can be used to estimate λ. For
instance, one can adopt the so-called L-curve cri-
terion, the discrepancy principle, or the general-
ized crossvalidation criterion (Farquharson and
Oldenburg, 2004). For this numerical example,
we estimate the trade-off parameter using the dis-
crepancy principle. This formulation is preferred
when an estimation of the noise level in the
data is available. To this end, we construct the
L-curve of the data, also known as Pareto curve
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Figure 1. (a) Actual intercept and (b) actual gradient used to generate (c) the noise-free
synthetic data, and the noisy data with (d) S=N ¼ 20, (e) S=N ¼ 15, (f) S=N ¼ 10.
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(Hennenfent et al., 2008; van den Berg and Friedlander, 2009), by
carrying out the inversion using various trial λs and plotting the
resulting l1-norm versus misfit values. Then, we choose the op-
timum λ as the one that minimizes the l1-norm while the l2-norm
of the errors (i.e., the misfit) remains less or equal than the noise
level. Figure 2 shows the Pareto curves using FISTA only (long
dashed lines) corresponding to the three noisy gathers shown in
Figure 1. The horizontal solid lines indicate the noise level, and
the small arrows show the direction of increasing λ. As expected,
the larger the λ, the smaller the l1-norm and the larger the misfit,
and vice versa. Following the discrepancy principle, we estimated
the optimum values λ ¼ 0.06 for the data with S=N ¼ 20, λ ¼ 0.1

for the data with S=N ¼ 15, and λ ¼ 0.14 for the data with
S=N ¼ 10. These values correspond to the crossing of the Pareto
and noise level curves, and are indicated with white circles in
Figure 2.
Figure 3 shows the actual intercept and gradient, and the esti-

mated attributes corresponding to the noise-free and noisy gathers.
We can observe that the results obtained for the intercept are accu-
rate in the presence of a significant amount of noise. The location in
time of all the reflectors and their respective amplitudes were
estimated correctly. Although the solutions show some spurious
spikes, especially for the lowest S/Ns, their amplitudes are very
small and they could be easily deleted by means of a threshold filter
for an almost perfect match with the actual intercept. On the other
hand, the solutions estimated for the gradient do not resemble the
true gradient attribute used to model the data. The locations in time
of the reflectors given by FISTA are correct, but their amplitudes are
not. As the noise level increases, the amplitudes of the inverted
spikes are severely underestimated. This is expected because the
noise tends to mask the AVA response but not the energy of the
reflector, and the misfit term in equation 7 becomes less sensitive
to variations in the gradient than the l1-norm term. Therefore, to
decrease J as much as possible, FISTA tends to reduce the l1-norm
of the gradient more than the l1-norm of the intercept, without
affecting the misfit significantly. In cases of data with large
amounts of noise (e.g., Figure 1f) where the AVA response is almost
indistinguishable (such as those reflectors that exhibit a small
gradient in Figure 3g), FISTA tends to reduce, for a given value
of λ, the amplitude of the estimated gradient to zero. This is the
case of the reflector located at t ¼ 0.25 s, for example, which
exhibits a small gradient but a significant intercept, and therefore,
its gradient is annihilated after the inversion while its intercept is
correctly estimated.
To continue the analysis of the behavior of the AVA inversion

when using FISTA only, Figure 4 shows the results of the inversion
for various values of λ in the case of the noisy gather with S=N ¼ 20

(Figure 1d). When λ is smaller than the value suggested by the dis-
crepancy principle, which is equal to 0.06, the amplitudes of the
spurious spikes in the intercept and the gradient might become
larger than acceptable. On the other hand, if λ is larger than this
value, the estimated gradient might be severely underestimated,
as shown in Figure 4i and 4j. This behavior is not observed in
the estimated intercept because their scales are different, as ex-
plained in the previous paragraph. In this case, there is a wide range
of λ values for which the estimated intercept amplitudes are accept-
able. We conclude that we cannot find a value of λ leading to a
correct estimation of intercept and gradient simultaneously, except
for data with a high S/N, as shown in Figure 3.

Second example: AVA inversion using FISTA and LS

We have shown that FISTA alone does not give appropriate
sparse solutions for the gradient, however the intercept can be esti-
mated with a high degree of accuracy. The method proposed in this
work takes advantage of the aforementioned result. In fact, we use
the estimated intercept as a priori information to improve the esti-
mation of the gradient through an LS inversion. We tested the pro-
posed FISTA hybrid method (FISTA+LS) using the synthetic data
described in the preceding section. Figure 2 shows the Pareto curves
for FISTA+LS (short dashed lines) corresponding to the three noisy
gathers portrayed in Figure 1. Compared to the Pareto curves asso-
ciated with FISTA alone (long dashed lines), the curves associated
with the hybrid method exhibit a significant break when they ap-
proach the noise level. Hence, when an estimation of the noise level
is not available, it seems easier to estimate a value of λ using FISTA
+LS than using FISTA only. Furthermore, Figure 5 (long dashed
lines) shows the number of the nonzero spikes obtained after the
inversion as a function of λ. Note that, for a given gather, there
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Figure 2. Pareto curves after the inversion of the noisy gathers
shown in Figure 1 using FISTA only (long dashed lines) and
FISTA+LS (short dashed lines), for various trial values of λ (the
small arrows show the direction of increasing λ). The horizontal
solid lines indicate the noise level, whereas white and black circles
denote the selected optimum λ according to the discrepancy
principle.
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Figure 3. Results of the inversion using FISTA only: (a and f) Actual intercept and gradient, (b and g) estimated attributes corresponding to the
noise-free data, (c and h) noisy data with S=N ¼ 20, (d and i) S=N ¼ 15, (e and j) S=N ¼ 10.
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Figure 4. Results of the inversion using FISTA only for various values of λ in the case of the noisy gather with S=N ¼ 20 (Figure 1d): (a and f)
λ ¼ 0.01, (b and g) λ ¼ 0.03, (c and h) λ ¼ 0.06, (d and i) λ ¼ 0.12, (e and j) λ ¼ 0.24.
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is a relatively wide range of λ values for which the inversion yielded
12 reflectors, which is equal to the actual number of nonzero spikes
of the model. These ranges are represented by the solid part of the
curves shown in Figure 5, which map into the black circles shown in
Figure 2. As a result, these black circles represent, in practice, a
range of λ values instead of a single λ. Therefore, unlike FISTA
alone, where according to the discrepancy principle a single “opti-
mal” λ exists (white circles in Figure 5), when FISTA+LS is used
there are several λ values that minimize the l1-norm while the misfit
remains less or equal to the noise level, a fact that is shown by in-
specting the misfit as a function of λ in Figure 5 (short dashed lines).
This means that the FISTA+LS solution depends, essentially, on the
number of spikes provided by FISTA alone.
In summary, when FISTA is used without the LS stage, and be-

cause λ balances the impact of the two terms in the cost function
(equation 7), the amplitudes of the estimated spikes are expected to
decrease as λ increases, even when the number of nonzero spikes
remains constant (as seen in Figure 4). But, on the other hand, when
FISTA+LS is used, then the misfit and the amplitudes of the spikes
after the LS stage are adjusted to the same values, irrespective of
the selected λ within the range where the number of spikes remains
constant (solid part of the curves in Figure 5).
Following these results, for this particular example we decided to

use λ ¼ 4 for the inversion of all the noisy gathers, though any other
value within the range denoted by the solid part of the curves in
Figure 5 would lead to exactly the same results.
Figure 6 shows the actual intercept and gradient, and the esti-

mated attributes corresponding to the noise-free and noisy gathers.
We can observe that FISTA+LS gives, in all cases, very accurate
estimates for the intercept and the gradient. All reflectors and their
amplitudes were adequately estimated, even under noisy conditions.
Finally, Figure 7 shows, for the case of the noisy-data with

S=N ¼ 10, a comparison among the solutions obtained using
FISTA only, FISTA+LS, and those using two “conventional” meth-
ods. The conventional approaches include (1) a sample-by-sample
intercept/gradient analysis and (2) a standard nonsparse LS inver-
sion (Yilmaz, 2001). The first approach corresponds to the intercept
and gradient that are obtained after a linear regression of the AVA
amplitudes at each time sample. On the other hand, the standard LS
inversion corresponds to the minimization of J with λ ¼ 0, that is,
by assuming a reflector at each time sample. Clearly, and because
sparsity is not promoted, the low resolution of the attributes ob-
tained by the conventional methods hampers the interpretation of
the results. In the case of the conventional LS inversion, a moderate
prewhitening was needed to stabilize the inversion. As a conse-
quence, although data are honored very accurately (recall that
λ ¼ 0 in equation 7), the amplitudes of the derived attributes are
severely underestimated. In the case of the conventional inter-
cept/gradient analysis, amplitudes are not underestimated, but the
solutions are unstable, especially the gradient. As already discussed,
FISTA only can estimate an accurate intercept, however, the gra-
dient is underestimated. In contrast, the results obtained by
FISTA+LS are much more accurate than those obtained by all
the other strategies, allowing one to retrieve stable sparse-spike like
solutions for both attributes even under noisy conditions.

FIELD DATA NUMERICAL EXAMPLE

In this section, we test the method using field data. Field data
complicates the application of our method because not only are

the noise level and the number of reflectors not known, but also
the source wavelet is not available. We assume that the data have been
properly processed to preserve amplitudes, and that the residual wave-
let after source processing is zero phase. The field data consist of 110
NMO-corrected angle-gathers with a sampling interval of 4 ms.
The inversion is carried out in a timewindow from 0.1 to 0.5 s. Rather
than processing one gather at a time, and to improve the lateral
continuity of the results, the inversion is applied to “supergathers,”
where each supergather was built by a weighted average of five
consecutive gathers. Once inverted, the array containing the estimated
intercept and gradient coefficients is assigned to the center gather.
The wavelet used in the inversion is estimated from each super-

gather by assuming zero phase (Robinson and Treitel, 2002).
Figure 8 shows the full stack section (7°–23°) of the observed

seismic data (a), the full stack section reconstructed from the esti-
mated solutions given FISTA+LS (b), the resulting high-resolution
intercept and gradient images estimated using FISTA+LS (c and d)
and FISTA only (e and f), and the low-resolution images obtained
using the conventional methods (g to j). In addition, Figure 9 shows
a selected input NMO-corrected gather (gather #45) and the corre-
sponding reconstructions. We can observe that the reconstructed
data are quite similar to the actual input data, showing that the
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Figure 5. Number of nonzero spikes (long dashed lines) and misfit
(short dashed lines) as a function of λ for the noisy data using FISTA
+LS: (a) S=N ¼ 20, (b) S=N ¼ 15, (c) S=N ¼ 10. The solid part of
the curves that represent the number of nonzero spikes indicates the
range of λ values for which the number of nonzero spikes is equal to
the actual number of spikes of the model, which is 12. The hori-
zontal thin solid lines indicate the noise level.
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Figure 6. Results of the inversion using FISTA+LS: (a and f) Actual intercept and gradient, (b and g) estimated attributes corresponding to the
noise-free data, (c and h) noisy data with S=N ¼ 20, (d and i) S=N ¼ 15, (e and j) S=N ¼ 10.
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Figure 7. Comparison of the results of the inversion using various methods for the noisy data (S=N ¼ 10). (a and f) Actual intercept and
gradient. Estimated attributes using: (b and g) sample-by-sample intercept/gradient analysis, (c and h) conventional LS inversion, (d and i)
FISTA only, and (e and j) FISTA+LS.
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Figure 8. Field data example: (a and b) Actual and
estimated stacks using FISTA+LS. Estimated
attribute images using: (c and d) FISTA+LS,
(e and f) FISTA only, (g and h) conventional
LS inversion, (i and j) intercept/gradient analysis.
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intercept and gradient inversions using FISTA+LS honor the obser-
vations very well. Contrary to the other approaches, FISTA+LS pro-
vides reasonable high-resolution attribute images for the intercept
and gradient attributes, where all significant reflectors were re-
solved correctly.
As can be seen, there is a considerable difference in the magni-

tudes of the estimated intercept and gradient. According to Cambois
(1998, 2001), the reason for this behavior is the limited angle range
(from 7° to 23° in this example), and the presence of noise. Then, it
is not unusual to observe differences of this order of magnitude
when working on real data. Other authors attribute this difference
to physical processes such as absorption, transmission losses, and
anisotropy (Smith and Gidlow, 1987), or inadequate data processing
before AVO inversion (e.g., incorrect NMO correction and inaccur-
acies in the estimated incidence angles), as suggested by Castagna
and Smith (1994) and Jin et al. (2000). We stress that the method
does not require a covariance or scale matrix as in the method pro-
posed by Alemie and Sacchi (2011). As expected, FISTA correctly
resolves the intercept; however, the amplitudes of the gradient are
underestimated, as in the case of the synthetic data examples. As
can be seen, the resolution and accuracy of the solutions obtained
using the proposed method is higher than those obtained using
the conventional methods. In particular, the images obtained by
the conventional LS inversion are very much affected by the pre-
whitening used to stabilize the inversion. The latter is particularly
evident in the gradient that was significantly underestimated. The
intercept/gradient analysis does not show this problem, but the cor-
responding images clearly lack resolution.

CONCLUSIONS

We present a sparse-spike inversion method to obtain high-
resolution AVA attribute from prestack data based on FISTA and
LS inversion. The method aims to simultaneously obtain the loca-
tion in time of the reflectors and the values of AVA attributes such as
the intercept and gradient. As shown in the numerical examples,
FISTA alone is not able to obtain an adequate gradient solution,
because it strongly depends on the noise level and the chosen
trade-off parameter λ. The use of the LS inversion as a debiasing
step proved to be an appropriate choice to improve the solutions
given by FISTA and obtain high-resolution AVA attributes that
honor the observed data. It is worth noting that the proposed method
allows us to stabilize the gradient solution without the use of a priori
information or the use of a covariance or scale matrix. It is also
remarkable, and different from other known methods, that there
is no need to start the inversion process from an initial model close
to the optimal solution. Here, the selection of λ is not a issue be-
cause a relatively wide range of λ values lead to similar solutions,
and because FISTA+LS is much less sensitivity to noise level than
FISTA alone. On noisy synthetic data, the proposed two-step hybrid
strategy proves to be robust and stable, providing very accurate
sparse-spike solutions for all the inverted magnitudes. Further, the
solutions provided by FISTA+LS exhibit a much higher resolution
than those given by two conventional methods. Tests on field data
show that, contrary to the conventional methods, the proposed tech-
nique can provide high-resolution intercept and gradient images that
accurately honor the observed data. Finally, because FISTA only uses
matrix-vector multiplications and the matrices which need to be in-
verted to make the LS inversion are relatively small, the hybrid
FISTA+LS method is economic in terms of computational cost.
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