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Abstract  

The Argentine shortfin squid, Illex argentinus, inhabits in the southwest Atlantic; it is a 

semelparous species which grows rapidly along its one year lifespan. The identification of 

its stocks is critical for sustainable fishery exploitation. Parasites have been used as biological 

indicators in a lower number of studies dealing with squids, therefore a validation of this 

methodology is necessary. The intra- and inter-cohort variability of parasite assemblages in 

the summer-spawning stock (SSS) of I. argentinus was analyzed to assess their value as 

indicators of stock structure. Four squids samples from the continental shelf of central 

Patagonia, corresponding to three consecutive cohorts, were examined for metazoan 

parasites. Results evidenced heterogeneity in terms of parasite assemblages composition and 

structure, dominated by short-lived gastrointestinal parasites, with a strong influence of host 

size, but no effect of squid sex. These changes are related to their recent habitats and diets, 

which change with ontogeny and migrations, clouding any interpretation of patterns when 

samples spatially or temporally separated are compared. Many squid species share these 

characteristics; therefore, it is recommended that the use of parasites as biological tags should 

be restricted to simultaneous sampling, while size or age must be considered for deriving 

proper conclusions. 
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Introduction 

The Argentine shortfin squid Illex argentinus Castellanos, 1960 (Ommastrephidae) is a 

neritic-oceanic species, widely distributed along the outer shelf and slope of the south-

western Atlantic Ocean, between 22° S and 54° S (Brunetti, 1988; Torres Alberto et al., 

2020), however, most catches occur in the southern range of the species (35° S to 52° S) 

(Haimovici and Pérez, 1990; Haimovici et al., 1998, 2014). Two main currents (Malvinas 

and Brazil currents) dominate the regional oceanography, with their variability and 

interactions with other masses of water being the main determining factors of the Argentine 

shortfin squids distribution (Nigmatullin, 1989; Haimovici et al., 1998; Bazzino and 

Quiñones, 1999). Such temporal variations in environmental conditions are common 

processes in the region, resulting in changes in the abundance and availability of squid preys, 

which, in turn, explain the interannual fluctuations usually recorded in squid abundance 

(Bazzino and Quiñones, 1999). Furthermore, for I. argentinus, as for many other squid 

species, these strong interannual fluctuations in abundance are also a consequence of its 

semelparous life strategy and its latitudinal and bathymetric migrations, coupled with 

environmental influences on its recruitment (Dawe and Brodziak, 1998; Pierce et al., 2008; 

Torres Alberto et al., 2020).  

Illex argentinus is a short-lived species, displaying a rapid growth rate and an annual 

life cycle, resulting in non-overlapping generations. It exhibits opportunistic trophic 

strategies, displaying a highly dynamic role in the trophic web, which can shift significantly 

between years and geographical areas due to variations in recruitment and in the abundance 

of interacting species within the food chain (Dawe and Brodziak, 1998). 

This is one of the most important commercial squid species for the Argentine fisheries, 

with total catches reaching 345,000 tons in 2020 (FAO, 2022). The assessment of their stocks 
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is, therefore, critical for a sustainable fishing exploitation, but also for the maintenance of the 

ecological integrity of food webs given the relevance of the squids as both predator and prey 

(Vidal and Haimovici, 1999). The population structure of the southern range of Illex 

argentinus as other interpretations exist for the northern range of the species along southern 

Brazil is complex, with four stocks or subpopulations being differentiated according to the 

season and reproduction ground (Fig. 1): the spring-spawning stock (SpSS), the bonaerensis-

north patagonic stock (BNPS), the summer-spawning stock (SSS) and the south patagonic 

stock (SPS) (Brunetti, 1988; Ivanovic et al., 2016; Arkhipkin et al., 2023). During the austral 

summer, from December to February, densest concentrations of I. argentinus, composed by 

juveniles and adults of two stocks (SPS and SSS, respectively), occur over the Patagonian 

continental shelf between 43° and 55° S (Brunetti et al., 1998). The co-occurrence in this 

zone, at certain times of the year, takes place due to the migratory-reproductive annual cycle 

of SPS, determining a mixing zone between 47° and 49° S, approximately (Avigliano et al., 

2020). Stocks are distinguishable from each other by their size and their gonadal maturity. 

Indeed, reproductive squids, corresponding to SSS specimens, are found in the north region 

(44°-48° S), whereas pre-reproductive concentrations between 49°-52° S are represented by 

SPS individuals (Ivanovic et al., 2016). Furthermore, a comprehensive stock assessment is 

necessary because this species is exploited during its ontogenetic migrations, both within 

exclusive economic zones of different coastal states along South American coasts and in 

adjacent high seas (Arkhipkin et al., 2023). In the high seas, where squids harvest accounts 

for around 45% of the total catch, regulation and control of fisheries are nonexistent, posing 

a serious risk of stock depletion becoming the resource highly vulnerable to overfishing 

during years of poor recruitment and low abundance (Arkhipkin et al., 2023), highlighting 

the need for their precise identification.  
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According to Timi and Buchmann (2023), the vast majority of studies on parasites as 

biological indicators to discriminate stocks deal with teleost fish as host, with a 

comparatively lower number of studies considering elasmobranchs and invertebrates. 

Despite the economic relevance of I. argentinus for regional fisheries and the knowledge 

about their parasites (Threlfall, 1970; Nigmatullin, 1989; Hochberg, 1990; Nigmatullin and 

Shukhgalter, 1990; Sardella et al., 1990; Vidal and Haimovici, 1999; González and Kroeck, 

2000; Cipriani et al., 2019), a single study has used parasites as indicators for their stock 

assessment in San Matías Gulf, Argentina (González and Kroeck, 2000). However, results 

on parasite tags should be taken cautiously, and must consider the lifespan of squid parasites 

and its interaction with host characteristics, especially when infestations depend on host size 

or age (Lester and MacKenzie, 2009; Timi and Poulin, 2020). Indeed, the ecology and 

behavior of cephalopods, together with life cycle, mantle size, deep range and vagility are 

important drivers of parasite diversity (González et al., 2003). Additionally, migratory 

species such as squids, which alternate between feeding and spawning habitats, can evidence 

ontogenetic changes in the structure of transient parasite assemblages, leading to 

misinterpretation of their stock structure.  

In this paper, the variability of parasite loads due to hosts and environment are analyzed 

for squids of the SSS stock because it is known that they perform only small-scale spatial 

migrations, restricted to the outer shelf at depths ranging between 50 and  200 m, not using 

high seas areas every year (Arkhipkin et al., 2023). This characteristic makes the SSS easier 

to analyze than the SPS stock, which undergoes extensive migrations and, as a result, 

introduces potential variability to parasite loads when moving through oceanographically 

distinct areas. The aim of this study is, therefore, to analyze the inter- and intra-cohort 

variability in the structure of parasite assemblages in the summer-spawning stock of I. 
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argentinus to assess their value as indicators of stock structure in further studies at broader 

scales. 

 

Materials and methods 

Squid and parasites sampling    

A total of 318 specimens of I. argentinus, distributed in four samples, corresponding to three 

consecutive cohorts (Coh19, Coh20-1, Coh20-2, Coh21) of the SSS caught between 2020 to 

2022, were examined for metazoan parasites (Table 1). Two of them, Coh20-1 and Coh21, 

were obtained from research cruises of the Instituto Nacional de Investigación y Desarrollo 

Pesquero (INIDEP), and those corresponding to Coh19 and  Coh20-2 were obtained from 

commercial catches during summer, at intermediate waters of central Patagonia. Squids 

belonging to Coh20-1 and Coh21 included five and two stations, respectively, whereas 

Coh19 and Coh20-2 both included a single station (Fig. 1).  

Squids were deep frozen in plastic bags at -18° C until the examination. After thawing, 

each squid was measured (dorsal mantle length (ML), cm) and cut along the ventral midline 

of the mantle. Furthermore, sex and gonadal maturity index according to an established scale 

of maturity (Brunetti et al., 1999) were determined. 

The mantle, funnel, buccal cavity and viscera (oesophagus, stomach, digestive caecum, 

intestine, digestive gland, gills, heart, kidney and gonads) were examined and parasites were 

recovered and examined under a stereoscopic microscope. Some specimens were fixed on 

formalin 4% and ethanol 96% for morphological and molecular identification, respectively. 

 

Genetic identification of cestode larvae  

Given the wide range of sizes and shapes of larval cestodes (plerocercoids) parasitizing I. 
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argentinus (see Threlfall, 1970; Nigmatullin and Shukhgalter, 1990), and the presence of 

intermediate forms and sizes, it was necessary to assess how many taxa they represent. 

Therefore, a subsample of 8 plerocercoids from digestive tracts and one undeveloped larva 

found encysted in the stomach wall were collected for genetic analysis. DNA extraction was 

carried out using whole specimens with the DNeasy Blood and Tissue® Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. A fragment (~ 1,400 bp) of the 

lsrDNA gene (28S rDNA) spanning domains D1-D3 was amplified using the primer 

combinations ZX-1 (Waeschenbach et al., 2007)/1500R (Tkach et al., 2003) or LSU5 

(Littlewood et al., 2000)/1200R (Lockyer et al., 2003). The polymerase chain reaction (PCR) 

reactions were carried out in a 25 μL volume containing 0.5 μL of each primer (10 mM), 3 

μL of MgCl2 25 mM (Promega), 5 μL of 5× buffer (Promega), 2 μL of dNTPs 10mM, 0.25 

μL of Go-Taq Polymerase (5 U/μL) (Promega), 5 μL of total DNA (~ 30 ng/μL) and sterilized 

distilled water up to 25 μL. PCR temperature conditions were the following: 94° C for 2 min 

(initial denaturation), followed by 40 cycles at 94° C for 30 s (denaturation), 56° C for 45 s 

(annealing), 72° C for 2 min (extension), and followed by post-amplification at 72° C for 7 

min. 

All amplified PCR products were verified in a 1.2% agarose gel. The successful PCR 

products were purified using QIAquick Gel Extraction Kit or QIAquick PCR purification Kit 

(Qiagen, Hilden, Germany). Sequencing of both strands was carried out using ABI 3730XLs 

automated sequencer (Applied Biosystems, Macrogen, South Korea). 

Sequences were edited and assembled in Proseq v.3.5 (Filatov, 2002) and deposited in 

the GenBank database. For identification, generated sequences were compared against the 

NCBI database using the BLAST algorithm (Sayers et al., 2022). Sequences are available 

from GenBank under accession numbers OR725126 to OR725133. 
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Quantitative and similarity analysis of parasites 

Each parasite was identified and counted and the prevalence and mean abundance for each 

species in each sample were calculated following Bush et al. (1997). The ML was compared 

across samples by a one-way permutational multivariate analysis of the variance 

(PERMANOVA, Anderson et al., 2008) on Euclidean distances (1 × 4 factorial design, 

‘sample’ as fixed factor), testing for main effects after 9,999 permutations and subsequent 

post-hoc pair-wise comparisons. Following Anderson et al. (2008), an unrestricted 

permutation of raw data was used as the method of permutation. Species richness (S) was 

calculated for each individual squid, and the mean values were compared across samples by 

a PERMANOVA analysis as in the case of ML, but applying a sequential sum of squares 

(type I SS) because samples were unbalanced (different numbers of squids examined by 

sample) and host size was included as a covariate (ANCOVA model). 

Multivariate analyses between samples were conducted using both Bray-Curtis index 

(based on abundances) and Jaccard index (based on presence/absence) for all possible pairs 

of hosts (infracommunities sensu Bush et al., 1997) from different samples. Due to the large 

differences in parasite loads across parasite species, data were square root-transformed prior 

to all analyses in order to downweigh the importance of most prevalent/abundant species, so 

that the less dominant species contribute in determining similarity among samples (Clarke 

and Gorley, 2015). 

To evaluate if samples can be differentiated based on the abundance and composition 

of their parasite assemblages, non-metric multidimensional scaling (nMDS) of the both 

similarity matrices were performed between all infracommunities, and their centroid 

differences were visualized by means of bootstrap averaging based on repeated resampling 
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(with replacement, 75 iterations) from the original dataset (Clarke and Gorley, 2015). 

Differences between infracommunities among samples were further examined using 

canonical analysis of principal coordinates (CAP) (Anderson and Willis, 2003; Anderson et 

al., 2008). 

The structures of parasite infracommunities were compared between samples 

considering possible gender difference, introducing host ML as a covariable (ANCOVA 

model, 2 × 4 factorial design, samples and sex as fixed factors) and testing for main effects 

after 9,999 permutations, using Bray-Curtis and Jaccard indices. Following Anderson et al. 

(2008), a permutation of residuals under a reduced model was used as the method of 

permutation. A sequential sum of squares (type I SS) was applied because the use of a 

covariate and due to samples were unbalanced (different numbers of squids examined by 

sample). Where differences were detected by PERMANOVA, pair-wise comparisons were 

used to determine which samples differed. All similarity and distance measures, as well as 

multivariate analyses were implemented in PRIMER V7 and PERMANOVA+ for PRIMER 

package (Anderson et al., 2008). 

 

Results  

Squid ML was significantly different among samples (F7,246: 97.956; Pperm<0.01) (Table 2, Fig. 

2A), with pair-wise comparisons showing significant differences (Pperm<0.01) for most pairs 

of samples, except between Coh19 and Coh21 (Pperm>0.05). 

The molecular characterization allowed to identify seven of the phyllobothriid 

plerocercoid sequences (1,201 bp) as belonging to Clistobothrium n. sp. 1 (MT732134) and 

Clistobothrium sp. (KM272992 and MT732134) deposited in GenBank, with a percentage of 

identity of 99.67 (one isolate) to 100% (six isolates). Therefore, all morphological types of 
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phyllobothriid plerocercoids were pooled for further analyses. The sequence of the 

undeveloped larval cestode (1,430 bp) retrieved a percentage of identity of 96.65 to 96.79% 

with sequences of three unidentified species of Grillotia (Lacistorhynchidae) (MH688700, 

MH688704 and MH688707). 

The whole sample of I. argentinus harbored 12 parasite taxa (Table 3). At 

infracommunity level, no differences in species richness were observed across samples 

(Table 2, Fig. 2B). A total of 85.22% squids were parasitized by at least one species, and 

2,187 individual parasites were recorded in the whole sample (Table 3). Only eight of those 

taxa showed a prevalence >10% in at least one of the samples. Most parasites were larval 

forms, with the exception of the digeneans Derogenes varicus and Elytrophalloides oatesi, 

and the nematode Hysterothylacium aduncum, all found in the digestive tract. Larval cestodes 

dominated numerically the assemblages, representing 64.84% of individual parasites, being 

mainly represented by phyllobothridians and tetraphyllidians found in the digestive caecum, 

and less commonly in gills, stomach, intestine, funnel, buccal cavity and oesophagus. 

The bootstrap-average-based nMDS ordination of both Bray-Curtis (Fig. 3A) and 

Jaccard (Fig. 3B) were similar to each other, and showed an apparent pattern of separation 

between samples, with a low level of stress (0.04 and 0.05, respectively). Squids from Coh21 

were clearly separated from the rest, especially along the first axis; parasite assemblages of 

Coh19 occupied an intermediate position between the two samples of Coh20, these three 

groups being mainly separated along the second axis. 

The CAP analysis showed significant differences among samples (tr= 0.4725 and tr= 

0.558 for Bray-Curtis and Jaccard, respectively; both P <0.001). The selected orthonormal 

PCO axes (m= 5 and m= 6, respectively) described 92.5% and 99.15%, respectively of the 

variation in the data ‘cloud’, although the percentage of correct allocations were relatively 
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low (50.9 and 52.8%, respectively). Cross validation results based on Bray-Curtis similarity 

(Table 4) showed that Coh21 had the highest percentage of correctly allocated squids, 

whereas most hosts from both samples of Coh20 were mostly allocated to their respective 

sample. Finally, Coh19 showed a very low proportion of correctly allocated squids, most of 

which were misclassified among Coh20-1 and Coh-20-2. When Jaccard index was 

considered (Table 4) a similar picture was observed, although several squids of Coh21 were 

misclassified in Coh19. 

The structure and composition of parasites infracommunities varied across samples and 

with ML but not with host sex, nevertheless no interaction between ML and samples was 

observed (Table 2). Pair-wise comparisons after ‘correcting’ for the effect of squids length 

evidenced significantly differences for both, Bray-Curtis and Jaccard indices, among most 

pairs of samples (Pperm <0.01), whereas squids from Coh19 were similar to those of both 

Coh20-1 and Coh20-2 (Pperm >0.05).  

 

Discussion  

Previous records of parasites in I. argentinus from the south-western Atlantic Ocean are 

mostly descriptive, and include several species of cestodes, digeneans, nematodes, one 

copepod and one coccidia (Threlfall, 1970; Nigmatullin, 1989; Hochberg, 1990; Nigmatullin 

and Shukhgalter, 1990; Sardella et al., 1990; Vidal and Haimovici, 1999; González and 

Kroeck, 2000; Cipriani et al., 2019). To our knowledge, the present findings represent new 

host records for the digenean E. oatesi, the cestode Lacistorhynchidae gen. sp., larval 

nematodes of the Order Rhabditida and the gnathiid isopod. 

In agreement with previous studies on parasitefauna of other cephalopod species 

(Pascual et al., 1995; Brickle et al., 2001; Tedesco et al., 2020), cestode plerocercoids were 
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the most abundant group found in I. argentinus, which also showed a substantial 

morphological variability (see Threlfall, 1970; Nigmatullin and Schukhgalter, 1990; Sardella 

et al., 1990). Characterization of species via molecular analysis allowed to confirm that 

larvae of Phyllobothrium sp., previously reported in I. argentinus, correspond to the 

phyllobothridean genus Clistobothrium, as was shown by Brickle et al. (2001) for cestodes 

from Doryteuthis gahi caught in southern areas. Similarly, the larval morphotype previously 

identified as Pelichnibothrium speciosum (Threlfall, 1970; Nigmatullin and Schukhgalter, 

1990; Sardella et al., 1990) was genetically identified as Clitobothrium. The incipient  

development of the larvae found encysted did not allow their identification as a 

trypanorhynch cestode due the lack of structures as tentacles or bothridia. The absence of 

these structures has been observed in early stages of the larval development in some 

trypanorhynchs, such as those of the genus Grillotia (Schramm, 1991). Indeed, the highest 

percentages of identity were concordant with sequences of three unidentified species of 

Grillotia found in Amblyraja radiata, Bathyraja magellanica and B. brachyurops, 

respectively, the last two from South Atlantic Ocean (Beer et al., 2019). 

Many studies on parasites of cephalopods are aged and reliant upon morphological 

features. Only recently, the implementation of molecular techniques began to more 

accurately elucidate the taxonomic status of cestode species parasitizing squids (Brickle et 

al., 2001; Caira et al, 2020; Guardone et al., 2020), providing evidence of a potential 

overestimation of cestodes species in I. argentinus and allowing proper comparisons for 

squid stock assessment. 

Host size is an important feature that affects parasite diversity by influencing the rates 

of colonization by new parasites (Luque and Poulin, 2004). Furthermore, host size is a useful 

surrogate of trophic level, determining patterns of predation and vulnerability to mortality 
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(Jennings et al., 2001). Consequently, the characterization of the relationship between fish 

size and diet and trophic level is essential for assessing how much these interactions affect 

the structure of parasite assemblages (Timi et al., 2010, 2011). In the present study, whereas 

the increase of ML in Coh20-2 regarding Coh20-1 is an expected result, since the two months 

separating samples represent a considerable proportion of the annual squid lifespan, the 

observed variability in ML across years, even when squids were caught in the same month, 

can be attributed to the fact that growth and recruitment of cephalopods are highly influenced 

by environmental conditions. This results in wide inter-annual fluctuations of these 

processes, and even a sub-structure of microcohorts (intra-annual) is frequently present 

(Boyle and Rodhouse, 2005). Regarding parasites, the mean infracommunity species richness 

was uniform across samples. Such homogeneity responds to the small number of species 

found in the whole sample and the recurrence in the dominance by the same group of species, 

independently of their variability in abundance across samples. In the region, the diet of 

squids has evidenced a very low diversity and the dominance of a single type of prey in the 

majority of stomachs so far examined (Ivanovic and Brunetti, 1994; Ivanovic 2010; Prandoni, 

2022). Considering that most parasites of I. argentinus are acquired through the consumption 

of parasitized preys, the low diversity in its food items, explain the rather homogeneous 

species richness recorded. 

Beyond the similar values of species richness, all multivariate analyses evidenced a 

high level of structural and compositional heterogeneity across samples, largely driven by 

differences in squid size, but not by sex. Given that most parasites are transmitted trophically 

to squids, changes in parasitism are surely determined by host diet and its ontogenetic and 

seasonal changes. Transient parasites, namely those living in the gut lumen of hosts, such as 

most helminths found in I. argentinus, can persist in the host for a few weeks (Lester et al., 
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1985; Lester, 1990) representing mostly the food items consumed in recent times, whereas 

long-lived parasites, as larval of Anisakis, tend to accumulate as the host ages (Braicovich et 

al., 2016). This cumulative pattern is readily evident when comparing the increase of 

prevalence in squids from the same cohort, caught two months later. 

The dominance of short-lived helminths makes the parasite assemblages of the 

Argentine shortfin squid highly susceptible to short-term environmental fluctuations, either 

directly or indirectly through their effect on zooplancton and other intermediate hosts. 

Consequently, depending on recent diets, their composition and structure can vary 

accordingly, driving unpredictable temporal patterns. Indeed, the observed interannual 

changes were not uniform, with parasite communities of Coh19 and Coh20 being more 

similar to each other than to Coh21. Similar heterogeneities were observed even for members 

of the same cohort. Of course, these differences are influenced by the differences in squid 

size and the locality of capture, but even after correcting for host size, most differences 

remained. On the other hand, squid sex had no effect on parasite loads. This is a consequence 

of the numerical preponderance of trophically transmitted parasites in a host that does not 

exhibit gender differences in diet composition or relative abundance (Prandoni, 2022), nor in 

somatic growth rates prior to sexual maturity (Lin et al., 2015). Likewise, no differences 

between sexes were observed for the parasites of Illex coindetii in Galician waters, Spain 

(Pascual et al., 1995). 

In addition to the features of the parasite taxa, as well as of the host diet and its 

variations, other host and environmental characteristics play crucial roles in determining the 

observed patterns of parasite variability. Indeed, I. argentinus, like many other cephalopods, 

exhibits high metabolic rates and rapid growth, whose high variability is environmentally 

driven, resulting in interannual variations in stocks abundance and distribution (Arkhipkin et 
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al., 2021). Furthermore, its life cycle is highly variable both spatially and temporally due to 

their latitudinal migrations and bathymetric distribution, the latter also changing throughout 

its ontogeny (Ivanovic et al., 2016), all features that make their trophic interaction quite 

dynamic and scale dependent. 

In relation to the environment, spawning of I. argentinus is associated with marine 

fronts, whose characteristics change seasonally and their geographical locations vary 

according to the dynamics of marine currents in semi-annual, annual and biannual cyclic 

periods (Acha et al., 2004; Sacau et al., 2005). Indeed, studies modeling squid abundance in 

this ecosystem have retained sea surface temperature, latitude, longitude, month, average 

fishing depth and year as main predictors (Sacau et al., 2005), evidencing the complexity of 

the system and justifying its variability. Disparate environmental conditions, when 

experienced by early stages of I. argentinus, can also affect the success of recruitment (Torres 

Alberto et al., 2020) and growth rates (Haimovici et al.1998; Arkhipkin, 1990), leading to 

interannual differences in growth either intracohort and between winter stocks (Arkhipkin 

and Scherbich, 1991; Haimovici et al., 1998). 

All these sources of variability related to parasites, hosts and environment are expected 

to be reflected on parasite assemblages of I. argentinus, requiring consequently a careful 

selection of those parasite tags to be used or, at least, to make cautious interpretations of the 

observed patterns. In view of this generalized variability, stock differences can be 

overestimated, undermining its value as management tools for sustainability of the resource. 

For such purposes, and to promote a rational exploitation of squids, differences between 

stocks of I. argentinus using parasite tags should be based on specimens of equivalent size 

or age, and caught simultaneously at the putative stock units under study. Any departure of 

these conditions poses a serious risk of misinterpreting natural variability as due to the stock 
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of origin. This seems to be the case of the previous study on parasites tags for I. argentinus 

(González and Kroeck, 2000), where differences in parasite fauna were attributed to 

variations between stocks arriving with months of differences to a north patagonian gulf and 

showing notable differences in ML. Even when the stock identification based on squid size 

and maturity could be correct, the variability in parasite loads may respond to different 

causes, such as to squid size and not to the stock of origin. Indeed, higher species richness 

and abundances were observed in a sample composed by squids ranging between 23 and 38 

cm ML, in relation to the second sample whose members measured between 14 and 22 cm 

ML. Although a gradual increase of parasitism is acknowledged (González and Kroeck, 

2000), host size seems to be overlooked as a relevant determinant of these changes. 

Furthermore, the authors argue that these stocks are biotopically isolated from those 

inhabiting neighboring areas when compared with previous studies carried out a decade 

earlier. 

The biological and ecological host features regulating the prevalence and abundance in 

parasite assemblages, mostly composed of transient parasites, are shared by many squid 

species. Research on parasites as tags has been misleading as an ad hoc tool in elucidating 

the discreteness of unit stocks (Pascual and Hochberg, 1996). Few previous works using 

parasites as indicators of stock structure for squids have been carried out worldwide, being 

not free of these flaws, or having concluded that parasites are of little value as biological tags. 

For example, Dawe et al. (1982), analyzed the parasites of the short-finned squid Illex 

illecebrosus of several sizes caught at several localities, seasons and years in the northwest 

Atlantic. The authors concluded that, because of the broad geographic distribution of 

parasites, their condition of generalists and the lack of taxonomic resolution, parasites were 

useless as indicators. On the other hand, Bower and Margolis (1991) proposed parasites of 
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the flying squid, Ommastrephes bartrami, as potential tags for discriminating stocks between 

north-western and north-eastern Pacific waters based on differences, after comparing their 

results with previous studies carried out years earlier and not considering squid size or age 

as relevant variables. Pascual et al. (1995) conducted a survey of parasites of short-finned 

squid I. coindetii taken from two locations off the north-western Iberian Peninsula. Despite 

finding geographic differences, parasite infections showed close correlations with host life-

cycle, with parasite loads increasing often with host size and maturity, which were considered 

for interpreting the observed patterns. In a multidisciplinary study of Nototodarus sloani 

from New Zealand waters, carried out by Smith et al. (1981), parasitological evidence, after 

taking account of host age (or length) and month of capture, supported the results of genetic 

and morphological study resulted in the identification of two congeneric host species. 

Owing to the short life-cycles and variable growth rates of most cephalopods, their 

stocks may be highly volatile, due to their susceptibility to recruitment and overfishing 

(Pierce and Guerra, 1994). Therefore, if parasites are selected as indicators for stock 

assessment, it is crucial to carefully consider all the previously discussed sources of 

variability in order to obtain reliable results. Otherwise, differences between host 

populational units could be overestimated or, at least, derived from parasite tags varying for 

reasons other than those driving to actual dissimilarities between host stocks. 
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Figure 1. Study area showing the stocks distribution of Illex argentinus, spring-spawning 

stock (SpSS); bonaerensis-north patagonic stock (BNPS); summer-spawning stock (SSS); 

south patagonic stock (SPS). Coh19: cohort 2019; Coh20-1, Coh20-2: cohort 2020; Coh21: 

https://doi.org/10.1017/S0031182023001051 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182023001051


 

 

cohort 2021. Inverted triangles and squares represent a single station of Coh19 and Coh20-2 

samples, respectively; whereas triangles and rhombuses belong to five and two stations of 

Coh20-1 and Coh21, respectively.  
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Figure 2. Averaged dorsal mantle length (A) and infracommunity species richness (B) of 

Illex argentinus in four samples of the summer-spawning stock. Cohorts are represented by 

a grey scale. Vertical bars representing standard deviations (as shown in Table 2). Coh19: 

cohort 2019; Coh20-1, Coh20-2: cohort 2020; Coh21: cohort 2021.  
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Figure 3. Non-metric multi-dimensional scaling plot (nMDS) of bootstrap averages (75 

repetitions) of parasite infracommunities of Illex argentinus distributed within four samples 

at intermediate waters of central Patagonia based on Bray-Curtis and Jaccard similarity of 
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square root-transformed data. Individual repetitions are based on random draw and 

replacement of samples from the original dataset. Black symbols represent the overall 

centroids across all repetitions. Grey areas represent 95% confidence regions. Coh19: cohort 

2019; Coh20-1, Coh20-2: cohort 2020; Coh21: cohort 2021.
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Table 1. Composition of four samples of Illex argentinus belonging to three consecutive cohorts of summer-spawning stock. 

Sample code Cohort Date of capture Latitude/Longitude n Mantle length ± SD  

Coh19 2019 02/2020 45° 30' S, 62° 12' W 94 23.91 ± 2.90 

Coh20-1 2020 12/2020 46° 5'- 44° 4' S, 64° 6'- 62° 3' W 160 20.39 ± 2.38 

Coh20-2 2020 02/2021 45° S, 62° W 43 27.28 ± 1.86 

Coh21 2021 02/2022 48° 32'- 48° 19' S, 63° 32'-63° 25' W 21 24.14 ± 2.28 
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Table 2. PERMANOVA results of comparisons of mantle length, species richness, composition and structure of parasite communities of 

Illex argentinus across four samples corresponding to three cohorts of the summer-spawning stock. P-values obtained after 9,999 

permutations. 

Response variability Source d.f SS MS Pseudo F P (perm) 

       

Univariate       

Mantle length Cohort 3 1775.5 591.82 97.956 0.0001 

(Euclidean distance) Residual 267 1613.1 6.042   

 Total 270 3388.6    

       

Species richness Mantle lenght 1 44.456 44.456 39.369 0.0001 

(Euclidean distance) Cohort 3 9.1348 3.0449 2.6965 0.0471 

 Sex 1 1.0963 1.0963 0.97084 0.3312 

 Mantle lenght x cohort 3 4.692 1.564 1.385 0.2476 

 Mantle lenght x sex 1 6.0109e-3 6.0109e-3 5.3284e-3 0.9403 
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 Cohort x sex 3 7.1183 2.3728 2.1013 0.0916 

 Residual 303 342.15 1.1292   

 Total 317 411.8    

       

Multivariate       

Infracommunity structure Mantle lenght 1 70597 70597 25.774 0.0001 

(Bray-Curtis similarity) Cohort 3 39459 13153 4.8019 0.0001 

 Sex 1 3952.8 3952.8 1.4431 0.2201 

 Mantle lenght x cohort 3 11802 3934.1 1.4363 0.137 

 Mantle lenght x sex 1 5072.1 5072.1 1.8518 0.1094 

 Cohort x sex 2 7619.7 3809.9 1.3909 0.1914 

 Residual 259 7.09e5 2739.1   

 Total 270 8.48e5    

       

Infracommunity composition Mantle lenght 1 65643 65643 22.773 0.0001 
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(Jaccard similarity) Cohort 3 37008 12336 4.2797 0.0001 

 Sex 1 2880.9 2880.9 0.99945 0.4104 

 Mantle lenght x cohort 3 12986 4328.5 1.5017 0.0987 

 Mantle lenght x sex 1 4451.4 4451.4 1.5443 0.173 

 Cohort x sex 2 6828.2 3414.1 1.1844 0.2963 

 Residual 259 7.47e5 2882.5   

 Total 270 8.76e5    
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Table 3. Prevalence (P), mean abundance (MA) with standard deviation (SD), site of infection and stage of development of parasites of 

Illex argentinus in four samples corresponding to three consecutive cohorts of the summer-spawning stock. 

Parasite  Site Stage Coh19 Coh20-1 Coh20-2 Coh21 

   P MA ± SD P MA ± SD P MA ± SD P MA ± SD 

Nematoda       

Anisakis sp. Co L3 46.81 1.05 ± 1.76 10.63 0.29 ± 1.79 81.40 2.23 ± 2.57 23.81 0.29 ± 0.56 

Hysterothylacium aduncum Di L4/Adult 19.15 0.27 ± 0.64 20.00 0.25 ± 0.55 16.30 0.16 ± 0.37 14.29 0.24 ± 0.62 

Hysterothylacium aduncum Co L3 2.13 0.05 ± 0.37 3.75 0.04 ± 0.19 2.33 0.02 ± 0.15 0.00 - 

Rhabditida  fam. gen. sp. 1 Co Larvae 41.49 0.86 ± 1.59 38.75 0.98 ± 1.70 39.53 0.67 ± 1.04 9.52 0.10 ± 0.30 

Rhabditida fam. gen. sp. 2 Co Larvae 10.64 0.11 ± 0.31 0.00 - 0.00 - 0.00 - 

Cestoda       

Clistobothrium sp. 1* Di Plerocercoid 48.94 4.26 ±17.72 30.00 1.48 ± 8.34 62.79 3.72 ± 14.07 80.95 7.24 ± 11.52 

Dinobothrium sp. 1 Di Plerocercoid 11.70 0.52 ± 2.35 2.50 1.21 ± 14.39 11.63 0.74 ± 2.73 57.14 9.19 ± 18.24 

Dinobothrium sp. 2 Di Plerocercoid 0.00 - 0.00 - 2.33 0.02 ± 0.15 0.00 - 

Lacistorhynchidae gen. sp.* St Larvae 2.13 0.28 ± 1.94 10.63 0.43 ± 1.85 0.00 - 0.00 - 
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Digenea       

Derogenes varicus Di Adult 17.02 0.18 ± 0.41 17.50 0.21 ± 0.51 9.30 0.09 ± 0.29 14.29 0.24 ± 0.62 

Elytrophalloides oatesi Di Adult 1.06 0.01 ± 0.10 0.00 - 0.00 - 0.00 - 

Isopoda       

Gnathiidae gen. sp. Ma Praniza 0.00 - 0.63 0.01 ± 0.08 0.00 - 0.00 - 

*Genetic identification. Di: digestive tract; Ma: mantle cavity; Co: coelomic membrane; St: stomach wall. 
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Table 4. Results of the cross validation of principal co-ordinates analysis (CAP) based on Bray-Curtis and Jaccard similarity (leave-one-

out allocation of individual squid to one of four samples). Rows correspond to group memberships, including the percentage of correctly 

classified squid to their individual sample. Numbers in italics indicate number of squids in four samples of spawning-summer stock 

correctly allocated to their own locality. 

Original sample Coh19 Coh20-1 Coh20-2 Coh21 Total % (group) 

Bray-Curtis       

Coh19 9 30 36 11 86 10.47 

Coh20-1 13 80 12 18 123 65.04 

Coh20-2 2 5 31 4 42 73.81 

Coh21 0 1 1 18 20 90 

Jaccard       

Coh19 10 30 35 11 86 11.63 

Coh20-1 17 91 11 4 123 73.98 

Coh20-2 0 6 31 5 42 73.81 

Coh21 6 1 2 11 20 55 
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