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A powerful method to qualitatively analyze a 2D system is the use of nullclines,
curves which separate regions of the planewhere the sign of the time derivatives is
constant, with their intersections corresponding to steady states. As a quick way to
sketch the phase portrait of the system, they can be sufficient to understand the
qualitative dynamics at play without integrating the differential equations. While it
cannot be extended straightforwardly for dimensions higher than 2, sometimes
the phase portrait can still be projected onto a 2-dimensional subspace, with some
curves becoming pseudo-nullclines. In this work, we study cell signalingmodels of
dimension higher than 2 with behaviors such as oscillations and bistability.
Pseudo-nullclines are defined and used to qualitatively analyze the dynamics
involved. Our method applies when a system can be decomposed into 2modules,
mutually coupled through 2 scalar variables. At the same time, it helps track
bifurcations in a quick and efficient manner, key for understanding the different
behaviors. Our results are both consistent with the expected dynamics, and also
lead to new responses like excitability. Further work could test the method for
other regions of parameter space and determine how to extend it to three-
module systems.
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1 Introduction

In cell signaling, mathematical modeling plays an important role in analyzing and
predicting different systems behavior. The range of complexity is vast, with examples as
different as the two-dimensional Fitzhugh–Nagumo model (FitzHugh, 1961) and a
description of the MAPK cascade with 23 equations (Kochańczyk et al., 2017).

In general, it is well known that most nonlinear differential equations modeling
biological systems are not analytically solvable. Therefore, the goal of qualitative analysis
of dynamical systems is to provide information about its possible behaviors without having
access to its analytical solutions. In this context, a powerful method to analyze qualitatively a
planar (i.e., 2D) system is the use of nullclines. These are curves where the derivative of one of
the variables is equal to zero. These curves separate regions of the plane where the sign of the
derivatives is constant. Moreover, their intersections correspond to steady states of the
dynamics. This information can provide a quick way to sketch the phase portrait of the
system, like for instance the aforementioned Fitzhugh–Nagumo model. Thus, the technique
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of nullclines is sometimes sufficient to understand the qualitative
dynamics of the system without integrating their differential
equations.

However, this technique cannot be extended straightforwardly
to phase spaces of dimension higher than 2 because the geometrical
objects corresponding to the nullclines are no longer curves but
more generally (hyper-)surfaces of codimension-1. Nevertheless,
there are cases where the phase portrait of the system can still be
projected onto a 2-dimensional subspace, with some curves
playing the role of pseudo-nullclines. When applicable, phase
plane analysis, and in particular the concept of nullclines, has
been one of the most useful tools for the qualitative analysis of
dynamical systems. Since the main limitation of the nullcline
method is its restricted application to a 2-dimensional phase
space, any extension of said method to a higher number of
dimensions should be valuable.

In this work, we study signaling models of dimension higher
than 2, where pseudo-nullclines are defined and used to
qualitatively analyze the system dynamics. The first one is an
early cell cycle model in Xenopus laevis embryo (Tsai et al., 2014).
The authors study the change in the oscillatory behavior during
this developmental phase, which is present across different phyla.
The second example we analyze corresponds to a subsystem of
the Mitogen Activated Protein Kinase (MAPK) cascade, found in
all eucaryotic cells. Signals from growth factors in cell surface
receptors activate three sequential levels of proteins, with the
output of the cascade responsible for the phosphorylation of
multiple transcription factors. This leads to its involvement in
responses like proliferation and differentiation (Lewis, et al.,
1998; Schaeffer and Weber, 1999; Kochańczyk et al., 2017).
The well-studied model by Huang and Ferrell consists of
22 equations describing the three-level cascade (Huang and
Ferrell, 1996). The last two levels, corresponding to double
phosphorylation (DP) cycles, constitute the motif that we
study in this work.

Our method applies when a system can be decomposed into
2 modules which are mutually coupled through 2 scalar variables.
We show that, by projecting the whole dynamics onto the
subspace subtended by the two scalar variables, we can define
curves that play the role of pseudo-nullclines. Intersections of
these pseudo-nullclines correspond to steady states of the full
system. Although the use of these pseudo-nullclines is more
limited than with true nullclines, we show that this approach
can be useful to figure out the onset of oscillations, and other
dynamical behaviors like excitability, for a system whose actual
phase space dimension is larger than 2. Other works use pseudo-
nullclines to analyze different cell cycle motifs (Tyson and
Novák, 2022), by using specific features only applicable to
those models. We propose a more systematic approach based
on the modularity of the analyzed systems.

We illustrate that situations where the pseudo-nullclines
intersect transversely or tangentially enable the distinction of
phase portraits of oscillations described respectively by
supercritical Hopf or by SNIC bifurcations, while also pointing
toward Saddle-Homoclinic bifurcations. On the other hand, we
show that these pseudo-nullclines admit a natural interpretation
in terms of response functions of each module submitted to a
constant input of the other module.

2 Methods

The idea of the method is to decompose the system in 2 modules,
assuming that the coupling between the modules is one-dimensional.
This means that if the variables of the modules are denoted respectively
by two sets of real variables, i.e., x � (x1, x2, . . . , xn) and
y � (y1, y2, . . . , ym), the model equations can be written as:

dx
dt

� f x, α y( )( )

dy
dt

� g y, β x( )( ) (1)

where α(y) and β(x) are two real-valued functions. Such a system
can be seen as a first module, described by equations dx

dt � f (x, a),
where a is some input parameter, interconnected with a second
module whose equations are dy

dt � g(y, b), with b being the
corresponding input parameter. The interconnection comes from
replacing the input a of the first module by the function α(y), and
the input b of the second module by β(x). Decomposing a system
into two interconnected modules has been considered in the
literature by (Angeli et al., 2004).

To simplify the presentation and the notations in what follows
we will continue with a basic example, where the coupling functions
are simply α(y) � y1 and β(x) � x1. The extension to amore general
function is easy and is included at the end of the Supplementary
Material, along with a sketch of the general scheme.

Thus, now a stationary state (x*, y*) of system (1) is a solution of
the system of equations:

f x, y1( ) � 0

g y, x1( ) � 0

Suppose that the solutions of this system of equations can be
written as follows:

x � X y1( )

y � Y x1( ) (2)
Then, by projecting these functions on the plane of coordinates

(x1, y1), we define pseudo-nullclines of the system as two curves C1

and C2 whose graphs are respectively given by the parametrizations
(X1(y1), y1) and (x1,Y1(x1)). The first curve can be seen as the
response function of (component 1 of) the first module with respect
to its input parameter y1. Similarly, one can interpret the second
pseudo-nullcline as the response function of the second module
submitted to its input parameter x1. One advantage of this definition
is that by construction said stationary states of the couple modules
must be found among the intersections of the two pseudo-nullclines.
Indeed, by definition (x1*, y1*) can be written in two ways, either
(X1(y1*), y1*), or (x1*,Y1(x1*)), thus belonging to the two graphs of C1

and C2.
Conversely, if (x1*, y1*) belongs to the intersection set of the

pseudo-nullclines C1 and C2, then:

x1
* � X1 y1

*( )

y1
* � Y1 x1

*( )

And by construction, the functions X and Y satisfy the steady
state equations:
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FIGURE 1
(A) Scheme of the cell cycle model, based on the one found in (Tsai et al., 2014). The parameter ksynth (synthesis rate of the cyclin) acts as the input of
the system. Two positive feedbacks (with Cdc25 and Wee1) and one negative feedback (with Apca) govern the motif. The output Cdk1 (active) is involved
in the mitotic phosphorylation. (B) Motif scheme based on the pseudo-nullcline method, separating the two modules, and representing how they are
interconnected. More details on the equations can be found in the Supplementary Material. (C) Pseudo-nullclines C1 (in blue) and C2 (in red) for r =
0.5 and input = 0.04, with the corresponding time series (in black). Arrows denote the trajectory taken by the system, from cdk1a = 60 to a steady state
represented by the curves intersection. (D) The input is now 0.05, leading to a small limit cycle around the intersection. (E)With input = 1.5, the limit cycle
grows in amplitude, following the lower branch of C1 but not the upper one, as shown in (Tsai et al., 2008).
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f X y1
*( ), y1

*( ) � 0

g(Y x1
*( ), x1

*) � 0

In other words, x* � X(y1*) and y* � Y(x1*) constitute a steady
state of the coupled system since they satisfy the system of equations:

f x*, y1
*( ) � 0

g(y*, x1*) � 0

Another advantage of this geometrical method is that it is able to
reveal a limit point bifurcation, like a saddle-node bifurcation. As it
shown in the Supplementary Material, this occurs when a steady
state corresponds to a tangential intersection of the pseudo-
nullclines. In particular, this feature enables to distinguish
between a SNIC bifurcation or a Hopf bifurcation because in the
first case oscillations appear through a tangent bifurcation, whereas
in the second case the pseudo-nullclines intersect transversely. Both
cases are illustrated by applying our method to different signaling
motifs studied in the Results section.

3 Results

3.1 Pseudo-nullclines method applied to a
cell cycle model combining positive and
negative feedback loops

In (Tsai et al., 2014), the authors study an oscillatory cell cycle
model in X. laevis embryos, where the period and shape of the
oscillation change between the first mitotic cycle and the subsequent
cycles. They analyze the system obtaining experimental data and
running computational simulations. A scheme of the model is
presented in Figure 1A, showing the two positive feedback loops
and the negative one involved.

The system of equations is as follows, written in a more generic
manner (see Supplementary Material for the equations in detail):

d cdk1a[ ]
dt

� f 1 cdk1a[ ], cdk1i[ ], apca[ ]( )

d cdk1i[ ]
dt

� f 2 cdk1a[ ], cdk1i[ ], apca[ ]( )

d plxa[ ]

dt
� g1 plxa[ ], cdk1a[ ]( )

d apca[ ]

dt
� g2 apca[ ], plxa[ ]( )

The first module, with f1 and f2, consists of two equations
depending on three variables. The last of these, Apca, is the only
one belonging to the second module and thus treated as an input
parameter. This results in two equations with two variables: for each
value of Apca, a solution can be found. With both equations equal to
zero, one can reach an expression that determines the first pseudo-
nullcline:

F cdk1a[ ], apca[ ]( ) � 0

In the secondmodule, with g1 and g2, we also have two equations
and three variables. The input parameter from the other module is
Cdk1a. As before, taking both equations equal to zero, one can reach
an expression for the second pseudo-nullcline:

G apca[ ], cdk1a[ ]( ) � 0

Finally, we do for both curves a change of variables from Apca to
Cyctot (total cyclin, the sum of active and inactive complexes), and
work in the (Cyctot, Cdk1a) phase space (see Supplementary Material
for details).

In Figure 1B, we present a scheme of the model following this
modular description, as a comparison to the previous scheme based
on (Tsai et al., 2014). All parameter values are presented in the
Supplementary Material. The parameters changed are reported in
the following text and in the Figures.

In Figure 1C, we present the pseudo-nullclines for the system and
the corresponding time series trajectory (starting from Cdk1a = 60 nM)
for ksynth = 0.04, which is just outside the oscillatory range (see
Supplementary Material for a bifurcation diagram with ksynth as the
input, showing two supercritical Hopf bifurcations). The parameter that
controls the positive feedback strength, r, is equal to 0.5 (used in the Tsai
et al. work). The system trajectory drops and then ascends following the
lower branch of C1, forming a spiral before ending at a fixed point. The
intersection of pseudo-nullclines and the fixed point are within a very
small distance of each other, meaning that the intersection represents
the stable steady state of the system.

In Figure 1D, ksynth = 0.05, which corresponds to a limit cycle of
relatively small amplitude. The intersection of curves occurs within the
cycle, representing the unstable steady state, and is located just below the
fold of C1. In a 2D system analyzed with true nullclines, it would be
expected for oscillations to occur only when the intersection is located
between the two folds of the S-shaped curve. The crossing between our
pseudo-nullclines taking place close but below the fold, plus the
minimal distance between the intersection and the end point of the
time series in the previous case, reflect the “pseudo” character of our
method while still showing its usefulness.

In Figure 1E, ksynth = 1.5, the value used in the work of Tsai et al.
Once again, the trajectory follows the lower branch of C1 but not the
upper one. This is consistent with results showed by the authors in
(Tsai et al., 2008).

Given the bistable shape of the pseudo-nullcline for the
Cdk1 module, there is the question of whether both curves could
be brought together in a tangential manner. The results shown so far
only deal with transversal intersections, with one stable fixed point
or limit cycles around an unstable point, born through Hopf
bifurcations. A tangency would represent a saddle-node
bifurcation, which could act as a SNIC or indicate the existence
of a Saddle-Homoclinic (SHom) bifurcation, since there would be a
saddle (by virtue of the SN) and a limit cycle (as already established).
These global bifurcations would allow more control over the period
than what is possible with Hopf bifurcations.

Considering the shape of C1, the distance with C2, and the
composition of Hill functions that goes into C2, we performed a few
modifications in the model with the goal of bringing about a
tangency. First, we added an extra parameter into the differential
equation for Apca (see Supplementary Material). Since low values of
Apca correspond to high values of Cyctot (outside of the plot scale),
adding the extra parameter can bring C2 to a drop in Cdk1a close to
the right-hand fold of C1. At the same time, it could represent basal
activity of Apca in absence of Plxa.

With ksynth = 1.5, r = 10 (value used in (Tsai et al., 2008)) and
increasing ec50 for Plxa to adjust the threshold of C2, we arrived at
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Figure 2A. The distance between the pseudo-nullclines close to the
right-hand fold of C2 is small enough that a tangency seems possible.
We ran the model in MatCont and found two SN at ksynth = 1.516765

and 1.530532. Figures 2B,C show the pseudo-nullclines at these values.
The tangential behavior of the curves can be appreciated. For the lower
input value, the tangency occurs between the C1 folds and the

FIGURE 2
Cell cycle model: pseudo-nullclines C1 (in blue) and C2 (in red) for r = 10, ec50plx = 72, extra = 2.6e-5 and different input values, with their
corresponding time series (in black) for all panels except the first one. (A) Input = 1.5, the pseudo-nullclines are close to a tangency, taking advantage of
the right-hand fold in C1. (B) Input = 1.516765, tangency at a distance of the fold, with the time series ending at the lower intersection (the stable steady
state). (C) Input = 1.530532, tangency close to the fold, intersection between the folds (an unstable steady state), and a limit cycle develops. (D)
Input= 1.52, taking advantage of the saddleone can choosedifferent initial conditions toobtain excitability (or not). Above the saddle, the systemgoes around
the phase space before ending at the stable steady state. (E) Input = 1.52, with an initial condition below the saddle it goes directly to the stable steady state.
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transversal intersection outside of them, corresponding to a stable
steady state. For the higher input, the tangency is much closer to
the C1 fold while the intersection is between the folds, representing an
unstable fixed point around which the limit cycle takes place. Between
these two SN for the full system, an SHom bifurcation was found at
ksynth = 1.527.

In Figure 2D, we show a case for ksynth = 1.52, which is outside of
the oscillatory range but between the two SN. Depending on the initial
condition, the system can 1) go around the phase space describing one
output peak in time before ending at the steady state or 2) take a
shorter path to said fixed point. With the initial condition of
Figure 2D, just above the saddle point represented by the middle
intersection, it goes around. In Figure 2E, it starts from below the
saddle, and so it goes directly to lower intersection, corresponding to
the stable steady state. The model displays excitability in this region of
parameter space, well described by the pseudo-nullclines.

In all, not only our method was consistent with bifurcations born
from the original parameter set, but it also allowed us to find a new
bifurcation through the manipulation of the two pseudo-nullclines.
Moving one parameter at a time facilitates an exploration where the
intersections between the curves can change and lead to new findings.
In this particular system, the use of Hill functions shows a useful path
for the exploration, by modifying the amplitude and threshold of C2.
We argue that, since Hill functions are prevalent in system biology,
this example could serve as inspiration for the analysis of many other
cases. At the same time, for any model, the pseudo-nullclines will
provide a visual guide for finding new behaviors.

3.2 MAP kinase subsystem where both
modules are capable of bistability

The second model studied in this work corresponds to the last
two levels of the MAPK cascade. It consists of a DP cycle where its
output, the double phosphorylated substrate, acts as the kinase for

another DP cycle. We will call it the 2 + 2 system, following the
double modification process in each level. A scheme is presented in
Figure 3A. This motif is of interest for our work, taking the
application of the method to a subsystem in an important and
well-studied model in biology. But also, there are two important
differences with the cell cycle motif from the previous subsection: it
is of higher dimension (17 variables versus 4) and capable of
bistability in both modules (Markevich et al., 2004).

The parameter set we chose comes from our previous work
(Marrone et al., 2023), where the DP cycle displayed bistability when
scanning the input kinase. This was a necessary condition to obtain
oscillations in the motifs studied and valuable for this work since the
presence of oscillations in the model and bistability in each of the
twomodules (emergent through SN or fold bifurcations) will test the
pseudo-nullclines method.

We work with a reduced version of the 2 + 2 system, which can
be written as follows (see Supplementary Material for the detailed
reduction from the original 17 equations):

d K0[ ]
dt

� f 1 K0[ ], K1[ ],X,Z( )
dX
dt

� f 2 K0[ ], K1[ ],X,Z( )
d A[ ]
dt

� g1 A[ ], Ap[ ], App[ ],X,Z( )

d App[ ]

dt
� g2 A[ ], Ap[ ], App[ ],X,Z( )

X and Z are functions of some of the original variables:

X � K[ ] + AK[ ] + ApK[ ]

Z � c1 A[ ] + c2 Ap[ ]

These two are the coupling functions of the model, one for each
module, connecting the first and second DP cycle. All parameter
values are presented in the Supplementary Material. The input

FIGURE 3
(A) Scheme of the 2 + 2model. The input kinase E1 activates the first-level kinase, which goes through two steps before phosphorylating, also in two
steps, the second-level substrate. (B) Motif scheme based on the pseudo-nullcline method, representing the first- and second-level modules and how
they are interconnected through X and Z. More details on the equations can be found in the Supplementary Material.
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parameter is reported in the following text and in the Figures. Also in
the Supplementary Material, a bifurcation diagram for the full
system (of 17 equations) with the input E1tot as the parameter,
showing four SN bifurcations and two Hopf bifurcations.

In Figure 4A, we show the results at input = 0.26, including the
time series for the reduced system. Only one intersection exists,
corresponding to a stable fixed point, where the series culminates. It
is important to remark once again that both modules are capable of
bistability, so it is within the bounds of expectation for both pseudo-
nullclines to have folds. In Figure 4B, the input reaches an SN (in the
full-system bifurcation diagram), and the two curves are tangent to
one another. The new two intersections in Figure 4C represent the
new steady states that come after the SN.

In Figure 4D, the input takes the system to a second SN, and the
tangency between pseudo-nullclines occurs at a higher value of Z
than in Figure 4B. This is coherent with the output App being lower
on this SN. When Z (combination of A and Ap) is high, App is low
and vice versa. It is also worth noting that this second tangency takes
place near a different fold of the first-level curve.

Starting from this input value, oscillations are found, as shown
in Figure 4E. There is only one curve intersection, representing an
unstable steady state. This point is located between the two folds of
both C1 and C2. The output spends most of each period at a low
level, with brief peaks of activity.

In Figure 4F, the system is close to the next SN. The curves are
close to a tangency at a value just above Z = 0. The previous
intersection between the folds remains, and two new intersections
are close to occur. The output now spends more time at a high level,
with relatively brief drops.

The nature of these oscillations comes from the system’s
proximity to global bifurcations. When the pseudo-nullclines are
almost tangent and the behavior is oscillatory, the trajectory of the
system slows down in the vicinity of the almost-tangency. For the
input of Figure 4E, the almost-tangency occurs for high Z, low App.
The system can spend a relatively long time in this area. In Figure 4F,
at low Z, high App, the high-level time can be extended with precise
manipulations of the input, leaving narrow drops in output.

An interesting aspect of this case is that we have not been able
to confirm the presence of SNIC bifurcations via MatCont for the
full system (even though SN bifurcations are found when the
tangencies occur), while the reduced system cannot be analyzed
due to the implicit equations for the conservations (see
Supplementary Material). We argue that our method provides
further evidence of global bifurcations when a well-known
software for analyzing bifurcations falls short of confirmation.

Once the input reaches the next SN, in Figure 4G, the curves are
tangent, and the time series stops at that point. At this tangency, the
oscillations disappear. The range for stable limit cycles appears
limited by two SN bifurcations, with the limit cycle taking
advantage of C2’s amplitude all along the oscillatory range.

Further scanning of the input shows what is expected, with two new
intersections and the time series stopping at the lowest one in Z (the

FIGURE 4
2 + 2 model: pseudo-nullclines C1 (in blue) and C2 (in red) for
different input values, with their corresponding reduced-model time
series (in black). Arrows denote the trajectory taken by the system. (A)
Input = 0.26, only one intersection, where the time series ends.
(B) Input = 0.2844226, a tangency takes place between the curves,
where an SN is located in the full system. (C) Input = 0.315, three
intersections are found, with the time series going to the
representative of the stable fixed point (D) Input = 0.35139898, a
second tangency for the second full-system SN. (E) Input = 0.352.
Left: the limit cycle takes full advantage of C2’s amplitude. Only one
intersection remains, the unstable steady state. Right: the peaks are
narrow compared to the time the output is off. (F) Input = 0.41071.
Left: close to the next SN, the system continues to oscillate with
relatively unchanged amplitude, and the first-level pseudo-nullcline
shows up for low values of Z (vertical axis plotted from a negative value
for clarity). The curves are close to each other. Right: the output is on

(Continued )

FIGURE 4 (Continued)
for a longer time, with brief drops. (G) Input = 0.41072821, the
tangency at low Z occurs, where the next full-system SN is located.
Right: the time series no longer is an oscillation.
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highest in App). Eventually, the last SN point of the full system is
represented by a new tangency close to the left-hand fold of the second-
level curve (see Supplementary Material for these last results).

Even though, throughout Figure 4, we are plotting the trajectory of
the reduced system, one can find similar results when integrating the
full system. And while we cannot obtain with MatCont a bifurcation
diagram for the reduced system (as mentioned, due to the implicit
nature of the conservation equations), we selected input values
following the bifurcations in the full system, with consistent results.

4 Discussion

In this work, we applied our pseudo-nullclines method on two
models, one corresponding to the embryonic cell cycle and another
to a subsystem of the MAPK cascade. They represent two well-
known and important examples in systems biology. The parameter
sets involved different bifurcations and behaviors, with the purpose
of testing the method.

For the Tsai et al. motif, not only we found consistency in our
results using the authors’ parameter values, but we were also able to
manipulate the pseudo-nullclines toward different bifurcations and
therefore, new behaviors. The use of Hill functions for the differential
equations was convenient in this regard, and their recurrent use in
mathematical modelling of biological systems means that the pseudo-
nullclines could be useful for dynamical analysis.

The 2 + 2 motif, unlike the first case, displayed folds for both
pseudo-nullclines, representing the underlying bistability in each DP
cycle and therefore expanding the pseudo-nullclines application to a
bistability-in-both-modules example. Themethod proved consistent
with the motif behavior even though a reduction of the system
equations was first necessary, and also helped tracked bifurcations
that were not confirmed on MatCont. It remains to be seen whether
the method continues to provide useful and consistent results for
other regions of parameter space, and how it can be extended to the
full MAPK cascade, which involves three modules.

A 2021 work by De Boeck et al. studies the embryonic cell cycle
through two bistable switches (a three-equation system), finding high
amplitude oscillations with increased robustness: a larger oscillatory
region of parameter space than in the case with one bistable switch (De
Boeck et al., 2021). Our results, coming from a cell cycle motif (with one
bistablemodule) and a system composed of two bistablemodules, could
be further developed in this area of cell biology considering the
advantages from the work by De Boeck et al. (correct cell cycle
progression) and our own (consistent and different behaviors with a
four-equation system). In particular, recent work by Parra-Rivas et al.
presents a very detailed bifurcation study of various cell cycle models,
including the combination of two bistable switches (Parra-Rivas et al.,
2023). Our pseudo-nullclines method could be useful for further
interpretation in the origin of said bifurcations, which include those
of the global type (like the two motifs studied in our present work).

One can find cases in the literature for which our method cannot
be applied, like in (Kraikivski et al., 2015) where the system in
question, a large cell cycle model in yeast, is divided into a high
number of modules, some of them having more than one connection
to the rest. It is possible that some type of model reduction or
approximation is first necessary to analyze it through pseudo-
nullclines. On the other hand, other candidates in the literature

are found for applying the pseudo-nullclines method. In (Perez-
Carrasco et al., 2018), the authors combine two simple motifs to
arrive at a system capable of different behaviors, not obtained with
each motif in isolation. The three-equation description is such that
two modules are readily determined, each one depending on the
other through their coupling variables. The same can be said of the
motifs in (Ananthasubramaniam and Herzel, 2014), where the
authors lower the degree of cooperativity necessary for
oscillations to occur by adding positive feedbacks on three-
component negative feedback loops. We believe that the method
can be of great value in systems biology, with useful analysis and
potential findings in experimental biology.
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