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Abstract

We have devised a predominantly Naive Bayes−based method to classify X-ray sources detected by Chandra in
the Cygnus OB2 association into members, foreground objects, and background objects. We employ a variety of
X-ray, optical, and infrared characteristics to construct likelihoods using training sets defined by well-measured
sources. Combinations of optical photometry from the Sloan Digital Sky Survey (riz) and Isaac Newton Telescope
Photometric Hα Survey (rIiIHα), infrared magnitudes from United Kingdom Infrared Telescope Deep Sky Survey
and Two-Micron All Sky Survey (JHK ), X-ray quantiles and hardness ratios, and estimates of extinction Av are
used to compute the relative probabilities that a given source belongs to one of the classes. Principal component
analysis is used to isolate the best axes for separating the classes for the photometric data, and Gaussian component
separation is used for X-ray hardness and extinction. Errors in the measurements are accounted for by modeling as
Gaussians and integrating over likelihoods approximated as quartic polynomials. We evaluate the accuracy of the
classification by inspection and reclassify a number of sources based on infrared magnitudes, the presence of disks,
and spectral hardness induced by flaring. We also consider systematic errors due to extinction. Of the 7924 X-ray
detections, 5501 have a total of 5597 optical/infrared matches, including 78 with multiple counterparts. We find
that ≈6100 objects are likely association members, ≈1400 are background objects, and ≈500 are foreground
objects, with an accuracy of 96%, 93%, and 80%, respectively, with an overall classification accuracy of
approximately 95%.

Unified Astronomy Thesaurus concepts: Star forming regions (1565); Catalogs (205); Astrostatistics (1882);
Astrostatistics techniques (1886); Bayesian statistics (1900); Open star clusters (1160); OB associations (1140);
X-ray stars (1823); Standard stars (1564)

Supporting material: machine-readable table

1. Introduction

Nearby star-forming regions provide opportunities for
studying the characteristics of young stellar objects and the
star formation process itself. Growing realization that
exoplanets are very common in the Galaxy has also provided
impetus to explore the sites of planet formation and how this
process might be affected by astrophysical environments. Star-
forming regions in the solar vicinity, such as those found along
the Gould Belt within 500 pc or so (e.g., Comeron et al. 1992),
have proven fruitful resources for exploitation and form much
of the observational basis of our current picture of star and
planet formation. However, the Gould Belt represents fairly
modest star formation activity, with its clusters typically
containing only a few to tens of massive stars of early B or O
spectral type. In order to study truly massive sites of star
formation, we need to look further afield.

This is the aim of the Chandra Cygnus OB2 Legacy Survey.
Cygnus OB2 is one of the largest sites of recent star formation
in our Galaxy (Knödlseder 2000; Hanson 2003; Wright &
Drake 2009; Wright et al. 2015), hosting tens of O stars and
hundreds of OB stars and with an estimated stellar mass of
∼3× 104 Me (e.g., Massey & Thompson 1991; Hanson 2003;
Drew et al. 2008; Wright et al. 2010). The Survey comprises a
mosaic of Chandra/ACIS-I observations covering the central
square degree of the Cygnus OB2 association. X-ray
observations and the X-ray source catalog are described in
Wright et al. (2023a), while the survey sensitivity and
resulting completeness in terms of X-ray luminosity and
stellar mass are discussed by Wright et al. (2023b) and
Flaccomio et al. (2023).
The X-ray survey aims to exploit the comparative X-ray

brightness of young low-mass stars in the T Tauri phase as a
means of distinguishing the true association members from a
plethora of foreground and background objects in the Galactic
plane. A total of 7924 X-ray point sources were detected
(Wright et al. 2023a), and while the majority are expected to be
in Cygnus OB2 itself, a significant population of interlopers
comprising mostly background active galactic nuclei (AGNs)
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and active late-type stars in the foreground are expected. In
order to be successful, we must solve the problem of separating
out these populations and correctly identifying the sources
located in the association. This problem is especially
challenging for Cygnus OB2, lying as it does behind the Great
Cygnus Rift and being subject to significant extinction
(E(B− V )> 1.2)) that varies considerably across the field
(e.g., Massey & Thompson 1991; Hanson 2003; Guarcello
et al. 2023a; Wright et al. 2015). Guarcello et al. (2023a) have
correlated the X-ray catalog with new optical and existing
infrared (IR) photometric catalogs, such that we have a wealth
of multiwavelength data on which to draw. Here we exploit
these data in order to form a statistical basis for classification of
survey objects as Cygnus OB2 members or as foreground or
background interlopers.

We describe the structure of our approach in Section 2. In
Section 3 we describe the various information streams we use
in the classification, and in Section 4 we describe the
likelihoods we develop based on the data. We discuss the
limitations and features of our method and present the
classifications in Section 5, and we summarize in Section 6.
We provide a detailed description of how measurement error
bars are incorporated into the analysis in Appendix A and a
discussion of the different choices of extinction and its effect
on the classification in Appendix B.

2. Naive Bayes Classification

There are several methods available to cluster multi-
dimensional data sets: machine-learning (ML) methods like
k-means clustering (e.g., Stein et al. 2015), Gaussian process
modeling (e.g., Gopalan et al. 2015), neural network (NN)
based deep-learning (see Benavente et al. 2017, and
references therein) probabilistic methods like multivariate
Gaussian clustering (e.g., Stampoulis et al. 2019), and Naive
Bayes (e.g., Broos et al. 2011). We have chosen the Naive
Bayes approach since it allows us to incorporate relevant
information and account for measurement uncertainties in
a straightforward manner. It allows us to construct and take
advantage of scientifically meaningful likelihoods, generated
using training sets in a manner similar to that used with
neural nets, but with the advantage of their operational
mechanism not being hidden. It is well suited for wide data
sets (those with large numbers of variables but with few
categories, as here, in contrast to tall data sets, which have
small numbers of observations but large numbers of
categories): the manner of construction naturally circumvents
the curse of dimensionality when observations in a given
category are expected to be correlated. The value of the Naive
Bayes approach has been previously demonstrated by its
application in the MYStIX survey (Kuhn et al. 2013). Note
that, as in typical ML and NN methods, our procedure also
relies on setting up and using training sets to define the
likelihoods for classification. However, the likelihoods are set
up to be easily interpretable as being physically meaningful,
and furthermore, unlike ML and NN methods, Bayesian
methods are not subject to arbitariness in deciding how many
iterations to run, or how many layers to include, or which
activation functions to use.

We compute the classification of X-ray sources detected in
the Chandra Cygnus OB2 field—whether they are in the
foreground, are association members, or are in the background
—by computing the likelihood that they belong to each class

and choosing the class for which the probability is >0.5. In
principle, this excludes weak classifications where the sum
of the probabilities for two classes is greater than the
class with the highest probability, but as a practical matter
that situation is never encountered in our analysis. For a
description of the application of Naive Bayes Classification
(NBC) to an astronomical survey data set, see Broos et al.
(2011). The method hinges on computing the probability that
an object is of a given class given the associated data available
for that object. Formally, if the class is represented by
θ= {foreground, member, background} and D are various
data sets that range from X-ray fluxes to optical magnitudes,
we seek to compute the probability of each of the classes θ
given the data D, p(θ|D). By Bayes’s theorem,

( ∣ ) ( ∣ ) ( ) ( )p D p D p , 1q q qµ

where p(D|θ) are the likelihoods, that is, the probability of
observing the data D for a given class θ, and p(θ) codify our
prior belief about the relative fractions of the classes.
We describe our choices of the data D, the forms of the

likelihoods, and the choices of priors in Section 4.

3. Data

3.1. X-Ray

The X-ray observations that make up the Chandra
Cygnus OB2 Legacy Survey consist of a grid of 6× 6
Chandra ACIS-I pointings, offset from each other by half
the width of the ACIS-I field of view. In addition, two
previous Chandra observations (Albacete Colombo et al.
2007; Wright & Drake 2009) are included in the data
processed. The data were processed following standard
Chandra data reduction procedures, including source detec-
tion, photon extraction, and background subtraction, to
generate a catalog of 7924 X-ray sources (Wright et al.
2023a). An analysis of the completeness of the observationsis
presented by Wright et al. (2023b).
For each detected source, we calculate several measures of

spectral shape. First, we compute spectral quartiles (Q25, Q50,
Q75—the energies corresponding to the 25th, 50th, and 75th
cumulative percentiles in the spectrum; see Hong et al. 2004).
Based on the combined counts obtained in source and
background regions in the soft (S: 0.5−2 keV) and hard
(H: 2–7 keV) passbands, we also compute the fractional
hardness ratio (HR H S

H S
= -

+
) and X-ray colors (C logS H= )

for each source (Park et al. 2006). These measures are used to
supplement the optical and IR photometric measurements (see
Section 3.2) to classify sources.

3.2. OIR

The optical−IR (OIR) catalog compiled for the Chandra
Cygnus OB2 Legacy Survey counts 328,540 sources across the
region of the survey, for which photometry from the following
catalogs is available:

1. 65,349 sources with photometry in r, i, z across the
central 41 41¢ ´ ¢ region (Guarcello et al. 2012) from
specific observations with the Optical System for
Imaging and low Resolution Integrated Spectroscopy
(OSIRIS), mounted on the 10.4 m Gran Telescopio
CANARIAS of the Spanish Observatorio del Roque
de los Muchachos in La Palma (Cepa et al. 2000);
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2. 24,072 sources with photometry in rI, iI, Hα bands from
the second release of the Isaac Newton Telescope
Photometric Hα Survey catalog obtained from observa-
tions with the Wide Field Camera (WFC) on the 2.5 m
Isaac Newton Telescope (IPHAS; Drew et al. 2005;
Barentsen et al. 2014);

3. 27,531 sources from theSloan Digital Sky Survey
(SDSS) catalog (DR8, which covers the Chandra field
of view fully; Aihara et al. 2011) with photometry in u, g,
r, i, z bands;

4. 273,473 sources with photometry in the JHK bands from
the United Kingdom Infrared Telescope Deep Sky
Survey’s (UKIDSS) Galactic Plane Survey catalog
(Hewett et al. 2006; Lucas et al. 2008), from observations
taken with the Wide Field Camera (WFCAM; Casali
et al. 2007) on the United Kingdom InfraRed Telescope
(UKIRT), and compiled using a new photometric
procedure (King et al. 2013) based on the UKIDSS
images (Dye et al. 2018);

5. 43,485 sources with photometry in JHK from the Two-
Micron All Sky Survey (2MASS) point-source catalog
(Cutri et al. 2003);

6. 149,381 sources from the Spitzer/IRAC catalog with
photometry in the 3.6, 4.5, 5.8, and 8.0 μm and MIPS 24
μm bands, from the Spitzer Legacy Survey of the
Cygnus X region Spitzer (Beerer et al. 2010).

These catalogs have been combined into the OIR catalog
in Guarcello et al. (2013), adopting a matching procedure
that can be divided into three steps. First, a combined
optical catalog was produced by matching the OSIRIS,
IPHAS, and SDSS catalogs pairwise for all combinations.
Second, an IR catalog was created similarly by matching
UKIDSS, 2MASS, and Spitzer data. Each pair of catalogs was
combined by using a close-neighbor method with specific
matching radii defined in order to minimize the expected
number of spurious coincidences and maximize the matched
real pairs (see Guarcello et al. 2013, for details). In the last
step, these two catalogs were merged into a unique OIR
catalog. All the data used here, except those from OSIRIS,
are available over the entire area surveyed with Chandra/
ACIS-I.

3.3. X-Ray/OIR Matching

The adopted matching procedure between the X-ray and the
multiwavelength OIR catalog resulted in 2433 X-ray sources
(≈30%) with no OIR counterparts (Guarcello et al. 2023a).
While we expect most background X-ray source AGNs to
indeed have no OIR counterparts owing to the large extinctions
in this direction, some deeply embedded members of
Cygnus OB2 are also likely to have no OIR counterparts. We
discuss their effect on the prior and classification in Sections
4.1 and 5.2.3, and we consider the possible presence of false
negatives in more detail in Appendix C.

4. Likelihoods

A large variety of measurements are available to use to
determine the data vector D, and we limit ourselves at the
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This enables us to use IRAC photometry for verification of the
classification and avoids confusion with the analysis of disk-
bearing stars (see Section 5.2.1).
A general assumption made in this type of analysis is that the

likelihoods are independent of each other. That is, given any two
data components, say, D1, D2, their individual likelihoods are
independent of the other, i.e., p(D1|D2, θ)= p(D1|θ) and P(D2|
D1, θ)= p(D2|θ). This is not strictly true, as trends and
correlations in the data components do exist and conditional
independence is not assured, and classifications made using such
systems will not be optimal. In practice, however, even if full
independence is not achieved, the Naive Bayes classifier is
highly tolerant of attribute dependences (Domingos & Pazzani
1997). Nevertheless, in order to minimize cross talk between
components, we carry out principal component analysis (PCA)
on several subgroups of data attributes. Several efforts have
been made to use PCA-type methods to reduce the complexity
of astronomical spectra (see, e.g., Heavens et al. 2000; Hojnacki
et al. 2007; Sasdelli et al. 2016a, 2016b; Davis et al. 2017;
Waddell & Gallo 2020; Patil et al. 2022). Here we consider
principal components (PCs) of the attributes {d}≡ {r, i, z},
{H, K, J}, {Q25, Q50, Q75}, {rI, iI, Hα} (see Table 1; Av and C

Table 1
Projections onto Principal Component Axes

Attributes Component Used Projectionsa

in Classification

(r, i, z) 2 (+0.1970, +0.0035, −0.2008)
(r, i, z) 3 (−0.0403, +0.0772, −0.0382)
(rI, iI, Hα) 3 (−0.0483, −0.0114, +0.0588)
(rI − iI, rI − Hα) 2 (−0.3640, +0.3640)
(H, K, J) 2 (+0.0494, +0.1931, −0.2463)
(J, K ) 2 (+0.2363, −0.2363)
(J, K ) 1b (+0.9717, +0.9717)
(Q25, Q50, Q75) 1 (+0.9433, +0.9964, +0.9294)

Notes.
a The corresponding eigenvalues are the summed squares of the projections.
b Used only if likelihood for foreground object > likelihood derived from PC2
[J, K].
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(the latter based on HR) are used separately and by themselves)
and select seven PCs that provide the best discriminatory power
(note that in no case does a subgroup contribute more PCs to the
classification stream than there are attributes). PCA has been
used often in astronomical analysis, though usually as an
empirical classification technique (Hojnacki et al. 2007) or a
compression technique (Lee et al. 2011; Xu et al. 2014). Here
we use it primarily as a scheme to find linear transformations of
data subgroups that allows us to efficiently separate the
foreground, member, and background sources.

We create vector spaces

⎧
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of triplets, where X, Y, Z represent magnitudes or colors for a
given object i. By analyzing the correlation matrix, we then
obtain PC projections as ( )v c di

k
j jk ji= å , where the summation

is over the dimensions of the subspace, carried out separately
for each object (see Table 1). The components k represent
successive projections that account for the largest variances in
the data, and {cjk} represent a rotational transformation that
projects the data set onto a new axis. Note that the cjk are not
subscripted by the object index i but are dependent on the
subsample chosen to compute the PCs. In the following, we
drop the subscript i for the sake of brevity unless its absence is
ambiguous. The distribution of the projections of the different
data points defined by these components is then sifted into
separate classes, with the boundaries defined as one-sided
Gaussians. A typical assignment, described here for illustrative
purposes (see, e.g., the middle panel of Figure 1), is one where
the Foreground class is ∝1 for v( k)<vF and decreases as the
Gaussian ( )N v ,F F M

2s  for v(k)� vF, the Members class
increases as ( )N v ,M M F

2s  over the range [vF, vM] and
decreases as ( )N v ,M M B

2s  over the range [vM, vB], and the
Background class increases as ( )N v ,B B M

2s  for v( k) � vB and
is ∝1 for v( k) > vB. The intervals and widths are chosen
separately for the kth PC based on training set data as described

below, and in some cases the directions of the transitions could
be reversed. The sum of the components is normalized to 1 at
each projected value v( k).
We then construct likelihoods empirically as a mixture of

these three smooth components representing the foreground,
association member, and background classes. To compute the
likelihood for a given object, the data defining it in the vector
space of interest are projected onto the component of interest,
and the probability of observing those data is defined by the
relative values of the likelihood curves for the different classes.
This exercise is repeated for different data streams, generating a
series of independent likelihoods of obtaining the data given
the class. This enables us to expand the likelihood factor in
Equation (1) as the product of the likelihoods obtained for each
of these independent vectors. The final probability for each
class is then the product of these likelihoods for a given class,
multiplied by the corresponding prior, and further normalized
such that the sum across the classes is 1. The likelihood that an
object has the observed data values for a given membership
class can then be expanded as

( ∣ )
( ( )∣ )
( ( )∣ )
( ( )∣ )
( ( )∣ )
( ( )∣ )
( ( )∣ )
( ( )∣ )
( ∣ )
( ∣ ) ( )

( )

( )
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´

where a component is used if and only if data are available for
that source, and each component is defined as the normalized
conjoined Gaussians as described above. The probability of
membership in a given class, given the data, is then computed
by multiplying by the prior and normalizing the sum to 1,

( ∣ ) ( ∣ ) · ( )
( ∣ ) · ( )

( )
{ }

p D
p D p

p c D p c
class

class class

class class .
4

c F,M,B

=
å = ==

As a consequence of this process, each object is normalized
separately, and if some objects are missing some part of the

Figure 1. Demonstrating the process of generating the likelihoods of foreground, association member, and background classification using PCs for {r, i, z}. A subset
with well-measured magnitudes is used as a training set, and the histogram of the projections onto the second PC is shown at left (see Table 1), with vertical lines
denoting the approximate separation between the different classes, along with the likelihoods constructed from the normalized profiles (middle). A nominal
classification to illustrate these likelihoods, carried out using noninformative priors, is also shown as extrapolated to the full data set (right). Each source is color coded
as an RGB tuple with the relative probability of it belonging to the foreground (red stars), cluster (green circles), or background (blue diamonds) class.
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data, those missing parts have no effect on the assigned
probabilities.

The ranges and profiles of the Gaussians are modified using
expert domain knowledge to segment the training sample into
regions where one classification dominates, and thus they
generate acceptable classifications for each vector separately.
We define the locations and widths of the one-sided Gaussians
by using subsets of well-measured points, i.e., observations
with small error bars, treated as a training sample, from each
vector. Note that this approach tends to pick out the brighter
objects, which could result in biases in the likelihoods applied
to fainter objects, if the faint population is qualitatively
different from the bright population. However, we define class
boundaries for the training samples by comparing how the
selected classes project back into physically meaningful color–
magnitude spaces (see, e.g., the right panels of Figures 1 and
2). Since these boundaries are generally insensitive to the
magnitudes of the errors in the data set, the main effect of
increased uncertainties is to decrease the contrast between the
class boundaries. Thus, all changes made to the class
boundaries in PC spaces are rooted to the color–magnitude
spaces; the influence of using small error subsamples is
minimized. In the one case where we observe the class
boundaries shifting with fainter sources (for X-ray hardness
ratios; see Section 4.5), we use likelihoods that are designed to
be less informative. Our training sample is also highly
diversified, with each subset typically having an overlap of

1

3
» with the remaining set (except for the (J, K ) set being a
proper subset of the (H, J, K ) set). The number of objects
chosen for the training set is in the range of a few × 102,
compared to 1620 unique objects in the union of the training
samples. This variety in the choice of training set population
prevents potential biases in any one stream from affecting the

overall calculations. Note that we set the bounds independently
for each subset, by evaluating the projected distributions in
color–magnitude spaces over large scales. We ignore
deviations that may be present at smaller scales in color–
magnitude diagrams, and thus classifications derived from a
single stream are necessarily crude (this point is illustrated in
Section 5.1 and Figure 5). We rely on the combination of
several streams of data to compute a final classification
probability. This is further supplemented by manual inspection
and correction to account for special cases that the broad-scale
classification misses (see Section 5.2.1).

4.1. A Priori Expectations

Bayesian analysis requires that priors be defined in order to
convert the likelihoods, which are probabilities defined as
functions of the data, to posterior probabilities, which are
probabilities defined for the parameters or classes of interest. In
the absence of any prior information, a flat distribution is the best
option, which in our case corresponds to ( )p foreground =

( ) ( )p pmember background 1

3
= = . This is the choice used in

order to demonstrate the effect of the adopted likelihood
function for each of the component streams (Figures 1–5 and
D1–D6). While this choice is appropriate to illustrate how the
likelihood maps to variables of interest, for the combined analysis
we can make a more informed choice. We define informative
priors by estimating the number of X-ray sources that may be
obtained from background quasars and from foreground Galactic
sources.
We estimate the number of AGNs expected in the X-ray

sample by assuming that their numbers are distributed as a
broken power law with indices β1= 1.34 for fX� 8.1× 10−15

erg cm−2 s−1 and β2= 2.23 at higher fX (see Equation (5) of
Lehmer et al. 2012). Further assuming a nominal power-law

Figure 2. Same as Figure 1, but for the third PC of {r, i, z}.

Figure 3. Likelihood generation for X-ray colors. Left: histogram of X-ray colors filtered on hardness ratios for a well-measured subsample, with the histogram for the
full sample shown as the dashed black/yellow line normalized to the same number of objects and overplotted. Middle: the likelihoods generated by square-root
transformation of the Gaussian components, with the tails modified to be linearly decreasing. Right: class assignments with points color coded as RGB tuples as in
Figure 1.

5

The Astrophysical Journal Supplement Series, 269:10 (22pp), 2023 November Kashyap et al.



spectrum with index Γ= 1.8 to determine a flux-to-counts
conversion factor, we find that for the specific exposure map of
the Chandra Cygnus OB2 survey ≈ 1200–1800 sources would
be present with net counts >5 for NH= (1− 4)× 1022 cm−2.
The sensitivity of the survey varies across the field, as does the
diffuse background (Albacete-Colombo et al. 2023) and the
absorbing column density, with lower detection thresholds or
lower NH potentially yielding more background X-ray sources.
The variation in NH over the field can be evaluated by
considering the range of Av estimated for the various objects in
our data set (see Section 4.6). The Av ranges from ≈0.1 to >10,
suggesting that NH varies from ≈1020 cm−2 to a few ×
1022 cm−2 (cf. Predehl & Schmitt 1995).

We estimate the approximate number of foreground stars
using a dynamical model of the Galaxy (TRILEGAL v1.6;
Girardi et al. 2012),9 which produces a representation of the
stellar population along the line of sight toward Cygnus OB2
assuming an exponential thin disk, a squared hyperbolic secant
thick disk, an oblate spheroid halo, and a triaxial bulge. The
number of expected X-ray detections varies by over an order of
magnitude for different assumptions about the X-ray
luminosity function of the field stars and the local limiting
sensitivity. For assumed fixed LX= 1027, 1028, and
1029 erg s−1, for a limiting sensitivity of 10−15 erg s−1 cm−2,
we expect ≈30, 800, and 10,000 X-ray sources, respectively,

ranging from there being almost no foreground sources to
accounting for essentially all the detected sources. It is
plausible, however, for realistic luminosity functions with
median LX∼ 1028 erg s−1 to produce 500–1500 X-ray
detections.
Thus, it is reasonable to assume that of the ≈8000 sources

considered, about 2500 should be some combination of
foreground and background sources. We therefore adopt prior
probabilities on the classes

( ) ( )p pforeground background 0.15,= =

that is, if no information were available, the probability that an
X-ray source in the Cygnus OB2 field of view is a member of
the association is 0.7. The specific values of the prior are
important only when the data are not informative, and when
they are, the posterior estimates are driven by the likelihoods.
We also point out that it is theoretically unjustifiable to change
the priors after the analysis, e.g., by iteratively adjusting them
until the posterior counts match the adopted fractions.10

Nevertheless, we have explored the sensitivity of the class
assignments to the prior by considering how many foreground
objects are “lost” when p(foreground)= 0.05 and how many
background objects are “gained” when =p(background)= 0.2,
commensurate with the fractions that are found upon carrying

Figure 4. Separating Cygnus OB2 sources using extinction, Av (based on F96; see Figure B1 for the FM case). The observed histogram (left) is modeled as a mixture
of three Gaussians, with the components that predominate at low, medium, and high Av assumed to represent the foreground (red), member (green), and background
(blue) objects, respectively. These Gaussian components, after removal of the population size effect and renormalization, are identified with the corresponding
likelihoods (middle). A scatter plot showing the difference in estimated Av when using the extinction laws of F96 and FM is shown in the right panel, with the points
color coded as RGB tuples as in Figure 1.

Figure 5. Demonstrating the necessity of using multiple channels of data to derive class memberships. The left panel shows r vs. r − z as in the right panel of Figure 1,
but using the third PC as in Figure 2. The right panel shows the reverse case, i.e., r − i vs. i − z as in Figure 2, but using class probabilities derived using the second
PC as in Figure 1.

9 http://stev.oapd.inaf.it/cgi-bin/trilegal

10 As it happens, we find (see Table 2) the relative fractions of the foreground,
member, and background objects to be ≈6%, 77%, and 17%, respectively.
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out the classification procedure (see Section 5.2). We find that
the changes are small: in the former case the number of
foreground objects decreases by ≈20 (3%), and in the latter
case the number of background objects increases by ≈100
(5%), similar to the magnitude of the systematic uncertainties
present in the process (see Section 5.2.1).

The X-ray properties of sources matched with the OIR
catalog differ substantially from those with no matches
(Guarcello et al. 2023a). In particular, the sources with no
matches exhibit a bimodal distribution in Q50, with nearly half
of the population exhibiting Q50> 3 keV. It is thus reasonable
to consider whether different values of =p(background) should
be used for the samples of matched versus unmatched sources.
However, as noted above, the precise values of the priors are
not a significant factor in the classification, so for simplicity of
calculation we maintain the same prior for the whole sample.
Nevertheless, because sources with no OIR counterparts are
classified entirely through their X-ray properties alone, we flag
them in the final catalog (see Section 5.2.3) as such, and we
also indicate how robust that classification is.

For each object, the likelihood that it belongs to a given class
is computed independently for each data stream (the PCs in
Table 1, and the mixture components of Av and HR) while
accounting for measurement errors (see Appendix A). The
product of these likelihoods and the priors is then computed for
each class and renormalized such that the sum adds up to 1.
The probability values span a continuum between [0, 1], but for
the sake of specificity we assign a specific class to each object
as that which has the highest of the three probabilities. These
assigned classes are then reviewed, and those that are clearly
misclassified are reassigned (see Section 5.2.1).

4.2. r, i, z

The usual way to sift sources into different classes is to
display them on color–color diagrams and identify regions
where there is a higher propensity for members of one class to
appear. When the {r, i, z} triplet is available, for example,
foreground objects stand out along the leftward edge in the r
versus (r− z) diagram and along the upper edge of the (r− i)
versus (i− z) diagram. We extract this information using the
second and third PCs of a subset of {r, i, z} data points. Notice
that we do not use the first component, even though it accounts
for the largest fraction of the variance in the data set, as it is not
informative for the purpose of separating the different classes.
We apply similar judgments for other subgroups and exclude
all cases where the projections of the classes overlap
significantly or are not easily modeled (e.g., f

f
X

opt
). For the

training sample, we compile a list of 200 sources that have the
smallest error bars in each band, which results in a total of 348
unique sources.11 The projected components are shown as a
histogram in the left panels of Figures 1 and 2, colored
according to which range is preferentially dominated by
members of which class (red denotes foreground, green
denotes association members, and blue denotes background).
Note that at this stage the sources are sifted into different
classifications by construction, that is, according to our
expectation of how they are likely to be distributed among
the different classes. The boundary between the classes is not

sharp, and the transition from one dominant class to another is
assumed to occur smoothly. The distributions of the number of
objects, projected along the PC, for each class are assumed to
be approximated as Gaussians and smoothly varying. They are
then normalized such that each component has a maximum of
1, and they are further renormalized at each point along the PC
such that their sum adds up to 1. The likelihoods thus obtained
are shown in the middle panels with the same color scheme.
These likelihoods are then applied to the full {r, i, z} data set
(that is, not just the training sample), incorporating
uncertainties (see Appendix A). The resulting classifications
(using flat priors set to one-third for each class), constructed
using only this data stream and no others, are shown in the
right panels, with color hues ranging from red (denoting
foreground) to green (denoting members) to blue (denoting
background). We discuss the necessity of using multiple
components in Section 5.1.

4.3. J, H, K

For the combination of {J, H, K}, we first consider the
color–magnitude diagram J versus (J−K ). For this, we carry
out PCA on a sample of 287 objects with the best-measured
{J, K}. Ultimately, we primarily use the second component, but
we use the higher of the computed foreground likelihoods for
foreground objects, since a bright J strongly suggests that the
object is in the foreground.
We also carry out a PCA on a subset of 332 of the best-

measured triples {J, H, K}, using the second component that
separates foreground and background objects in (J−H)
versus (H−K ) diagrams (Figure D3).

4.4. rI, iI, Hα

We consider the triple {rI, iI, Hα} as a group since these are
measured with IPHAS. We compute PCs for both the triple and
the paired colors (rI−Hα) versus (rI− iI) using a training
sample of 212 well-measured objects. The third component of
the former (Figure D5) and the second component of the latter
(Figure D4) sift the region into similar groupings, but with
slight differences that indicate a complex projection of
components. We use both components. We note that (rI, r)
and (iI, i) are strongly correlated (Pearson’s ρ≈ 1) but display
complex behavior in their errors (e.g., the ratio of the errors is
correlated with r− i with ρ≈ 0.5), and thus they are able to
provide additional discriminatory power to the PCs used in
Section 4.2.

4.5. X-Ray Spectral Shape

ACIS spectra typically have >800 usable pulse height
channels, but their shapes are effectively characterized by
counts in a small number (∼5) of passbands (similar to the
number of free parameters in thermal spectra usually used
while fitting the X-ray spectra of weak sources; e.g., Flaccomio
et al. 2023). We use three measures of quantiles (defining the
energies that include 25%, 50%, and 75% of all the observed
counts within the source regions) and two measures of hardness
ratios (extremes of fractional hardness HR H S

H S
= -

+
to motivate

a model that is applied to color C lnS H= ) as proxies to
characterize the dispersion that describes X-ray spectral shapes.
We use the first PC of the analysis of the best-measured

sample of 357 objects of the triple {Q25, Q50, Q75}, as it groups
typically unabsorbed thermally emitting foreground objects as

11 We employ the same method to compile training samples in Sections 4.3,
4.4, and 4.5, where PCA is used for likelihood generation.
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having a soft spectrum and background objects that are likely
to be power-law sources and heavily absobed as having a hard
spectrum (Figure D6). For detailed discussions of the spectra,
see Flaccomio et al. (2023).

Though there is overlap in the information codified by the
quantiles and hardness ratios (and Av; see Section 4.6),
comparisons of typical model grids show that they encode
the spectral shape information differently. Furthermore, there is
a dearth of background objects in the training sample made
using the quantile data (see, e.g., Figure D6), which makes it
necessary to include a broader measure. We thus complement
the separation obtained from the quantiles with color
C lnS H= , computed using Bayesian estimation of hardness
ratios (BEHR; Park et al. 2006). Because C is one-dimensional
and the counts in individual bands are sensitive to normal-
ization, we cannot use PCA to determine the optimal axes as
above. Instead, we model it as a mixture of Gaussians. We
build a weakly informative likelihood model by considering the
behavior of the distribution of C in extreme cases and
extrapolating the model to more ambiguous cases. Considering
only the extremely soft (HR�−0.99; likely foreground) and
extremely hard (HR�+0.99; likely background) sources, we
see that the distribution of the posterior modes of the colors C
of such sources splits into two distinct and well-separated
components (see left panel of Figure 3, red and blue curves,
respectively). In contrast, a sample of 823 of the best-measured
sources with −0.99<HR<+0.99 (likely members) occupy a
third component in between the extremes (green curve). The
presence of such distinct components suggests a simple
parameterization of the likelihood function centered on each
of the components. However, this measure is subject to
imperfect domain adaptation: as larger samples are examined,
the outer peaks move inward, eventually smoothing out the
trimodal structure, suggesting that the extreme values do not
form a high-fidelity training set (dashed black histogram). We
therefore seek to construct a measure that accounts for the gross
separation without addressing the detailed shape or the changes
in the distribution of colors as samples with larger uncertainties
are included, i.e., we seek to avoid overfitting to the
distributions by choosing a deliberately imprecise scheme.
We thus choose Gaussians centered at C= (− 1, 0, + 1), with
widths corresponding to the standard deviation of the subsets,
to describe the different classes, further dilute the sharp
divisions between the components by using a square-root
transformation on the Gaussians to reduce the contrast, and
enforce a linear decline in the tails of the central component to
avoid numerical instability at large deviations. Since we expect
there to be a great deal of mixing between the different classes
owing to the large dynamic ranges present in X-ray
luminosities, these corrections avoid the X-ray colors being
the dominant contributor to the class likelihood assignments.
The result of these modifications is shown in the middle panel
of Figure 3 (which shows that the transitions between classes
are not sharp but the extremes are indeed unambiguously
assigned), and the corresponding class assignments to the full
data set are shown in the right panel.

4.6. Extinction, Av

Low extinction is a strong diagnostic of whether a source is
in the foreground of the cluster or not, and conversely, high
extinction suggests that an object is in the background. Because
of this high sensitivity of class assignment to extinction, we

compute Av from optical and IR data and incorporate it as an
additional data stream. Note that while this information is
partially included in the spectral shape data extracted from the
X-ray colors (see Section 4.5), extinction affects spectra at
different temperatures differently, and an independently
generated data stream can provide additional information to
define the classification. However, because extinction is not
spatially uniform across the cluster, a simple cut across Av is
not a good method to assign classes. As in the case of X-ray
color C (see Section 4.5), Av is also a one-dimensional data
stream, and we model a subset of 1003 well-estimated Av as a
mixture of three Gaussians, each directly representing the three
classes of interest (see Figures 4and B1).
Our Av values are estimated based on J, H, r, i, z, as well as

2MASS and UKIDSS magnitudes. (Note that due to the
nonlinear interplay between the optical and IR magnitudes, Av

forms another complementary combination of these attributes
that were used in linear combinations with PCA above.)
Individual extinctions are calculated using one of two methods.
The main method consists of calculating the displacement of
stars in the r− i versus i− z diagram along the extinction
vector from the 3.5 Myr isochrone. For those stars with
unreliable or absent optical photometry (see Guarcello et al.
2012), individual extinctions are calculated from 2MASS and
UKIDSS photometry using the Near-Infrared Color Excess
Revisited (NICER) algorithm (Lombardi & Alves 2001). Errors
are calculated propagating the photometric uncertainties in
these two colors. We have considered both the extinction
vector in the SDSS bands from Fukugita et al. (1996 hereafter
F96) and the more recent one from Fitzpatrick et al. (2007,
hereafter FM). Individual extinctions obtained with these two
laws typically differ by ≈7%± 10%, with the Av distribution
obtained with the F96 law peaking at about 5.5 mag and that
with the FM law at about 4 mag. Our classification scheme
primarily relies on the F96 extinction law. We discuss the
difference using the different extinction laws makes on our
classifications in Appendix B.

5. Discussion

5.1. Validation

A question that arises is whether it is necessary to go through
all these steps to obtain a classification, instead of placing cuts
in a color–color diagram, say, for r− i versus (i− z), as in
Figure 2. The necessity of a comprehensive analysis is best
demonstrated by example, as in Figure 5. Here the probability
assignments made using each of the two {r, i, z} PCs (see
Section 4.2) are applied to the other, that is, the classification
from the second component, trained using r versus (r− z), is
shown plotted with (r− i) versus (i− z), and the classification
from the third component, trained using (r− i) versus (i− z), is
shown plotted with r versus (r− z). These plots show that there
is considerable mixing evident between the different classes
when viewed with different projections. It is therefore crucial
that a combination of data streams be used, encompassing
different pieces of information, in order to obtain reliable class
assignments.
Standard methods of validation like cross-validation using k-

fold training or bootstrapping on test samples are impractical
for this analysis, since our training sample is small, and due to
data incompleteness, the overlap between components in the
training sample is also small. Furthermore, since any single
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data stream can predict classes that are inconsistent with the
information present in the rest of the data, cross-validation of
the process by leaving out one component is not a workable
method of testing the results. Instead, we manually screened the
classifications in various color–magnitude spaces, including
some not used during the classification process, such as IRAC
colors like [4.5]− [5.8] versus [5.8]− [8.0], and other color
projections like g and g− r versus r− i, to expose outliers,
which we reassigned where necessary as explained in more
detail below (see Section 5.2.1). Based on this manual
reclassification (see Table 2), as well as comparing the effects
of different extinction laws on the classification (see Appendix
B), we estimate that the error rate in our classification is ≈5%.

5.2. Classification

5.2.1. Reclassification

Our classification can be affected by some stellar properties.
For instance, during X-ray flares the stellar X-ray spectrum
becomes harder, which mimics the expected X-ray energy
quantiles typical of background sources. Futhermore, compared
to naked photospheres, stars with circumstellar disks have red

IR colors that can be confused with background sources at
large extinction, or they may have blue optical colors typical of
foreground stars because of the accretion process or the
presence of scattered light (Guarcello et al. 2010). Besides, the
adopted NBC classification scheme is expected to have issues
for very bright stars, whose photometry is typically saturated.
For these reasons, the results of the automated classification
described above (Section 4) have been retested using OIR
color–color and color–magnitude diagrams and the X-ray
energy quantiles, which provides further leverage to separate
the three classes. We also forced the classification of known
stars with disks as selected by Guarcello et al. (2013, 2023b) to
be association members. Overall, a total of 381 objects changed
classification (see Table 2), including 49 (out of 833) of those
that had originally been included in the training sets with
optical and IR colors and magnitudes (and an additional 208 of
1796 of those used only with X-ray quantiles, color, and Av

analyses). This yields an overall error rate in the automated
classification of ≈6% from among those X-ray sources with
optical matches, and ≈5% for all objects (note that this
includes cases with multiple matches). The nominal accuracy
of classification of cluster membership is ≈96%. Because of
the large size of this subset (6169 objects), the majority of the
reclassification involves cluster members. This class gains 199
and loses 71 to the foreground class and gains 109 and loses 2
to the background class. Because of the much smaller sizes of
the foreground (491 objects) and background (1360 objects)
classes, the nominal accuracy of their assignment is dominated
by the cluster membership accuracy, at ≈74% and ≈92%,
respectively.
We compare the differences between the automated

classification and manual reclassification in Figure 6 and
Figures E1–E5. In each panel of the figures, the small gray
points mark the colors or magnitudes of the sources in the
survey area with good-quality photometry and errors smaller
than 0.15 for colors and 0.1 for magnitudes. In each figure, the
X-ray sources classified according to the automated NBC

Figure 6. r − i vs. i − z diagrams of all the sources with good OSIRIS or SDSS photometry. The solid line is the 2.5 Myr isochrone from Siess et al. (2000) after
applying the F96 transformation between the UBVRI and the uI gI rI iI zI photometric systems, and the dashed line is from the MIST database. The extinction vector is
obtained from O’Donnell (1994). The corresponding masses are indicated with a horizontal displacement from the isochrone. The classifications are according to the
automated NBC method (left) and after manual reclassification (right) and show foreground objects (red diamonds), members (green circles), and background objects
(blue crosses).

Table 2
Post Hoc Reclassifications

Original Reclassified
Subtotal
Original

Foreground Member Background
Foreground 420 199 0 619
Member 71 5861 2 5934
Background 0 109 1358 1467

Subtotal
reclassified

491 6169 1360 8020

Note. Number of sources of each class, with Naive Bayes approach and after
reclassification, showing how many in each class change classifications.
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scheme are shown in the left panel, and the revised version
based on manual inspection is shown in the right panel. The
diagrams shown in Figures 6, E1, and E2 allow us to separate
the sources with low (foreground), intermediate (members),
and high (background) extinction and thus select stars that are
likely wrongly classified by the NBC method, such as the
foreground and background stars that populate the same locus
as the candidate members in these diagrams. Even after the
revision, a small number of stars appear to lie on the “wrong”
part of these diagrams, such as the background sources between
the EB−V= 0 and EB−V= 1 main sequences in the left panel of
Figure E1. These are cases where no clear indications come
from the diagrams and the X-ray photon energy quantiles, for
instance, because of mismatches between counterparts of
different catalogs. In these cases, we have kept the
classification from the NBC method. It is also important to
note that the position of candidate members with disks in these
diagrams can be affected by accretion and/or scattered light,
for instance, increasing the rI−Hα color or decreasing the
g− r color, thus pushing the sources above the EB−V= 0 main
sequence in Figure E1 or below the Av= 0 isochrone in
Figure E2.

The H− K versus J−H diagrams shown in Figure E3 allow
us to separate sources with different extinction, and thus stars
in the foreground, those in the background, and those within
the association. In this diagram it is also clear that the NBC
method fails to classify as members very bright stars that are
clearly massive members of Cygnus OB2 according to their
photometric properties, soft X-ray spectra, and in some cases
existing spectral classification. Furthermore, these stars are
clearly clustered in the various subclusters of Cygnus OB2.

Given that extinction does not seriously affect the Spitzer/
IRAC colors, the diagrams of IRAC colors in Figure E4 are not
useful for separating stars affected by different extinction.
However, together with the set of diagrams used in Guarcello
et al. (2013), they are useful for selecting candidate stars with
disks, typically populating the regions corresponding to colors
larger than 0.5m, and background galaxies populating loci that
are empirically defined by various authors. Recall that we
enforced the classification as “members” of all the candidate
stars with disks selected by Guarcello et al. (2013).

The spatial distributions of the X-ray sources classified
before and after the revision are shown in Figure E5.
Comparing the two panels, it is evident that several stars
whose classification has been turned into “members” are indeed
clustered in the center of the region or in other subclusters. In
both panels regions with dense nebulosity can be identified by
the contours of the IRAC [8.0] μm continuum emission levels.
Several X-ray sources classified as “background” objects fall
within high-extinction regions such as within DR 18, at
approximately α= 308.7, δ= 41.2. These sources are likely
to be embedded young stars detected in X-rays, but their
classification has not been changed owing to the lack of a
good-quality OIR counterpart.

5.2.2. Impact of Gaia

Unlike our method, which is based on a probabilistic
weighing of proxy information, precise measurements of
distances to matched OIR sources can fix the classification
exactly. The Gaia DR2 catalog has parallaxes for over a billion
stars (Gaia Collaboration et al. 2018) and could be a source of
such distance measurements. Of the X-ray and matched OIR

sources, 1128 (60 foreground, 749 members, 319 background;
≈14% of the catalog) have probable counterparts in Gaia DR2
based on overlaps of position error circles. Of these, choosing
the nearest Gaia counterpart, 329 (52 foreground, 252
members, 25 background) have nonzero parallaxes, and only
140 (47 foreground, 91 members, 2 background) have well-
measured distances (parallaxes measured at better than 3σ).
The change in the mix of classification (from ≈6% foreground
to ≈35% foreground) is consistent with nearer objects having
better distance measurements. It is reasonable to expect that
foreground stars will be the ones best characterized by Gaia,
and any misclassifications in the probabilistic scheme will be
dominated by these sources. Indeed, we find that 41 sources are
apparently misclassified, of which 31 are classified as members
but are at distances <1.2 kpc, and are plausibly foreground
stars. In addition, one Gaia-matched source classified as
background is likely a member (distance ≈1.3 kpc), and four
sources classified as foreground stars are at distances >1.2 kpc
and could be considered association members or background
sources. This is consistent with the error rate of the
classification scheme (see Tables 2, B1, and B2). Thus, the
Gaia DR2 release has a negligible effect on both our method
and our results. Here we report the potential changes in
classification due to Gaia parallax measurements as part of the
catalog (see Section 5.2.3), but otherwise we do not incorporate
it in our procedure, and we defer a more detailed analysis that
looks at the individual matches and an assessment of the
systematic uncertainties in the Gaia catalog at large distances
and large Av to a later work.

5.2.3. Catalog

The final classifications are shown in Figure 7 using suitable
color–color and color–magnitude diagrams where the fore-
ground, background, and association sources can be distin-
guished. In each panel the small gray points mark those sources
in the survey area with good-quality photometry and errors
smaller than 0.15 in the colors and 0.1 in magnitudes. (The
criteria for “good photometry data” in these catalogs are
described in Guarcello et al. 2012, 2013.) The OIR+X-ray
sources are marked with colors coding their final classification.
We also mark a possible locus of candidate members of
Cygnus OB2 using the 2.5 Myr isochrone from Siess et al.
(2000) (converted into the uI gI rI iI zI photometric system), the
MIST isochrones (Choi et al. 2016; Dotter 2016), and in the
IPHAS color–color diagram the ZAMS defined by Drew et al.
(2005), assuming the distance of 1400 pc found by Rygl
et al. (2012).
In all the diagrams, with the exception of the IRAC color–

color diagram, given the direction of the reddening vector, the
foreground stellar population can be separated from the stars at
the distance of the association or those farther away. This is
particularly evident in the IPHAS color–color diagram and in
the SDSS diagrams, the latter mainly for low-mass stars. The
vast majority of the sources sorted as “foreground stars”
populate these low-extinction loci. The background population
is more evident in the JHK diagram, mainly in a high-
extinction locus (faint and red stars). In the IRAC color–color
diagram some of the background objects lie in the locus where
stars with disks are typically found. These stars have been
excluded from the list of stars with disks and classified as
“background contaminants” by Guarcello et al. (2013). The
cluster locus lies between the foreground and background
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Figure 7. Set of diagrams showing colors and magnitudes of all the sources of our OIR catalog with good photometry in the involved bands (gray circles), candidate
OIR+X-ray foreground sources (red diamonds), Cygnus OB2 members (green circles), and background sources (blue crosses). We also show the extinction vectors
and the 2.5 Myr isochrone from Siess et al. (2000; solid lines) and the MIST database (dashed line), assuming a distance of 1400 pc and AV = 3.5m with corresponding
mass values labeled with a horizontal displacement. In the top right panel the solid lines are instead ZAMS at increasing EB−V (0, 1, 2, 3).
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population in most of the diagrams. Mainly in the IPHAS
color–color diagram it lies within the 1� EB−V� 3 range and
in the JHK diagram within the 3� AV� 10 range. Of those
objects classified as likely members based on their IR excess by
Guarcello et al. (2013), 439 (of 1843) are detected in X-rays.
Among the corresponding 510 optical matches, there are 365
Class II, 16 Class I, 58 flat spectrum, 43 transition and
pretransition disks, and 22 accretors according to their Hα
line, and 6 have blue excesses.

The spatial distributions of the foreground, member, and
background objects are shown in Figure 8. Objects classified as
members show a clear concentration that corresponds to the
association, while the distribution of foreground objects is more
isotropic. Objects classified as background show a small
enhancement over regions of small Av (see also Albacete-
Colombo et al. 2023).

A short exemplar version of the catalog of classification is in
Table 3 (the full catalog is available online) and lists the CXO
ID, whether it has a corresponding OIR match, the computed

probabilities of classification from the NBC method, and the
final classification.

6. Summary

We have classified the X-ray sources observed toward
Cygnus OB2 as being foreground objects, members of the
association, or background objects using a variety of associated
data, including optical and IR magnitudes, X-ray quantiles and
hardness ratios, and extinction estimates. We adopt a Naive
Bayes method to obtain automated classifications. We use
domain knowledge of expected distributions of well-measured
stars observed in different passbands to construct likelihoods
that are then applied to the full data set. Likelihoods are
constructed by using a semisupervised training method that
uses objects with well-measured magnitudes, transformed
using a PCA or modeled with mixtures of Gaussians to
perform efficient separations for each channel. The probability
that each source belongs to a given class is then computed, and
sources are sifted into the appropriate class. This is then

Figure 8. Spatial distribution of background (left), association member (middle), and foreground (right) sources with OIR matches. The contours mark continuum
emission levels at [8.0] μm Spitzer band, denoting the presence of dust and high Av. The position of Cyg X-3 is marked in red. The filled blue stars denote O stars.

Table 3
Catalog of Classificationsa

CXO ID OIR Match pforeground pmember pbackground Classification

1 Yes 0.00 1.00 0.00 member
4 No 0.00 0.03 0.97 background
5 Yes 0.00 0.99 0.01 memberb

6 Yes 0.00 0.00 1.00 backgroundb

9 Yes 0.00 1.00 0.00 foregroundc

11 Yes 0.13 0.87 0.00 memberd

15 Yes 0.09 0.91 0.00 foregroundc d

17 Yes 0.00 0.60 0.40 memberd b)
37 Multiple 1.00 0.00 0.00 foreground

Multiple 0.00 1.00 0.00 memberb

81 Yes 1.00 0.00 0.00 memberc e

227 Yes 1.00 0.00 0.00 foregrounde

Notes.
a Representative subset, for demonstration. Full catalog available online.
b Classification changed by inspection.
c Used as part of training set.
d Matched to a Gaia DR2 source within position error.
e Final classification inconsistent with Gaia distance.

(This table is available in its entirety in machine-readable form.)
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augmented with visual inspection of several color–color and
IRAC magnitude diagrams and correlated against known
properties like the presence of disks that can cause systematic
misassignments in the automated classification. We consider
the effects of measurement, as well as systematic uncertainties
due to extinction, and estimate that the residual error in our
classification is ≈5%.

We construct a catalog that includes a probabilistic
assessment of the class that each source belongs to. Adopting
a hard threshold that states that the highest of the triad of {p
(foreground), p(member), p(background)} determines the class,
we find that ≈75% of the catalog sources are members of the
Cygnus OB2 association, ≈5% are foreground stars, and the
remainder are background objects.
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Appendix A
Accounting for Uncertainties in Evaluating Likelihoods

Naive Bayes analyses allow for computing the probability of
a class by evaluating the likelihood at an observed value.
However, observations often have large errors, and often the
size of the error bars is comparable to the scale at which the
likelihoods vary. Point evaluations do not account for such
uncertainties and can introduce a bias in the classification. We
have developed a method to incorporate measurement
uncertainties into the classification probabilities.

We model likelihoods locally as fourth-degree polynomials
around the estimate of a given observed measure and weight
them with an assumed normal error distribution to obtain an
uncertainty-weighted likelihood. The likelihood p(D|θ), where
D represents the data and θ is a parameter of interest, is
typically a slowly varying function, especially in the context of
Naive Bayes applications. Around a specific value θ0, it can be

expanded as a Taylor series,
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where x= θ− θ0 is the variable of interest.

A.1. Quartic Polynomials

Consider evaluations of ( )x at various values surrounding
x= 0, x= 0, ±δ, ±2δ. Suppose that it has the values
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After some algebra, we obtain the coefficients as expressions of
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A.2. Weighting by Normal

We assume that the error distributions on the data points are
normal, of the form
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The weighted likelihood estimate is then
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since the process can be thought of as averaging over an
ensemble of observations, with ( )x providing an importance
weight for independent draws.

Noting that ( ) ( )dx x f x dx x f x2n n2
0

2ò ò=
-¥

+¥ ¥
and

( )dx x f x 0n2 1ò =
-¥

+¥ + for symmetric f (x) and integer n and
using known calculations of the integral (see, e.g., Gradshteyn
& Ryzhik, Equations (3.461.2–3)), we obtain the uncertainty-
weighted likelihood,
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Choosing the natural scale in the problem, δ= σ/z,
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For z= 1, the above reduces to
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Notice that these expressions have some desirable
mathematical properties: the error-weighted likelihood is
positive definite; the coefficients of each x k are symmetric in
how ( ). at ±δ and ±2δ are included; if the likelihood function
is flat, all coefficients of x k for k> 0 vanish; and finally, if the
likelihood function is flat, ∣ 0º  .

Appendix B
Extinction

B.1. Fukugita+ versus Fitzpatrick and Massa

As discussed in Section 4.6, we primarily use the extinction
law of Fukugita et al. (1996, F96) to compute Av. However, the
extinction law based on the newer study of Fitzpatrick et al.
(2007, 2009, FM) is a viable alternative. We do not use the

latter as our primary reference because the peak of the
distribution of Av is shifted lower by ≈1.5 mag. Here we
consider the effect of changing the extinction law on the
classification (see Figure B1). In Table B1, we show how many
sources change their Naive Bayes−based classification based
on this change. We then carry out the same analysis as in
Section 5.2.1, reclassifying sources manually, and show how
many sources are reclassified in Table B2. In both cases, we
find a similar fraction of changes, suggesting that our statistical
classification is effectively at the limit defined by potential
systematic errors in the data sets.

B.2. Av across the Field of View

Individual extinction for stars associated with Cygnus OB2
is calculated with a similar approach to that of Guarcello et al.
(2012). In that paper, individual extinction of the X-ray sources
with an optical counterpart from the OSIRIS or SDSS catalogs
is calculated from the displacement along the extinction vector
from the AV= 0 mag, 3.5 Myr isochrone from Siess et al.
(2000) in the r− i versus i− z diagram. This method is feasible
thanks to the almost monotonic shape of the isochrone in this
color space, but it requires the use of suitable color
transformations from the Johnson−Cousins UBVRI to the
uI gI rI iI zI photometric system. Guarcello et al. (2012) adopted
the transformations from F96.
In this paper, in order to avoid the use of any photometric

transformation, we adopted the MIST isochrones that are
provided in several photometric systems, one of which is
uI gI rI iI zI.

12 Besides, these isochrones span a wider range of
stellar mass, allowing the calculation of individual extinction
also for stars more massive than 7Me, which is the upper mass
limit in the Siess et al. (2000) isochrones. Additionally, in this
paper we calculate the individual extinction of those 2MASS/
UKIDSS sources without a good optical counterpart using the
NICER method (Lombardi & Alves 2001), based on the H− K
color.
The left panel of Figure B2 shows the distribution of the

resulting individual extinctions for the X-ray sources associated
with Cygnus OB2. The median value is 4.2 mag, with the 10%
quantile equal to 2.7 mag and the 90% quantile to 7.9 mag,
quite similar to previous estimates (e.g., Drew et al. 2008; Sale

Figure B1. As in the first two panels of Figure 4, but for extinctions derived from FM.

12 MIST isochrones can be downloaded from http://waps.cfa.harvard.edu/
MIST/index.html.
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et al. 2009; Wright et al. 2010). The right panel shows the
spatial map of extinction across the area of the survey,
comparing it with the level of continuum emission at 8.0 μm
that marks the dust emission. The well-known low-extinction
region in the northwest is evident, as well as the large
extinction regions corresponding to some of the dusty
structures in the cloud.

Appendix C
X-Ray Sources with No OIR Matches

A detailed description of the matching procedure to
determine OIR counterparts to the X-ray sources is given in
Guarcello et al. (2023a). For the 1428 X-ray sources classified

here as members but that have no counterparts, Guarcello et al.
(2023a) list the nearest match in a supplemental table. Here we
consider some properties of this population.
The presence of different populations in the sample of the

X-ray sources without an OIR counterpart is evident by
looking at the distribution of their photon median energy and
the parameter prob-no-source evaluated by ACIS Extract
(Broos et al. 2010). The latter parameter indicates the
reliability of the source in terms of probability that it is a
background fluctuation. The distribution of the photons’
median energy of the X-ray sources with no OIR counterpart
is clearly different (see Figure C1) than that of the whole
sample, being almost flat while the latter peaks at about
1.8 keV. The high-energy tail of the X-ray sources with no
OIR counterpart is due to background sources. The nature of
the soft sources in this sample can be investigated by looking
at the distribution of the prob-no-source parameter. For soft
X-ray sources with no OIR counterpart (red distribution) the
distribution of this parameter clearly peaks at high values,
while the low-value bins are populated by sources with higher
median photon energy, suggesting that the soft X-ray sources
with no OIR counterpart are mainly candidate spurious
sources, while those with higher photon energy are mainly
genuine detections.
Figure C2 shows the spatial distributions of the X-ray

sources without OIR counterparts classified as members and
those classified as sources separately. While the latter are more
uniformly distributed, the candidate members show some level
of clustering corresponding to various Cygnus OB2 subclus-
ters, as expected for real background and clusters sources. Both
samples also show a clear halo of sources around the position
of Cygnus X-3, which are more likely spurious X-ray sources
that survived the pruning process of the X-ray catalog.
To further verify the nature of the X-ray sources with no

OIR counterparts that are classified as members, we have
inspected their positions in various optical and IR diagrams
and the optical images of the closest source in the OIR catalog
of each of these sources, selecting 46 candidate false negatives

Figure B2. Left: distribution of the individual extinctions of the sources in the catalog. Right: map of stellar extinction across the area of the survey. The red contours
mark the continuum emission levels at 8.0 μm. The blue stars mark the positions of known O stars.

Table B1
Changes in Naive Bayes Classification upon Changing Extinction Law from

F96 to FM

F96 FM Subtotal F96

Foreground Member Background
Foreground 610 7 2 619
Member 70 5740 124 5934
Background 3 83 1381 1467

Subtotal FM 683 5830 1507 8020

Table B2
Post Hoc Reclassifications (as in Table 2) but Based on FM Extinction Law

Original Reclassified
Subtotal
Original

Foreground Member Background
Foreground 491 192 0 683
Member 60 5768 2 5830
Background 0 110 1397 1507

Subtotal
reclassified

551 6070 1399 8020
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produced in the match between the X-ray and the OIR
catalogs. Table C1 lists their CXO-IDs and the separation in
arcseconds from the closest OIR source. Note that some of
these sources have an OIR star closer than 1″. The listed
sources are divided into four categories. In four cases the
closest OIR source is a known star with disk classified by
Guarcello et al. (2013). In the remainder the closest OIR
source falls into the loci defined by Cyg OB2 members in the
various diagrams. Five stars have J< 12 mag (candidate

bright members), 19 sources have 13 mag< J< 16 mag
(candidate members), and 18 sources have 16 mag< J< 19
mag (candidate low-mass or highly extinguished members). In
particular, the OIR source 0 1 from the X-ray source 3532 is
compatible with being a member in IR but not in optical,
likely being a false coincidence between a low-extinction
optical source and a high-extinction IR source; the X-ray
source 4675 is close to the O8.5V star MT91-8D, which has
been matched with the X-ray source 4673.

Figure C2. Spatial distributions of the X-ray sources with no OIR counterpart classified as members (left panel) and background sources (right panel). In each panel,
the blue stars mark the positions of the known O stars; the contours mark the background brightness at 8.0 μm, tracing the dust emission. The position of Cygnus X-3
is also indicated.

Figure C1. Left: distributions of the median energy of the detected photons for all the X-ray sources detected in our survey (gray), for those matched with OIR
counterparts (blue), and for the X-ray sources without an OIR counterpart (red). Right: distribution of the ACIS Extract parameter prob-no-source for the X-ray
sources with no OIR counterpart separated according to their median photon energies, with soft (0.5–1 keV; red), medium (1–2.5 keV; blue), hard
(2.5–7.5 keV; green), and all (black).
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Table C1
Candidate X-Ray vs. OIR False Negatives

CXO ID Separation (arcseconds)

Stars with Disks
56 1.9
2327 2.4
3099 1.6
3624 2.2

Candidate OIR-bright Members
796 2.2
3692 1.9
4602 1.7
4675 1.9
7115 1.2

Candidate Members
121 3.2
1791 2.1
1822 1.8
2214 2.3
2397 1.2
2788 0.6
2910 5.4
3056 1.5
3141 1.8
3185 1.5
3759 1.0
3942 0.6
4590 2.8

Table C1
(Continued)

CXO ID Separation (arcseconds)

5130 5.1
5430 1.8
5442 0.2
6905 2.0
7655 2.7
7699 3.1

Candidate Faint Members
102 2.3
222 0.8
2558 2.5
2850 0.6
3006 5.1
3118 4.2
3346 6.5
3532 0.1
3838 2.4
4005 0.7
4835 1.6
5573 0.6
6167 2.5
6518 1.9
6593 1.4
6681 0.9
6861 0.5
7201 3.0
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Appendix D
Adopted Likelihoods

Here we show the various combinations of magnitudes
that were used to define the likelihoods for classification in
Section 4. The combinations PCA(1){J, K}, PCA(2){J, K},
PCA(2){H, J, K}, PCA(2){rI− iI, rI−Hα}, PCA(3){rI, iI,
Hα}, and PCA(1){Q25, Q50, Q75} are shown in
Figures D1–D6.

Figure D1. Same as Figure 1, but for the first PC of {J, K}.

Figure D2. Same as Figure 1, but for the second PC of {J, K}. Additionally, during the classification (right panel), the higher of the foreground likelihoods between
the first (Figure D1) and second components is chosen.

Figure D3. Same as Figure 1, but for the second PC of {H, J, K}.

Figure D4. Same as Figure 1, but for the second PC of {rI − iI, rI − Hα}.
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Appendix E
The Effect of Reclassification

Here we show various plots of the properties of the
cataloged sources comparing the classes as derived from the
automated Naive Bayes approach and after manual reclassi-
fication (see Section 5.2.1). In all figures, red points mark

sources classified as foreground, green points mark those
classified as members of the association, and blue points mark
background objects. The diagrams for rI−Hα versus rI− iI,
gI− rI versus rI− iI, J versus J− K, Spitzer [4.5]− [5.8]
versus [5.8]− [8.0], and their spatial distributions are shown
in Figures E1–E5.

Figure D5. Same as Figure 1, but for the third PC of {rI, iI, Hα}.

Figure D6. Same as Figure 1, but for the first PC of {Q25, Q50, Q75}.

Figure E1. Same as Figure 6, but for rI − Hα vs. rI − iI. The black lines are ZAMS with increasing extinction: from EB−V = 1mag to EB−V = 4mag from Drew et al.
(2005). The curved dotted lines mark the locus typically populated by A stars.
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Figure E2. Same as Figure 6, but for gI − rI vs. rI − iI of sources with good-quality SDSS photometry. The 2.5 Myr isochrones from Siess et al. (2000) with
Av = 0mag and Av = 3.5mag are shown as solid lines; the 2.5 Myr MIST isochrones are shown as dashed lines.

Figure E3. Same as Figure 6, but for J vs. (J − K ) for sources with good 2MASS or UKIDSS photometry. The solid line is the 2.5 Myr isochrone with Av = 3.5mag
from Siess et al. (2000), while the dashed line marks the MIST isochrone.
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