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ABSTRACT 

In a city located in a desert environment (Tulum Valley, Argentina) we proposed to assess  in the coldest and 

warmest periods (1) the urban cold/heat island (UCI/UHI) phenomenon; 2) which driving factors currently affect the 

Land Surface Temperature (LST). In the study area, we selected 50 points for the urban class and 49 points for the 

rural class. The LST data was obtained from Landsat 5 TM y Landsat 8 OLI/TIRS, for 1988, 2000, 2010, and 2021 

years. As driver factors, we assessed the median (med) and standard deviation (sd) of NDVI (Normalized Difference 

Vegetation Index), NDBI (Normalized Differences Built-up Index), and BI (Brightness Index). The Tulum Valley 

behaved like a UCI during almost all studied years, except for 2010 and 2021. Probably because the city was 

undergoing reconstruction after a major earthquake. In the urban class, the LST were affected positively by NDVImed 

during the cold period, while in the rural class the LST were explained by a negative relationship with NDVImed, and 

positive with NDBImed. In the urban class during the warm periods, the LST were affected negatively by BIsd, BImed, 

NDVImed, and NDVIsd,  which leads to a decrease in LST. Contrarily, an increase of NDBIsd produces an increment 

of LST. The only driver for LST in the rural class was NDBImed, which had a positive effect. Different drivers 

affected the LST behavior in Tulum Valley, moreover, these drivers explained more variability in rural than in urban 

class. 
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1. INTRODUCTION 

The emergence, development, and expansion of the city in a geographic area disrupt the natural land surface 

characteristics. The urban landscape is a complex combination of green vegetation, water surfaces, impervious surface 

materials and bare soils (Rasul et al. 2017). In last decades, the climate change due to sprawl of the urban areas has 

gained relevance (Rasul et al. 2017). One of the key climatic effects is increased Land Surface Temperature (LST) in 

the urban environments compared to their surrounding non-urban areas, i.e. the Urban Heat Island (UHI) phenomenon 

(Oke 1982) frequently recorded in cities of temperate and subtropical climates (see review Rasul et al. 2015). This 

phenomenon is due to many common construction materials used in urban areas, which absorb and retain more of the 

sun’s heat than natural materials used in rural areas. Additionally, urban materials are mostly impermeable, i.e. do not 

have moisture able to dissipate the heat from the sun. Other factors that contribute to heat island formation are the 

shape of buildings, the pavement, the anthropogenic heat or human-produced heat, slower wind speeds, and air 

pollution in urban areas (Gartland 2008).  

Contrarily, in most arid and semi-arid environments urban areas have been found to exhibit lower surface 

temperatures compared to non-urbanized dry surroundings, a phenomenon that is known as the Urban Cool Island 

(UCI) (see review Rasul et al. 2015). Different drivers can be attributed as a cause of UCI, i.e. the amount of soil 

moisture in the urban area, the cooling caused by urban parks and green spaces with dense vegetation that reduces the 

solar radiation reaching the surface, the presence of urban rivers (see review Masoodian et al. 2021). Particularly the 

urban parks and green spaces, i.e. irrigated vegetation of urban areas, cool their surroundings through an increase of 

evapotranspiration which enhances latent heat exchange. On the other hand, the surrounding area becomes warmer 

than the urban areas, due to the sun’s radiation turning into sensible heat by the presence of bare soil (Masoodian et 

al. 2021). There is much interest in the study of vegetation in different cover classes, as a measure of heat storage 

capacity and evaporation (Voogt and Oke 2003).  

Several studies have examined the effects of the urban landscape on LST using landscape metrics (Madanian et al. 

2018). In this regard, these studies assessed the spatial patterns of the landscape components as a significant 

determinant of the urban LST, i.e the size and complexity of the green spaces, the abundance of each land cover class, 

their spatial arrangement, and distribution (Jafari et al. 2017; Madanian et al. 2018). Other studies, analyze the 

relationship between the spatiotemporal variability of LST and driver factors such as vegetation, urban area, and 

population throughout different indexes calculated from remote sensing data (Rasul et al . 2017). Regardless of the 



approach used to assess the influencing factors on LST, different studies agree that vegetation, bare soil, and their 

associated moisture were dominant factors in LST behavior (Rasul et al. 2015; Madanian et al. 2018). Particularly 

related to vegetation, several studies on many parks showed that LST is lower in larger parks than in smaller ones, in 

green spaces with trees and shrub cover, and with little paved coverage (see review Rasul et al. 2017). Moreover, other 

features of urban vegetation arrangement that could affect LST behavior could be the spatial patterns of trees (i.e. 

individuals, trees along streets, trees cluster in green spaces) (see review Farella et al. 2022), the place where growing 

(i.e. concrete or grass surface), and the presence of different strata (i.e. trees, shrubs, grass) (see review Bowler et al. 

2010). In relation to bare soil as a driver of LST behavior, this variable is especially important in arid and semiarid 

regions with sparse vegetation in which bare soil represents a significant portion of the soil heat flux. Therefore, in a 

mixed pixel with vegetation and bare soil, vegetation in the bottom of a canopy can have higher temperatures than top 

of canopy (see review Farella et al. 2022).  

The UHI/UCI phenomenon has been studied in many regions of the world, however, urban areas of South America 

have been less focused on (Espinoza-Molina et al. 2022). Moreover, the most studied cities are from tropical, 

Mediterranean, and cold climatic regions, and little attention has been paid to arid regions with extremely high 

temperatures (Rasul et al. 2017). In Tacna, an arid city of Perú, it was found that the dense vegetation of summer can 

weaken the UHI effect, due to not allow reach radiation to the surface, and built-up spaces can accelerate its effect 

(Espinoza-Molina et al. 2022). In Argentina, Casadei and collaborators (2021) quantified the UHI/UCI of various 

cities on a large scale, using data from MODIS images. They found that urban areas surrounded by desert and xeric 

vegetation showed a UCI diurnal phenomenon more frequently than urban areas surrounded by forest or jungle. 

In this work, we proposed to evaluate the LST behavior and its driving factors in a city placed in the arid lands of 

Argentina. Therefore we assessed the UHI/UCI phenomenon in the last thirty years. Moreover, since we consider that 

not only the abundance but also the heterogeneity in the distribution of different drivers affect the behavior of LST, 

we work with median values and standard deviations of the vegetation, built-up areas, and bare ground indexes. 

Moreover, considering that UHI/UCI could be a seasonal phenomenon (Rasul et al. 2017), we took into account the 

effect of drivers on the minimum and maximum values of LST, of the coldest and warmest periods of the year 

respectively. Thus we addressed the following objectives in the city of San Juan: (1) to assess the behavior of Land 

Surface Temperature (LST) and the UCI/UHI phenomenon during the coldest and warmest period during the last 

thirty years; 2) to evaluate which driving factors currently affect the LST in the coldest and warmest periods. 



2. METHODS 

2.1 Study area 

The San Juan province (Argentina) belongs to the South American Arid Diagonal and has two different 

environments: the oasis and dry lands, defined by the aridity conditions and development urban model (Márquez 

2004). In the irrigated oases, human settlements were concentrated together with their main economic activities. The 

most important oasis, due to the availability of soil and water, is the Tulum Valley, with an approximate area of 

1,625 km2. This Valley is our study area, and is located in the central-southwestern sector of the San Juan province 

and includes the metropolitan center of San Juan city and its surrounding areas (Fig. 1). Around 73% of the 

population of this Valley is concentrated in urban areas, while the rest of the population is in surrounding rural areas. 

During the last decades, the Tulum Valley has experienced remarkable urban growth with a westward orientation 

(Kurban et al. 2017), with a population of 696,076 in 2010,  789,489 in 2021, and an estimated increase of 926,479 

for 2040 (https://www.indec.gob.ar/).  

The climate of San Juan is mainly arid (Poblete 2007) with an average temperature of 10.98 °C in the coldest 

months (i.e. from May to August) and an average of 27.52 °C in the warmest months (i.e. from November to 

February). Being -5.9 °C the lowest temperature (June 2021), and 45.30 °C the highest temperature (December 

2020) recorded in a period of 9 years (2014-2022) (http://siga.inta.gov.ar/#/). 

 

2.2 Image data 

To obtain land surface reflectance and land surface temperature data, we used Landsat 8 OLI/TIRS Collection 2 

Level 2 products (https://www.usgs.gov/) corresponding to the study area (path 232 row 82) at 30-meter spatial 

resolution. The collections of Landsat ensure consistent data quality through time and across all the Landsat sensors, 

with sensor-specific geometric and radiometric adjustments. These collections improve substantially in the absolute 

geolocation accuracy of the global ground reference dataset, which improves the interoperability of the Landsat 

archive through time. Moreover, includes updated global digital elevation modeling sources and calibration and 

validation updates. 

We worked with images of the coldest months (i.e. from November to February) and images of the warmest months 

(i.e. from May to August) from 1988, 2000, 2010, and 2021 years. 

https://www.indec.gob.ar/
http://siga.inta.gov.ar/#/
https://www.usgs.gov/


To evaluate the LST behavior and its drivers, we considered urban and rural land-cover classes. The urban class 

included impervious surfaces such as asphalt and pavement (i.e. parking lots, roads, highways), built-up areas (i.e. 

with houses, and buildings), and green irrigated spaces. Instead, the rural class included croplands, land for 

cultivating, and sparsely vegetated or barren soil areas. Using Google Earth Pro (versión 7.3.1) high-resolution 

images we selected 50 points for the urban class and 49 points for the rural class.  

 

2.3 Land surface temperature 

To obtain LST data, we composed an image with median values for each period, i.e. coldest and warmest periods, 

taking into account the images of different months included in each period. Moreover, to consider the temporal 

variability of LST values, each image were normalized for the study area with the following equation (1): 

NLST = (LSTi − LSTmin) / (LSTmax − LSTmin)   (Equation 1) 

Where NLST is the normalized LST, LSTi is the initial LST of pixel i, LSTmin and LSTmax are the minimum and 

maximum LST's value of a given scene; respectively. 

For each study year (i.e. 1980, 2000, 2010, and 2021), the median (annual), minimum (of cold period), and 

maximum (of warm period) values of LST (hereafter LSTmed, LSTmin, and LSTmax) were calculated in window sizes 

of 3x3 pixels (equivalent to 90x90 m, area 0.81 ha) where each value was assigned to the central pixel of the 

window. 

 

2.4 Identification of UHI/UCI phenomenon 

We determined UHI/UCI phenomenon as the difference between surface temperature of an urban area and its rural 

surroundings (Stathopoulou and Cartalis 2007). Therefore, the UHI/UCI intensity were defined using following 

equations (2 y 3 respectively):  

UHII = LSTurban - LSTrural   (Equation 2) 

UCII = LSTrural - LSTurban   (Equation 3) 

where UHII is Urban Heat Island Intensity and UCII is Urban Cool Island Intensity. LSTurban is the median of LST 

for points of urban land cover class (n=50), and LSTrural is the median of LST for points of rural land cover class 

(n=49). 

 



2.5 Drivers of LST  

Different indexes were calculated to assessed the effect of drivers on LST behavior, i.e. vegetation, constructions 

and bare soil. These indexes were estimated for the 2021 year.  

2.5.1 Vegetation index 

The NDVI (Normalized Difference Vegetation Index; Townshend and Justice 1986) is a good estimator of green 

and vigorous vegetation. This index was obtained by using the following equation (Equation 4): 

NDVI = (NIR band– Red band) / (NIR band + Red band) (Equation 4) 

Where NIR is the near infrared band. NDVI is used to indicate the green space of an area. The value of NDVI varies 

from - 1 to +1. Values closes to +1 indicate high vegetation cover. 

2.5.2 Built-up index 

The NDBI (Normalized Differences Built-up Index) is an indicator of built-up areas (Zha et al. 2003) and was 

obtained by using the following equation (5): 

NDBI = (MIR band – NIR band) / (MIR band + NIR band)  (Equation 5) 

Where MIR is the middle infrared band and NIR is the near infrared band. The value of NDBI varies from -1 to +1. 

Values close to 1 indicate high density of built-up areas. 

2.5.3 Bare soil index 

The Tasseled Cap transformation (Kauth and Thomas 1976; Crist and Cicone 1984) results in new bands by 

combining the original bands of the image, in order to enhance some features of interest. The first Tasseled Cap 

index (Brightness Index, BI) (Crist and Kauth 1986) provides information about reflectivity particularly generated 

by the soil. This BI was obtained by using the following equation (6): 

BI = 0.3029 * Red band + 0.2786 * Blue band + 0.4733 * Green band + 0.5599* NIR band + 0.5080 * SWIR1 band 

+ 0.1872 * SWIR2 band   (Equation 6) 

Where NIR is the near infrared band, SWIR1 and SWIR2 are short-waves infrared. This index values increase with 

high percentage of bare soil. 

2.5.4 Abundance and heterogeneity of drivers 

   To taking into account the abundance and heterogeneity of each driver, we considered windows sizes of 3x3 (i.e. 

90x90 m, area 0.81 ha), where the median and standard deviation values of each indexes were assigned to the central 

pixel. Henceforth, NDVImed and NDVIsd for median and standard deviation of vegetation, NDBImed and NDBIsd for 



median and standard deviation of built-up areas, BImed and BIsd for median and standard deviation of bare soil. 

Moreover, each driver was calculated by period (i.e. coldest and warmest months) and land-cover class (i.e. urban 

and rural). 

 

2.6 Statistical Analysis 

We parameterized generalized linear models (GLMs) with remotely sensed independent variables as drivers of  

LST:  vegetation (NDVImed and NDVIsd); built-up areas (NDBImed and NDBIsd)  and bare soil (BImed and BIsd).  We 

build different models using as response variables to LSTmed, LSTmin and LSTmax (all variables with Gaussian error 

distribution). The models were performed on data of the coldest and warmest periods, and considering the  land-

cover class (i.e urban and rural).  

The information-theoretic approach described by Burnham and Anderson (2002) was used to model the data, based 

on the second-order Akaike Information Criterion (AIC). Akaike’s information criterion corrected for small sample 

size (AICc) was calculated for each model. Models were compared with ΔAICc, which is the difference between the 

lowest AICc value (i.e., the best of suitable models) and AICc from all the other models. We considered an Akaike 

weight of a model (wi), which determines the relative likelihood that the specific model is the best of the suite of all 

models. The wi for a model is just exp (−0.5×ΔAICc score for that model) divided by the sum of these values across 

all models. We evaluated the parameter likelihood of each predictor variable as a measure of important effects in the 

models (Burnham and Anderson 2002). Moreover, to supplement parameter-likelihood we calculated 95 % 

confidence interval limits (CL) of parameter estimates. We calculated a pseudo R2 (Zuur et al. 2009), with deviance 

values of the best models following equation (7):  

𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 ∗  100  (Equation 7) 

To identify collinearity between independent variables we used Pearson rank correlation, a parametric measure of 

statistical dependence (Zar 1999). It is important to identify the high collinearity because this can result in 

coefficient estimates that are difficult to interpret as independent effects and/or have high SE (see review of Zuur et 

al. 2009). We excluded variables when the coefficient r was >|0.8|. Then, we assessed the variance inflation factor 

(VIFs) for any remaining collinearity on the full models from different sets and excluded variables with VIFs >5, 

which indicate collinearity between predictors (Heiberger 2022). 



All statistical analyses were performed using R version 4.2.1 (R Core Team 2022). We assessed the VIFs using 

‘HH’ package (Heiberger 2022). The models were selected with ‘MuMIn’ package (Barton 2022). The relative 

importance of predictors were calculated using ‘relaimpo’ package (Grömping 2006). The graphs of each best model 

were performed using ‘effects’ package (Fox 2003).  

 

3. RESULTS 

During cold periods of all years and warm periods of 1988 and 2000, the Tulum Valley behaved like a UCI, being 

LSTrural higher than LSTurban (Table 1, Fig. 2 and 3). However, this Valley behaved as a UHI in the warm periods of 

1988 and 2000, with more intensity in 1988 (Table 1).  

Our model selection approach showed that in the cold period the NDVImed was the dominant driver of the spatial 

variations in LSTmin y LSTmed due to the fact that it was retained in the best models in both rural and urban systems 

(Table 2). We found that LSTmin and LSTmed increased with increasing NDVImed in urban areas (Table 3, Fig. 4); while 

the opposite pattern was founded in rural area (Table 3, Fig. 5).  In addition, another important driver of the LSTmed in 

the rural class was the abundance of built-up area (NDBImed), which increased the LSTmed (Table 3, Fig. 5). These 

drivers explained more than 61% of LST (Table 2). 

During warm periods in the urban class, the best model explaining spatial variations in LSTmed and LSTmax was the 

additive effect among heterogeneity and abundance of vegetation (i.e. NDVIsd, NDVImed), heterogeneity of built-up 

areas (NDBIsd), heterogeneity and abundance of bare soil (i.e. BIsd, BImed) (Table 2), which explained 42.3% of 

variance in LSTmed and 38.72% of that in LSTmax. Almost all drivers had a negative effect on LSTmax and LSTmed with 

the exception of built-up areas (NDBIsd) that had a positive effect (Table 3, Fig. 6). For the rural class, the main driver 

was NDBImed, with a positive effect that explained more than 67% of the variance in LSTmax and LSTmed (Table 2 and 

3, Fig. 7).  

The drivers related to  vegetation and built-up areas explained more variance of the spatial variations in LST in rural 

class (> 61% for cold periods and > 67% for warm periods) than in urban class (> 19% for cold periods and > 40% 

for warm periods) (Table 2). 

 

4. DISCUSSION 



Our results indicated that Tulum Valley showed a consistent pattern with UCI characteristics during cold periods of 

all studied years, and during warm periods of 2010 and 2021. However, in the warm periods of 1988 and 2000, this 

Valley behaved as a UHI, being more intense in 1988. Related to possible causes of LST behavior, the LSTmin and 

LSTmed were affected by different drivers in urban and rural classes during the cold period. The vegetation affected 

positively the LSTmed and LSTmin in the urban class, meanwhile, the relationship was negative for both LSTs in the 

rural class. Another important variable for the LSTmed behavior of the rural class was NDBImed since an increase in 

built-up areas leads to an increase in LST med. The spatial heterogeneity of drivers did not affect LSTmin or LSTmed in 

cold months in any classes. In warm months, the LSTmax and LSTmed had the same spatial pattern, in the urban class. 

An increase in the BImed, BIsd, NDVImed, NDVIsd,  leads to a decrease in LST. However, the increase in heterogeneity 

of built-up areas (i.e. NDBIsd), induced an increment in LST. On the other hand, the only driver for LSTs in the rural 

class was NDBImed, since an increase in built-up areas produces an increment in LSTs.  

Regardless if there is a UHI or a UCI,  there is a general consensus on their causes. These islands are produced 

because the expansion of the city and constructions change the characteristics of the earth's surface (Masoodian et al. 

2021). Our results showed that taking into account the differences between LSTurban and LSTrural, the Tulum Valley 

of San Juan is a UCI mainly in the cold period, with increasing intensity through the years. The same UCI 

phenomenon was reported for other cities in arid, semi-arid, arctic, and subarctic environments, where the urban 

areas showed lower surface temperatures than non-urbanized or rural areas (Rasul et al. 2017). In the years1988 and 

2000, the Tulum Valley behaved as a UHI during the warm periods. This UHI phenomenon probably happen 

because the city was undergoing reconstruction after a major earthquake in 1977 with a 7.4 Ritcher magnitude. An 

earthquake of this magnitude produces partial or complete damage to most buildings and could affect great 

distances, such as 250 km from the epicenter, with major damage.    

The vegetation cover is able to mitigate negative impacts on the local climate and environment because it reduces the 

solar radiation reaching the surface (Mildrexler et al. 2011). Moreover, vegetation causes the cooling of the 

surrounding air through evapotranspiration, a process that releases moisture (Kaiser 2014). Our results showed that 

vegetation affected positively the LSTmed and LSTmin during cold periods in the urban class, meanwhile, the 

relationship was negative for both LST in the rural class. The most abundant species of tree, i.e. Morera blanca and 

Platanus occidentalis, in urban areas of Tulum Valley lose their leaves in cold periods.The LST maximum values 

occur after canopy senescence thereby losing transpirational cooling by leaves (Mildrexler et al. 2011).  Moreover, 



the main urban green cover during the cold periods is grass. The grass is a low and homogeneous stratum of vegetation, 

with shallow and fibrous root systems unable to sustain transpiration (Mildrexler et al. 2011). Meanwhile, in the rural 

class, the LSTmin and LSTmed were negatively affected by NDVImed. In the study area, one of the main economic 

activities together with the vid, is the olive crop (Olea europaea), an evergreen tree species, that can reach 8 m. The 

olive crop occupies 18,000 ha in the province of San Juan and is mainly concentrated in the Tulum Valley (San Juan 

2019). Probably their presence leads to a decrease in LST in rural areas in cold periods. Another important variable 

was NDBImed, which produces an increase in LSTmed during the cold period and in the LSTmax and LSTmed during the 

warm periods. As a part of the olive and vid industry, there are big constructions in crop areas for the extraction and 

production of olive oil and wine. Probably these built-up zones affected the LST behavior in rural areas, leading to an 

increase both in cold and warm periods.   

The LSTmax and LSTmed in the urban class during warm periods was mainly affected by heterogeneity (i.e. BIsd ) and 

abundance (i.e. BImed) of bare soil, producing a decrease in LSTmax and LSTmed. Our results disagree with Rasul and 

collaborate (2015) who found that an increase in wetness and bareness are the main factors leading to an increase in 

the LST of UCI in the semi-arid environment of Erbil.  In the presence of bare soils, the sun’s radiation turns into 

sensible heat, and as a result, the LST increase (see review Mildrexler et al. 2011). However, during warm periods, 

the climate of San Juan is characterized by strong winds, which could promote the cooling of bare soil through a 

turbulent exchange. Anyway, future research could assess climate variables that would affect the LST, for a better 

understanding of drivers' effects.  

The spatial heterogeneity in built-up areas leads to an increase in LSTmax and LSTmed during warm periods. These 

results agree with those found by Rasul and collaborators (2017), which report an increase in LST in the city's 

periphery and in modern neighborhoods with spaced construction of houses. The main urban sprawl in San Juan city 

was in the Tulum Valley, in the eastern and southern directions, and through the main avenues, replacing rural areas 

with residential and private neighborhoods (Sánchez and Tejada 2014). These urban areas have large lots that allow 

separate house constructions and green spaces with grass and trees, where moreover, the spatial heterogeneity and 

abundance in vegetation (i.e. NDVIsd and NDVImed respectively) during warm periods, would produce a negative 

effect on LSTmax and LSTmed. With vegetation growth, there is an increase in transpiration and evaporation, 

therefore, the LST decrease in the urban area. This process results because a greater proportion of incoming solar 



radiation is partitioned to latent heat flux as a result of transpiration, thereby cooling the canopy surface. Moreover, 

the complex of canopy trees promotes cooling through wind exchange (Mildrexler et al. 2011). 

To date, there is much research on UHI and its main drivers but only a few investigate the UCI phenomenon in desert 

environments and its possible causes. This is the first work that assesses the abundance and heterogeneity of drivers 

in the LST of a city surrounded by desert. Probably, homogeneous vegetation of crops and the big establishments of 

the olive oil and vineyard industries, are better captured by the satellite sensors compared with a great diversity of 

components in the urban landscape (i.e. impervious surfaces, houses, buildings, green spaces). However, the LST 

behavior in UCI needs to develop more research to understand this phenomenon, considering for example different 

scales, other possible drivers, and even interactions between them. Based on our results, we encourage urban planners, 

decision-makers, and city managers to include vegetation, such as trees, shrubs, and grass when planning new 

construction both in residential areas, and commercial or industrial development. 
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