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We have experimentally confirmed the presence of long-
memory correlations in the wandering of a thin Gaussian
laser beam over a screen after propagating through a turbu-
lent medium. A laboratory-controlled experiment was con-
ducted in which coordinate fluctuations of the laser beam
were recorded at a sufficiently high sampling rate for a wide
range of turbulent conditions. Horizontal and vertical dis-
placements of the laser beam centroid were subsequently
analyzed by implementing detrended fluctuation analysis.
This is a very well-known and widely used methodology
to unveil memory effects from time series. Results obtained
from this experimental analysis allow us to confirm that
both coordinates behave as highly persistent signals for
strong turbulent intensities. This finding is relevant for a
better comprehension and modeling of the turbulence ef-
fects in free-space optical communication systems and other
applications related to propagation of optical signals in the
atmosphere. © 2015 Optical Society of America
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The centroid of a laser beam experiences multiple deflections
when propagating through the Earth’s turbulent atmosphere
due to stochastic refractive-index fluctuations along the optical
path. As a consequence of phase changes, due to turbulent ed-
dies with dimensions larger than the beam diameter, the laser
suffers displacements perpendicular to the original direction of
propagation. This phenomenon is known as beam wandering or
spot dancing. In a first approach, the wandering of the laser
beam in the turbulent atmosphere could be considered fully
random [1]. This means that the coordinate fluctuations of
the laser centroid at a time are independent of those associated

with previous instants. However, there exists some partial evi-
dence that long-range correlations are present in the underlying
temporal dynamics [2–8]. It is clear that a better understanding
of the fluctuating temporal behavior is essential for improving
laser practical applications, such as those related to tracking and
communication purposes. Particularly, beam wander is consid-
ered the main cause of substantial signal losses at the receiver
plane in free-space laser communication systems, degrading its
data transmission quality and reliability, and limiting its perfor-
mance [9]. Indeed, beam-wander mitigating control systems
have been recently proposed for overcoming this drawback
[10,11]. Trying to shed some light on the laser beam wandering
dynamics, in this Letter, we carefully analyze the temporal
correlations in the recorded position of a laser beam after it
propagates through an indoor laboratory atmospheric chamber.
We conjecture that this laboratory-generated turbulence is
representative of fully developed atmospheric turbulence.
Consequently, it is able to emulate the main properties of the
turbulent flows that affect the laser beam of a communication
link. In fact, similar devices have been used for testing atmos-
pheric turbulence effects in several contexts [9,12–17].
Horizontal and vertical components of the centroid position
of the laser spot are measured as a function of time with a po-
sition-sensitive detector located at the end of the propagation
path. With the aim to statistically characterize the temporal cor-
relations of these data streams, a detrended fluctuation analysis
(DFA) is implemented. DFA is a robust technique for detecting
dependence among samples in noisy nonstationary time series.
The results obtained from this fractal analysis confirm that the
displacements of the centroid of the laser are consistent with
long-memory correlated stochastic dynamics for the stronger
turbulent conditions, i.e., when the turbulence effects can
be resolved by the detector.

A conceptually simple experiment was performed in con-
trolled conditions in which a laser beam propagates through
artificial turbulence—please see Fig. 1 for a schematic view of
the optical setup. The wandering of the laser beam (10 mW
HeNe Melles Griot Model 05-LHP-991) is detected by a
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position-sensitive detector with an area of 1 cm2 (UDT SC-10
D). This detector measures the position of the centroid of the
impinging laser beam with an accuracy of 2.5 μm. Horizontal
and vertical coordinates were recorded at 500 Hz—we have
confirmed similar findings for higher sampling rates. For the
purpose of having fully developed inertial turbulence at stable
and statistically repeatable conditions, we employ a laboratory
air turbulence generator, commonly called a turbulator, similar
to the one originally proposed by Fuchs et al. [18], and later
enhanced by Keskin et al. [19]. To simulate the atmospheric
turbulence, two air fluxes at different temperatures are forced to
collide in the chamber producing an isotropic mix between hot
and cold air. The hot source is an electric heater controlled by
changing the current passing through it. The thin laser beam
propagates across almost 0.35 m of turbulence in the mixing
chamber. Air flow velocity is fixed because both fans operate at
identical velocities so the turbulence characteristics are only due
to the temperature difference. By increasing the temperature of
the hot source, different turbulent intensities can be produced.
The indoor chamber offers the advantages of full system char-
acterization and repeatability in a single turbulent layer. The
strength of the artificial turbulence, quantified through the
structure constant C2

n, and the inner and outer scale were pre-
viously estimated following the procedure suggested by
Masciadri and Vernin [12]. For such a purpose, the variance of
angle-of-arrival fluctuations of collimated laser beams as a func-
tion of the radius of different pupil masks passing through the
turbulent layer is measured ([12], Fig. 1). By analyzing the
averaging effect of the pupil sizes and considering the effects
of the inner (l 0) and outer (L0) scales through the von
Kármán spectrum, it is feasible to estimate the different turbu-
lence parameters (C2

n, l0, and L0) by the fit of the theoretical
model {[12], Eq. (12)} to the empirical variances. Finally, C2

n is
expressed as a function of the temperature difference between
hot and cold sources (T 1 and T 2, respectively, in Fig. 1).
Experiments with 12 temperature differences ΔT � T 1 − T 2

ranging from 5°C to 180°C were carried out. Since turbulence
is based on temperature gradient and air flow mixing, reference
measurements were taken in two different conditions: fans on
and fans off, both with the heater disconnected. In particular,
measurements with the fans off can be considered as a back-
ground measurement that quantifies the electronic noise and

room turbulence effects. It is worth noting here that the esti-
mated structure constants are, at least, two or three orders of
magnitude larger that those expected in outdoor experiments.
These higher turbulence strengths are required to become
detectable to the laser centroid fluctuations because of the small
turbulent path length in the mixing chamber.

DFA was introduced more than 20 years ago to characterize
the fractal dynamics of a system from which a time series has
been measured [20]. Being the most popular approach to detect
the presence of long-term memory in data [21], at present there
are more than 1800 articles published on DFA and its appli-
cations according to the information extracted from the Scopus
bibliographic database (accessed in March 2015). However,
specific applications in the optical field are scarce [8,22–24].
Briefly explained, the DFA method consist of five steps
[25]. First, given a time series S � fxt ; t � 1;…; N g, with N
being the number of equidistant observations, the cumulated
data series Y �i� � Pi

t�1�xt − hxi�, with i � 1;…; N and
hxi � �PN

t�1 xt�∕N , is considered. In the second step, this
profile is divided into ⌊N∕s⌋ nonoverlapping windows of equal
length s (⌊a⌋ denotes the largest integer less than or equal to a).
A local polynomial fit yν;m�i� of degree m is fitted to the profile
for each window ν � 1;…; ⌊N∕s⌋ as the third step. The de-
gree of the polynomial can be varied to eliminate constant
(m � 0), linear (m � 1), quadratic (m � 2), or higher-order
trends of the profile. Then, in the fourth step, the variance
of the detrended time series is evaluated by averaging over
all data points i in each segment ν, F 2

m�ν; s� �
�1∕s�Ps

i�1 fY ��ν − 1�s � i� − yν;m�i�g2, for ν � 1;…; ⌊N∕s⌋.
In the last step, the DFA fluctuation function is obtained by
averaging over all segments and taking the square root,
Fm�s� � f�1∕⌊N∕s⌋�P⌊N∕s⌋

ν�1 �F 2
m�ν; s��g1∕2. This procedure

should be repeated for different values of the time scale s in
order to unveil the s-dependence of Fm. If the time series
has long-range power-law correlations, Fm�s� scales as

Fm�s� ∼ sH (1)

for a certain range of s. The Hurst exponent, i.e., the scaling
exponent H , is estimated by the slope of the best linear regres-
sion in a double logarithmic plot. It quantifies the long-range
correlations embedded in the time series: when H > 1∕2, con-
secutive increments tend to have the same sign so that these
processes are persistent. For H < 1∕2, on the other hand,
consecutive increments are more likely to have opposite signs,
and it is said that the processes are antipersistent. H � 1∕2 is
obtained for uncorrelated data ([26], Chap. 9).

Twenty-one independent realizations of 5,000 coordinate
points were obtained for each turbulent condition.
Afterward, the DFA analysis was performed for both horizontal
and vertical coordinates. Figure 2 shows the fluctuation func-
tions obtained by implementing a DFA analysis with a detrend-
ing polynomial of second order (m � 2) for the different
turbulent strengths. Representative results for one particular
realization for each turbulent condition are depicted, with C2

n
increasing from bottom to top. A well-defined power-law
behavior is concluded with higher slopes for the stronger tur-
bulent intensities. Mean and standard deviation (over the 21
independent realizations) of the Hurst exponents estimated

Fig. 1. Schematic diagram of the laboratory experimental setup.
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in the range s ∈ �30; 1000� (vertical dashed lines in Fig. 2) as a
function of C2

n for both coordinates are plotted in Fig. 3. In
order to better interpret the results obtained for the Hurst ex-
ponent, Fig. 4 shows the signal-to-noise ratio (SNR) for the
different turbulent conditions. SNR was estimated as the vari-
ance of the signals at turbulent states relative to the value as-
sociated with the background measurements. From Fig. 4 it is
concluded that higher C2

n are needed to fully resolve the
turbulence effects in the turbulator with the implemented
detection system.

For the reference measurements the detector is unable to
resolve the position differences, and a fully uncorrelated elec-
tronic noise associated with the detector is measured.
Consequently, the Hurst exponent is near 0.5 as expected.
As the turbulent strength increases, the SNR is larger than
one (please see Fig. 4) and the detector begins to discern
the turbulence influence. Simultaneously, the Hurst exponent
shows an increasing behavior, for both horizontal and vertical
coordinates, saturating at a value close to 5/6 for the higher C2

n
values (please see Fig. 3). Results obtained allow us to confirm
that turbulence introduces memory effects in time series wan-
dering because highly persistent dynamics are clearly concluded
for the stronger turbulence intensities. Moreover, the similarity
between horizontal and vertical estimated Hurst exponents
confirms the isotropy of the turbulence within the laboratory
chamber. It is worth mentioning here that H � 5∕6 has been
originally proposed theoretically for the turbulence-degraded
wavefront phase within a Kolmogorov model [27], and very
recently confirmed experimentally for the angle-of-arrival fluc-
tuations of stellar wavefronts propagating through atmospheric
turbulence [24].

Summarizing, a persistent stochastic fractal behavior is
clearly concluded from the DFA analysis of laser beam wander-
ing in laboratory-generated turbulence. Estimated Hurst
exponents, for both coordinates, converge to a value close to
5/6—the theoretical value associated with Kolmogorov
turbulence—for the stronger turbulent conditions. Outdoor

Fig. 2. Fluctuation functions F 2�s� as a function of the scale s for
the horizontal (upper plot) and vertical (lower plot) coordinate fluc-
tuations for the different turbulent conditions. Results obtained for
one particular realization of the 21 recorded are depicted. A detrending
polynomial of order m � 2 and 96 different scales s ∈ �10; N∕4�
equally spaced in the logarithmic scale were employed in the DFA
implementation. C2

n increases from bottom to top. The slope of
the best linear fit obtained for each one of these fluctuation functions
is the Hurst exponent estimator. Vertical dashed lines indicate the
range in which the linear fit for estimating the Hurst exponent is per-
formed. Straight (gray dashed) lines with slopes 1/2 (bottom line) and
5/6 (top line) are also shown as references. The behavior observed is
representative of the whole dataset and similar results are obtained for
other detrendings (m � 1 and m � 3). The significant similarity be-
tween horizontal and vertical fluctuation functions can be attributed to
isotropy of the artificially generated turbulence.

Fig. 3. Hurst exponent estimated values for the horizontal and ver-
tical coordinates of the laser beam centroid as a function of the tur-
bulence strength. Mean and standard deviation of the 21 realizations
for each C2

n value are plotted. The theoretical expected value for the
Hurst exponent within the Kolmogorov model (H � 5∕6) is indi-
cated (horizontal black dashed line). A second-order DFA algorithm
with linear fitting range [30, 1000] was implemented. Behaviors
obtained for other orders (m � 1 and m � 3) are very similar.

Fig. 4. Signal-to-noise ratio for the horizontal and vertical coordi-
nates of the laser beam centroid as a function of the turbulence
strength. Mean and standard deviation of the 21 realizations for each
C2

n value are plotted.
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similar wandering measurements for horizontal paths in differ-
ent moments of the day are being planned for the near future in
order to confirm the presence of memory effects in real atmos-
pheric channels.
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