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Abstract 8 

Fault-propagation folds are common structures within fold and thrust belts. The trishear 9 

kinematic model has been widely used to understand the kinematics and geometry of these folds, 10 

effectively reproducing various characteristics. However, the resulting geometry of natural prototypes 11 

may diverge from the predictions of the trishear model depending on the rheological properties 12 

involved in the deformation. In order to address this limitation, finite element viscoplastic numerical 13 

models were implemented. The analysis revealed that in models with a 15° fault angle, these 14 

simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone 15 

(LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from 16 

parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the 17 

kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation 18 

of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these 19 

scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity 20 

equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow 21 

toward the footwall. 22 

 23 

 24 

 25 
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1. Introduction 31 

Fault-propagation folds are commonly observed structures in fold and thrust belts (Mitra, 32 

1990; Pace et al., 2022). The concept of fault-propagation folding was originally proposed by Suppe 33 

and Medwedeff (1984, 1990), who suggested that the fold develops gradually at the fault tip during 34 

thrust-fault propagation. The growth of the structure is influenced by variations in slip along the fault. 35 

At the fault tip, slip is assumed to be zero, and the decrease in slip is balanced by the folding of the 36 

material above the fault (Hardy and Ford, 1997; Mitra and Mount, 1998; Allmendinger, 1998; 37 

Brandes and Tanner, 2014). Fault-propagation folds typically exhibit an asymmetric geometry with 38 

a steep or even overturned forelimb and a less steep backlimb (Jabbour et al., 2012; Hughes et al., 39 

2014; Grothe et al., 2014; Khalifeh-Soltani et al., 2021). Understanding the temporal evolution of 40 

such folds requires a fundamental comprehension of fault-propagation kinematics. Extensive research 41 

on fault-propagation folds has been conducted using various methodologies, including analog models 42 

(Storti et al., 1997; Mitra and Miller, 2013; Bonanno et al., 2017) and numerical simulation (Cardozo 43 

et al., 2003; Hardy and Finch, 2007; Hughes and Shaw, 2015; Meng and Hogetts, 2019; Ju et al., 44 

2023), both of which contribute to the understanding of fold development.  45 

Over the past 25 years, the trishear kinematic model (Erslev, 1991) has been widely used to 46 

explain the kinematics and geometry of fault-propagation folds (Allmendinger, 1998; Cristallini and 47 

Allmendinger, 2001; Zehnder and Allmendinger, 2002; Allmendinger et al., 2004; Cristallini et at., 48 

2004; Pei et al., 2014; Coleman et al., 2019; Shi and Ling, 2022). The trishear kinematic model 49 

describes a triangle-shaped zone of shearing that extends from the fault tip. This model concentrates 50 
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shear strain within the triangular zone, resulting in translational deformation of particles in the 51 

hanging wall while largely fixing them in the footwall. The velocity field is determined by satisfying 52 

the condition of area preservation while also being compatible with the velocity conditions at the 53 

boundaries of the triangular shear zone (Zehnder and Allmendinger, 2000). The trishear model 54 

successfully reproduces various characteristics of fault-propagation folds, including footwall 55 

synclines, progressive rotation of the forelimb, variations in bed thickness toward the fault (Hardy 56 

and Ford, 1997; Cardozo and Aanonsen, 2009; Hardy and Allmendinger, 2011), and the occurrence 57 

of heterogeneous strain patterns (Liu et al., 2012; Grothe et al., 2014; Khalifeh-Soltani et al., 2021). 58 

However, challenges exist in describing the primary variables of the trishear model, such as the slip 59 

of the hanging block, the propagation-to-slip ratio (P/S), and the apical angle of the trishear zone 60 

(Allmendinger, 1998; Hardy, 2019). 61 

Previous studies have shown that the apical angle is a key parameter in the trishear model (Shi 62 

and Ling, 2022; Hardy and Finch, 2007). Lower apical angle values are required to reconstruct the 63 

structure as the heterogeneity of the sedimentary cover increases (Hardy and Finch, 2007). However, 64 

further research is needed to understand how the mechanical characteristics of the materials involved 65 

in folding relate to the apical angle. To address this, finite element numerical models were performed 66 

to simulate fault-propagation folding and extract the velocity field during the evolution of the 67 

structure. In the simulations, visco-plastic rheology was employed for the materials, and the viscosity 68 

of the cover layers was varied (ranging from 1020 to 1022 Pa s), while the basement remained 69 

consistent across all the experiments. These models were used to compare the velocity field with the 70 

theoretically predicted trishear model.  71 

The goal of this paper is to highlight how the viscosities of the beds influence the kinematic 72 

field deviation from the trishear method. Finite element models are analyzed to understand how this 73 

property affects the evolution of fault-propagation folds. This is achieved by reproducing the 74 

development of a fold above a rigid block affected by a reverse fault with varying dip angles. In this 75 
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context, this research endeavors to quantitatively evaluate the extent of error introduced when 76 

employing the theoretical model to address natural prototypes. 77 

2. Methods  78 

Finite element models were employed to investigate fault-propagation folding in a two-79 

dimensional setting, considering a basement-involved fault with two layers representing a 80 

homogeneous cover. The simulations utilized the finite-element particle-in-cell software, 81 

Underworld2 (Moresi et al., 2003; 2007; Beucher et al., 2019), which has demonstrated successful 82 

application in analyzing lithosphere processes (Gianni et al., 2023; Likerman et al., 2021; Capitanio 83 

et al., 2020; Cenki-Tok et al., 2020), contractional structures (Rey et al., 2017), and buckling problems 84 

(Smith et al., 2021). Underworld2 combines an Eulerian finite element method with Lagrangian 85 

particles integrated within the elements, allowing for effective handling of multiple materials and 86 

tracking their properties throughout the model's evolution. 87 

The simulations were based on the equations of conservation of momentum, mass, and energy, 88 

assuming incompressibility and utilizing the Boussinesq approximation. To obtain the velocity field 89 

during the development of conventional fault-propagation folds (Brandes and Tanner, 2014), a series 90 

of finite element simulations were conducted, subjecting a multi-layer sequence to shortening. The 91 

resulting geometries and velocity field were analyzed and compared with those predicted by the 92 

trishear model. The theoretical trishear kinematic fields were obtained from the Andino 3D software 93 

(Cristallini et al., 2021). 94 

2.1. Finite element modeling setup 95 

The model setup is based on natural examples of fault-propagation folds, including the one 96 

identified in Sierra Las Peñas-Las Higueras, Mendoza, Argentina (Ahumada et al., 2006), and 97 

previous numerical simulations of fault-propagation folding (Plotek et al., 2022). The model has 98 

dimensions of 150 kilometers in width and 25 kilometers in height. It consists of two horizontal layers 99 

with identical mechanical properties, with a bottom layer representing the basement. The bottom layer 100 
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has a thickness of 7.5 km, while the two layers above it are each 3.75 km thick (refer to Figure 1). 101 

Within the bottom layer, a fault plane with a width of 5 km is introduced at a distance of 40 km from 102 

the left wall. The dipping angle of the fault varies between 15° and 35°, depending on the specific 103 

model. The fault zone exhibits an internal angle of friction of 10° and a cohesion of 2 MPa (Barton, 104 

2013; Reston, 2020; Treffeisen and Henk, 2020). This plane serves as a pre-existing damage zone 105 

and is introduced with the objective of concentrating deformation in that specific area. Once located, 106 

the plasticity enables the partial reproduction of the fault's growth. Additionally, a layer with 107 

properties resembling air is added on top. This configuration simulates a conventional fault-108 

propagation fold, where folding occurs as the fault steps up over a ramp (Brandes and Tanner, 2014). 109 

The fault is characterized by a simple structure, consisting of a ramp segment without bending or 110 

branching. 111 

The model design is resolved with a mesh of 128 x 32 cells. All models are run for 1 Myr, 112 

and contractional deformation is enforced through velocity boundary conditions, with an imposed 113 

velocity of 1.2 cm/yr applied to the left-moving wall. The models have free-slip boundary conditions 114 

at the base and top surfaces. The footwall particles are fixed to resemble the original trishear approach 115 

proposed by Erslev (1991). 116 

A suite of 12 models is conducted, varying the angle of the reverse fault and the viscosity of 117 

the cover. The tested viscosities range from 1020 to 1022 Pa s. The models utilize uniform viscosity 118 

deformation, which is a simplification technique employed in previous numerical studies (e.g., Holt 119 

and Condit, 2021). The plasticity parameters, density, viscosity, and cohesion of the materials are 120 

specified in Table 1. Densities are considered to be linear with temperature in all the finite element 121 

models. The boundary temperatures remain constant throughout the entire model run, with a linear 122 

gradient established from 293º K at the surface to 750º K at the bottom of the model. 123 

Insert Figure 1 here. 124 

Insert Table 1 here. 125 
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2.2. Kinematic modeling 126 

In order to simulate fault-propagation folds effectively, the trishear model has been widely 127 

adopted as a reliable kinematic model. It has been implemented in various software packages 128 

(Allmendinger, 1998; Cristallini and Allmendinger, 2001; Cardozo, 2005; Allmendinger et al., 2012; 129 

Oakley and Fisher, 2015). In this study, the Andino 3D software was used, which calculates the 130 

velocity field based on the equations proposed by Zehnder and Allmendinger (2000). The software 131 

generates a grid of points based on user-defined XY coordinates of the bedding points and calculates 132 

the velocity field incrementally. The trishear zone is assumed to be symmetric in all cases. The user 133 

can input parameters such as P/S (propagation-to-slip ratio), apical angle, total steps, and fault dip to 134 

define the kinematic method. By comparing the geometry and kinematics of fault-propagation folds 135 

obtained from the trishear method with various mechanical-numerical finite element models, it is 136 

possible to assess the influence of viscosity variations and reverse fault dipping angles on the apical 137 

angle. 138 

In the analysis of theoretical models, it is generally advisable to start by examining the 139 

simplest scenarios when approximating a geometry using a theoretical model like trishear. In this 140 

study, a symmetric apical angle was used to approximate the kinematic fields of the finite element 141 

models. The primary focus of this work was to investigate the apical angle, which was considered the 142 

main parameter of interest. To explore the effects of different apical angles, a series of theoretical 143 

trishear models were executed with 5-degree increments. Previous research has indicated that the 144 

propagation-to-slip ratio also significantly impacts the geometry of the beds (Allmendinger, 1998; 145 

Shi and Ling, 2022). A specific stage in the evolution of the finite element models was selected, 146 

where the fault does not propagate excessively across the layers. Consequently, specific P/S values 147 

were assumed for the kinematic comparison at this particular stage. 148 

3. Results 149 
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The results of the finite element (FE) models are presented in Figure 2 and Figure 3, which 150 

depict the viscosity and velocity fields for different fault angles ranging from 15º to 35º, respectively. 151 

These plots illustrate two sequential shortening periods at 0.4 and 1.0 Myr. 152 

3.1. Geometrical evolution of the models 153 

3.1.1 Fault angle of 15o 154 

The suite of FE models with a fault angle set at 15o exhibits an asymmetric structure, where 155 

the frontal syncline is located to the left of the imposed main reverse fault, rather than aligned with it 156 

in the forelimb (Figure 2.a-f). The simulations reveal the presence of a low viscosity zone (LVZ, 157 

hereinafter) in addition to the imposed main reverse fault and its associated backthrust. The LVZ, 158 

characterized by a viscosity of approximately 1021 Pa s, acts as a mechanically weaker discontinuity 159 

that induces faulting and accommodates slip. Consequently, the resulting fault displays steeper dip 160 

angles compared to the initially induced main fault (Figures 2.b, 2.d, and 2.f). This feature becomes 161 

more prominent in cover layers with lower viscosity (Figures 2.b and 2.d). Figure 2.b illustrates that 162 

the low viscosity values are concentrated within a 4 km fault (LVZ) developed above the imposed 163 

main reverse ramp. In the remaining FE models of the suite, the low viscosity values form a zone of 164 

varying width (LVZ) from the early stages of the model's evolution (Figures 2.c and 2.e). 165 

In all cases, a backthrust is generated (Figure 2.a-f). Initially, it exhibits a dipping angle similar 166 

to the LVZ (Figures 2.a and 2.c). Both structures have a dipping angle of approximately 35o (e.g., 167 

Figure 2.a). However, as the FE model evolves, the backthrust maintains its dipping angle, while the 168 

LVZ exhibits a higher angle of around 42o (Figure 2.b). The FE model with a cover sequence of 1020 169 

Pa s, in its final stage, is the only one that reveals the presence of the main reverse fault, the LVZ, 170 

and two parallel backthrusts (Figure 2.b). This new backthrust forms a conjugate system with the 171 

LVZ (Figure 2.b). When the viscosity of the cover layers is set to 1020 Pa s, they thin out more in the 172 

anticline hinge, leading to a thickening of the associated synclines (Figure 2.b).  173 

Insert Figure 2 here. 174 
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3.1.2 Fault angle of 25º - 35º  175 

Simulations involving deeper dipping fault angles (Figure 2.g-r) show fewer structures 176 

compared to the previously described models (Figure 2.a-f). FE models with a fault angle of 25º 177 

(Figure 2.g-l) exhibit more symmetrical folds compared to the 15º fault simulations. The most 178 

symmetrical structures are obtained with a 35º fault angle, regardless of the viscosity used in the cover 179 

layers (Figure 2.m-r). The resulting anticline shows a symmetric shape with a closed hinge (e.g., 180 

Figure 2.p). The thickness of the backthrust increases as the viscosity of the cover layers and the 181 

dipping angle of the reverse fault increase (Figure 2.r). 182 

In the simulations with cover viscosity of 1020 Pa s, the cover layers thin out in the anticline 183 

hinge, while the frontal syncline exhibits greater thickness (Figures 2.h and 2.n). In contrast, the 184 

remaining cases (Figures 2.j, 2.l, 2.p, and 2.r), where the viscosity values of the cover layers are 185 

higher, do not exhibit this characteristic. The same thinning of the cover layer was observed in the 186 

previous suite (Figure 2.b).  187 

3.2. Kinematic evolution of the models 188 

Insert Figure 3 here. 189 

3.2.1 Fault angle of 15o 190 

In terms of velocity, the thrust exerted by the LVZ (Figure 2.a-f) determines the orientation 191 

of the velocity vectors (e.g., Figures 3.a and 3.b), unlike the other cases (Figure 3.g-r), where the 192 

vectors primarily follow the main ramp (e.g., Figures 3.o and 3.p).  193 

Two distinct patterns are observable depending on the viscosity of the cover layers (Figure 194 

3.a-f). Models with cover layers having a viscosity of 1020 Pa s (Figures 3.a and 3.b) show higher 195 

velocity values located in the forelimb, with velocity vectors parallel to the LVZ (~1021 Pa s). In the 196 

final stage, the velocity magnitude in the upper sector of the forelimb reaches the highest values (1.5 197 

cm/yr) among all simulations involving 15o as the fault angle (Figure 3.b). Even the most distant 198 

portion of the folding, at 100 kilometers, is affected (Figure 3.b). In the backlimb, the top layers 199 
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exhibit low velocities (0.4 cm/yr) (Figure 3.a). Similarly, low velocity values (0.3 cm/yr) are evident 200 

in the region between the reverse fault and the LVZ (Figures 3.a-d). The kinematic field suggests that 201 

the deformation in this sector is insignificant; despite being part of the imposed hanging block, it 202 

behaves like a footwall (Figures 3.b and 3.d). Models with a viscosity set to 1022 Pa s (Figures 3.e 203 

and 3.f) display a progressive pattern of velocity vector rotation, becoming semi-parallel to the main 204 

reverse fault, as expected for theoretical trishear behavior. The progressive rotation of the velocity 205 

vectors is more pronounced in the model with a viscosity of 1022 Pa s (Figure 3.f). 206 

3.2.2 Fault angle of 25º - 35º  207 

Simulations involving a 25º fault (Figure 3.g-l) show distribution trend similar to that reported 208 

in the earlier suite for the kinematic field (Figure 3.f), particularly when the viscosity of the cover 209 

layers is set to 1021-1022 Pa s (Figures 3.j and 3.l). The velocity vectors tend to align parallel to the 210 

main reverse fault, and a new clockwise rotation is observed in the forelimb from the tip of the fault 211 

to the footwall of the structure (e.g., Figure 3.j). The FE model with cover layers’ viscosity set at 1020 212 

Pa s displays velocities ranging from 1.0 to 1.5 cm/yr in the forelimb region (Figures 3.g and 3.h). 213 

The backlimb region presents low velocity (0.4 cm/yr) (Figure 3.g). Similar to the 15º suite (Figure 214 

3.b), the deformation affects the folding's most distant area of the fold, which is 100 kilometers away 215 

from the moving wall (Figure 3.h). 216 

Two different trends are observed depending on the viscosity used in simulations involving 217 

the 35º fault (Figure 3.m-r). In cases where the layers are mechanically stronger (viscosity equal to 218 

or greater than 1021 Pa s; Figure 3.o-r), the velocity vectors in the hanging wall become parallel to the 219 

ramp as the fold evolves. The rotation from the tip point of the fault to the footwall, where velocity 220 

is close to zero, is clearly visible from the initial stage (Figure 3.o). In the FE model where the 221 

viscosity of the cover layers is lower (Figures 3.m and 3.n), the velocity vectors also align parallel to 222 

the main ramp as the fold evolves, but two distinct features are identified: closer to the backthrust, in 223 

the upper sector of the backlimb, there is a relative minimum (~0.5 cm/yr, Figure 3.m), and in the 224 
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upper sector of the forelimb, there is a maximum (~1.2 cm/yr, Figure 3.n). In this case, no progressive 225 

rotation is identified (Figures 3.m and 3.n). 226 

3.3 Comparison with Trishear/apical angle values 227 

For the comparison of each obtained fault-propagation fold with the theoretical trishear 228 

kinematic model, the initial stage of the FE models was utilized (Figures 2 and 3, 0.4 Myr). 229 

Subsequent stages involved the further displacement of the main fault and its interaction with the 230 

cover layers, resulting in modifications to the kinematic field. To ensure an accurate comparison, the 231 

displacement at each selected step was carefully measured and inputted as a parameter in Andino 3D. 232 

Special attention was given to the apical angle parameter. During the initial stages of the FE models, 233 

it was observed that fault propagation across the cover layers does not contribute to the rupture of the 234 

material. As a result, the P/S values from the FE simulations remain relatively low at the selected 235 

stage for kinematic comparison. 236 

To compare each FE model with the trishear method (taking into account fault angle, slip, and 237 

P/S), the apical angle was tested at intervals of 5 degrees (ranging from 20o to 85o). The difference 238 

between the velocity field of the FE model and the theoretical trishear model was calculated to 239 

determine the trishear apical angle that best approximates the numerical kinematic field in the folds. 240 

This approach allowed finding the best fit (Table 2). Subsequently, the magnitude and angular 241 

differences between the trishear method and the FE simulations were computed after scaling the 242 

vectors.  243 

Since the geometric and kinematic evolution (Figure 2 and 3) of theFE models with a reverse 244 

fault at 25o and 35o are extremely similar, the decision was made to focus on the 25º scenario, as it 245 

represents a more typical dipping angle in natural fault-propagation folds and reverse faults (Mitra, 246 

1990; Sibson and Xie, 1998). 247 

Insert Table 2 here. 248 

Insert Figure 4 here. 249 
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Figure 4 presents the absolute difference in velocity magnitudes between FE models with a 250 

fault angle of 15o and 25o and the trishear method. Generally, FE models with a 15o fault angle exhibit 251 

larger disparities compared to the trishear method. The greatest differences (~0.9 cm/yr) occur within 252 

the reverse fault zone for the three models (Figure 4.a-c). Significant discrepancies are also observed 253 

in the backthrust located in the backlimb of the structure, particularly in the FE model with a viscosity 254 

of 1020 Pa s. In this case, the trishear method provides a better approximation of the velocity in the 255 

upper sector of the hanging wall, and in the forelimb. Lower values are also observed surrounding 256 

the forelimb (Figure 4.a). The other two FE simulations with the cover layers viscosities set at 1021, 257 

and 1022 Pa s show a similar pattern (Figure 4.b-c).  258 

Compared to the 15o fault FE models, the kinematic fields in the FE models with a 25o fault 259 

angle show a better fit with the trishear method (Figure 4.d-f). The region near the main reverse fault 260 

shows the largest differences (~0.7 cm/yr). The FE model with the weakest cover layers (Viscosity = 261 

1020 Pa s) shows the lowest discrepancies with the trishear method, particularly in the forelimb area 262 

and the trishear zone where the difference approaches zero (Figure 4.d). However, higher values are 263 

observed in the upper zone of the backlimb (~0.55 cm/yr), while the remaining FE models exhibit 264 

differences of approximately ~0.30 cm/yr (Figures 4.e-f). 265 

Insert Figure 5 here. 266 

Figure 5 shows the angular difference of the velocity vectors between FE and trishear models. 267 

In the first suite of FE models, the most substantial differences are observed within the hanging wall 268 

(-40o) (Figure 5.a-c). However, closer to the main reverse fault, within a small zone of approximately 269 

5 km, the differences are significantly lower (-10o). This characteristic can be identified in Figures 270 

5.a-b but is not evident in the model with a cover layer viscosity set of 1022 Pa s (Figure 5.c). 271 

Additionally, there is a region of ~20 km to the left of the trishear zone in the forelimb where the 272 

differences are also diminished. Particularly, in the FE model with a viscosity of 1020 Pa s, the 273 

differences tend to be zero (Figure 5.a). 274 
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In the 25o suite, the differences inside the trishear zone range from approximately -5o to 5o. 275 

However, the FE models exhibit noticeable deviations from the theoretical trishear particularly in the 276 

backlimb (Figure 5.d-f). Notably, the FE model with a viscosity of 1020 Pa s shows differences in the 277 

forelimb, situated to the left of the trishear zone (Figure 5.d). This area introduces differences of 278 

approximately 10o to 20o, which are absent in the other simulation (Figures 5.e-f). Conversely, the 279 

FE models with a cover layer viscosities of 1021 and 1022 Pa s yield a better approximation, 280 

particularly in the forelimb region. The FE model with the viscosity of 1022 Pa s shows differences in 281 

the area located to the left of the backthrust (Figure 5.f). Unlike the other FE models in this suite 282 

(Figures 5.d-e), the resulting difference is smaller (~15o). 283 

4. Discussion 284 

The trishear method presents challenges in characterizing several parameters (Coleman et al., 285 

2019). Previous studies suggest that in the early stages of faulting, regardless of fault type (reverse or 286 

normal), the P/S ratios are approximately equal to one (Shi and Ling, 2022). As time progresses, fault 287 

ruptures gradually propagate into the overlying rock, resulting in an increased P/S ratio. In this study, 288 

tests were conducted by varying the P/S values within the range of 1 to 2. 289 

4.1 Effect of viscosity on the velocity fields: 290 

Viscosity plays a crucial role in determining the deformation style and velocity field of fault-291 

propagation folds in the simulations. As the viscosity of the cover layers affected by folding increases, 292 

the estimated apical angle decreases.  293 

The apical angle controls the extent of the deformation zone above the fault plane. Lower 294 

apical angle values explain localized deformation in materials with higher viscosity. Plotek et al. 295 

(2022) described similar tendencies in fault-propagation folding models with layers resembling 296 

evaporites, where lower viscosities are best approximated by the trishear model corresponding to high 297 

apical angle values of 60°–70°. 298 
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The geometry of the folds formed in the cover layers with a viscosity of 1020 Pa s is notable. 299 

In the anticline hinge, the upper layer thins out, leading to the thickening of associated synclines 300 

(Figures 2.b, 2.h, and 2.n). Previous research supports the idea that weak or incompetent units in the 301 

synclines undergo thickness during deformation, resulting in folding (Laubach et al., 2009; Mou et 302 

al., 2023). Although the finite element models used in this study are simplified without considering 303 

mechanical behavior alternation, similar findings to previous studies on heterogeneous sequences 304 

were obtained. 305 

Regarding the velocity, the models incorporating cover layers with 1020 Pa viscosity 306 

demonstrate a kinematic field analogous to that predicted in fault-bend folds, where the material 307 

translation occurs over a thrust ramp (Suppe, 1983). Simulations with a viscosity of 1022 Pa s, follow 308 

the trishear kinematic pattern (Figures 3.l and 3.r). The trishear method proves useful for 309 

approximating the kinematic field in fault-propagation folds (Hughes and Shaw, 2014; Pei et al., 310 

2017; Li et al., 2020; He et al., 2021). However, in nearly all simulations, it is evident that the imposed 311 

velocity decreases at a faster rate than the suggested by the theoretical trishear method (Figure 4). 312 

Regarding the angle differences, the largest discrepancies (~40o) are associated with the backthrust, 313 

which is present in all the finite element models.  314 

On the other hand, in the suite with a fault angle set at 15o, the highest velocity differences 315 

are observed near the main reverse fault in the hanging wall, indicating limited deformation of the 316 

material (Figure 4.a-c). Velocity discrepancies of ~0.9 cm/yr can be attributed to numerical velocity 317 

vectors being close to zero. This finding can be explained by the development of the LVZ, which acts 318 

as the actual reverse fault (Figures 2.a, 2.c, and 2.e). The fault imposed by the model's configuration 319 

becomes secondary, and the kinematic field responds to this new structure (Figure 3.a, 3.c, and 3.e). 320 

Consequently, the region between the LVZ and the main reverse ramp behaves akin to a footwall. 321 

This accounts for the larger differences observed in this area and the lower values (-10o) in proximity 322 

to the ramp (Figure 4.a-c and Figure 5.a-b). It is important to note that the LVZ was only observed in 323 
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models with a fault dipping angle set to 15o, and this characteristic will be further discussed in the 324 

following section.  325 

4.2 Effect of the fault angle in the finite element simulations 326 

A distinct zone known as the low viscosity zone (LVZ) emerges as a notable feature in the 327 

finite element simulations conducted in this study, particularly when the main reverse fault angle is 328 

set to 15º. Remarkably, the LVZ assumes the role of the primary fault and governs the evolution of 329 

the kinematic field, effectively surpassing the reverse fault imposed based on plasticity parameters 330 

within the finite element simulation setup. 331 

To gain insight into this phenomenon, a series of fracture experiments was performed using 332 

Underworld2. Triaxial tests were conducted on samples of basement rock to accurately represent its 333 

mechanical properties in the finite element models (Faizi et al., 2020; You et al., 2021). These tests 334 

were carried out under varying confining pressures, simulating depths ranging from 5.0 to 17.5 km. 335 

Subsequently, the resulting fault angles were measured, and the stress tensor components from the 336 

numerical model results were extracted. In this way, it was possible to derived the stress tensor from 337 

the model. Based on this information, the shear and normal stresses acting on the measured fault were 338 

calculated. Figure 6 presents the envelope obtained for the intact basement rock in the finite element 339 

simulations (blue line, Figure 6). The values of normal stress and shear stress are observed for each 340 

of the conducted triaxial compression tests (Figure 6). Notably, this envelope closely approximates 341 

the Mohr-Coulomb failure criteria (Labuz and Zang, 2012; Heyman et al., 1972). 342 

Insert Figure 6 here.  343 

Mohr-Coulomb states that a material will fail when the shear stress (τ) on a plane reaches a 344 

critical value dependent on the normal stress (σn) on that same plane. Mathematically, it is expressed 345 

as (Eq. 1): 346 

τ = c + σn ⋅ tan(ϕ) 347 

(Equation 1) 348 
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τ is the shear stress, c is the cohesion of the material (shear strength under zero normal stress 349 

conditions), σn is the normal stress, and ϕ is the internal friction angle of the material. In a Mohr 350 

diagram, this criterion is represented as a Mohr circle where the horizontal axis represents normal 351 

stresses and the vertical axis represents shear stresses. 352 

The determination of the Mohr-Coulomb circle was based on the major stress values obtained 353 

from the stress tensor of the finite element simulations of fault-propagation folds, with the top of the 354 

basement situated at a depth of 7.5 km. The calculated circle closely aligns with the results obtained 355 

from the mechanical testing, providing validation for the approach.  356 

Subsequently, an investigation was conducted to examine the behavior within a zone of 357 

extremely low cohesion when the rock already possessed a fracture. In cases where the fault has an 358 

angle less than 23o, as indicated by the intersection of the circle and the line representing cohesion 359 

close to zero, the pre-existing fault does not reactivate; instead, it generates a new one fault following 360 

the envelope of the intact basement rock. This observation is consistent with the findings of the finite 361 

element models, where the 15o fault did not reactivate. Instead, the system produced a new fault at 362 

approximately 33o corresponding to the LVZ. The viscosity values (~1021 Pa s) in this newly formed 363 

fault closely resemble those assigned to the imposed main reverse fault. The angle indicated in the 364 

Mohr-Coulomb circle at its intersection with the previously calculated experimental values is 34o 365 

(Figure 6, blue line).  366 

4.3 Experimental limitations 367 

The constitutive behavior of rocks is governed by various deformation mechanisms 368 

influenced by factors such as phase content, chemical composition, and thermodynamics (Burgmann 369 

and Dresen, 2008). In this study, the rocks are assumed to be homogeneous rheological layers. The 370 

materials in the model are assigned a Newtonian rheology, as viscous diffusion and dislocation creep 371 

can be neglected under the pressures and temperatures considered and isoviscous layers are used (Holt 372 

and Condit, 2021; Schmid et al., 2023). The simulations consider temperature and pressure-dependent 373 

densities, but do not incorporate phase changes or associated chemical processes. Overall, these 374 
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simulations provide valuable insights into the behavior of the trishear kinematic model for fault-375 

propagation folding. 376 

The present study acknowledges the inherent limitations associated with the employed 377 

trishear theoretical model. Some of the limitations of trishear are intrinsic to kinematic models that 378 

neglect the mechanical properties of the rock. Additionally, it assumes a consistent parallel movement 379 

of vectors within the hanging block along the reverse fault, typically characterized by planar-ramp 380 

geometries. Furthermore, this approach overlooks the deformation inside the hanging wall and 381 

backlimb of the structure; however, it is important to note that this model has been widely accepted 382 

and utilized in numerous instances.  383 

The trishear kinematics are specifically formulated to model the distortion ahead of a 384 

propagating fault, apart from the translation along the fault. The acknowledgment of its kinematic 385 

nature and its widespread use in the scientific community is clear. Still, it is essential to recognize 386 

that, by focusing on mechanical variations within the beds during folding, additional insights can be 387 

gained that go beyond the scope of trishear's kinematic representation. The intention is not to 388 

undermine the utility of trishear but rather to complement its insights with a consideration of 389 

mechanical aspects for a more comprehensive understanding of fault-propagation folds. 390 

5. Conclusions 391 

In this study, finite element models were developed in this study to investigate fault-392 

propagation folding and to examine the influence of the rheology of the cover layers and the fault 393 

dipping angle on the kinematic field of the resulting fold. The results were then compared with the 394 

trishear theoretical model.  395 

Observed deviations from the trishear model increase with the weakness of the cover layers. 396 

However, these discrepancies could be approximated by using higher apical angles. Additionally, 397 

simulations with gentler fault angles exhibited greater differences from the trishear model. In the suite 398 

of models with a fault angle set at 15o, a frontal syncline located behind the main reverse fault was 399 
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observed. This asymmetry was particularly pronounced in simulations where the cover layers had a 400 

viscosity of 1020 Pa s. These simulations revealed the development of a mechanically weaker 401 

discontinuity characterized by a low viscosity zone, characterized by viscosities around 1021 Pa s. 402 

The presence of the LVZ induced faulting and absorbed slip, leading to deviations of the velocity 403 

vectors from parallel alignment with the main reverse ramp.  404 

In models with fault angles set at 25° or 35°, the behavior is closely aligned with the 405 

predictions of the theoretical models, featuring velocity vectors parallel to the fault ramps, progressive 406 

rotations, and symmetrical folds. However, in the case of cover layers with a viscosity of 1020 Pa s, 407 

the highest velocities were observed in the forelimb. This observation could be attributed to material 408 

migration toward the synclines.  409 

The apical angle plays a critical role in determining the size and shape of the deformation 410 

zone above the fault plane in fault-propagation folding. It is strongly influenced by the viscosity of 411 

the materials involved. Lower apical angles correspond to more localized deformation, which occurs 412 

in materials with higher viscosity. Both the angle of the reverse fault and the viscosity of the folded 413 

layers significantly contribute to the resulting geometry and kinematics of the fault-propagation fold. 414 
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Figure Captions 639 

 640 

Figure 1: Finite element model setup. The moving wall is represented as a gray rectangle. 641 

 642 

Figure 2: Geometrical evolution of the FE models with fault angles of 15o (a-f), 25o (g-l) and 35o (m-643 

r). The panels depict viscosity. Two time-steps are selected for each simulation: 0.4 and 1.0 Myr. 644 

Each column displays the viscosity for the cover layers: 1020, 1021, and 1022 Pa s. The moving wall is 645 

indicated in gray and the white line represents the bottom of the upper sedimentary layer.  646 

 647 

Figure 3: Kinematic evolution of the FE models with a 15o, 25o and 35o fault angle. The panels depict 648 

the velocity field with instantaneous velocity vectors relative to the footwall. Two time-steps are 649 

selected for each simulation: 0.4 and 1.0 Myr. Each column displays the viscosity for the cover layers: 650 

1020, 1021 and 1022 Pa s. The moving wall is indicated in gray. 651 

 652 

Figure 4: Absolute difference in velocity fields between finite element and the theoretical trishear 653 

models. The red and blue arrows are the velocity vectors from the trishear and finite element models, 654 

respectively. Black fine lines indicate the apical angle used for the trishear method (Table 2). Thick 655 

black line is the main reverse fault.  656 

 657 

Figure 5: Angular difference between the velocity vectors of the theoretical trishear and the finite 658 

element model (trishear - FE). Black fine lines indicate the apical angle applied for the trishear method 659 

(table 2). The thick black line is the main reverse fault. Red tones indicate higher angular values in 660 

the trishear theoretical model, whereas blue tones represent the opposite. 661 
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Figure 6: The Mohr-Coulomb circle constructed based on principal stresses obtained from the finite 663 

element tests. The green dots represent the results of normal stress and shear stress for each triaxial 664 

test. The blue and green lines correspond to the best fit for triaxial tests and tests without cohesion, 665 

respectively. The area enclosed by the intersections of the green line and the circle indicates the 666 

faulting angle. Faults with angles below 23o will not undergo reactivation. In our FE simulations, with 667 

a 15o fault, the main thrust is not reactivated. A new fault (LVZ) is generated following the angle of 668 

the envelope for the basement without previous weaknesses (blue line). 669 
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Tables 671 

 Basement  Cover layers Fault  

Cohesion (MPa) 20 10 2 

Angle of internal friction (o) 30 40 10 

Density (kg/m3) 2700 

Viscosity (Pa s) 1x1023 1x1020 - 1 x 1022 1x1021 

Fault angle (o) from 15 to 35 

Table 1: Physical properties of the materials.  672 

 673 

 

 

Viscosity of the layers (Pa s) 

Fault angle (o) 

15 25 

Apical angle for trishear method (o) 

1 x 1020 80 60 

1 x 1021 45 50 

1 x 1022 30 30 

Table 2: Best fit apical angle for each model. 674 
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Appendix  676 

Numerical Modeling Method 677 

We have developed a two-dimensional model to investigate the evolution of fault-propagation 678 

faults. The conservation equations for mass, momentum, and energy are systematically addressed 679 

within the framework of an incompressible, viscoplastic fluid confined to a 2D Cartesian domain. 680 

The numerical solution employs the finite element, particle-in-cell (PIC) methodology implemented 681 

in the Underworld2 code (Beucher et al., 2019; Moresi et al., 2003, 2007). Underworld2 adheres to 682 

a continuum mechanics approximation, a widely accepted method for delineating geological and 683 

geophysical phenomena. It adeptly addresses the conservation equations governing mass (Eq. 2), 684 

momentum (Eq. 3), and energy (Eq. 4). 685 

𝛻. u = 0 686 

(Equation 2) 687 

 688 

𝜌𝐶𝑝 ( 
𝛿𝑇

𝛿𝑡
+ 𝑢. 𝛻 𝑇) = 𝛻. 𝑘𝛻𝑇 + 𝑄 689 

(Equation 3) 690 

 691 

 692 

∇. (n ∇ u)  −  ∇p = −ρg 693 

(Equation 4) 694 

 695 

where u is the velocity, T is the temperature, t is time, Cp is the specific heat capacity, ρ is the 696 

density, k is the thermal conductivity, Q is an additional heat source for the energy equation, 697 

𝛻 represents the gradient, η is the viscosity, g is the gravity force vector. 698 

We use nonlinear temperature-dependent, and strain rate-dependent viscoplastic rheology. 699 

The viscous deformation of rocks is calculated using a temperature, pressure, and strain rate-700 

dependent power-law equation. The viscosity for dislocation or diffusion creep (Eq. 5) is defined as: 701 

𝜂 =  
1

2
𝐴− 

1
𝑛 𝑑 

𝑚
𝑛 ℰ ̇ 𝑖𝑖

 
1−𝑛

𝑛 𝑒𝑥𝑝 (
𝐸 + 𝑃𝑉

𝑛𝑅𝑇
) 702 

(Equation 5) 703 
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 704 

where η is the viscosity, A is the preexponential factor, n is the stress exponent, E is the 705 

activation energy, P is the pressure, V the activation volume, R the gas constant, T is the temperature 706 

at a given position, ℰ ̇ 𝑖𝑖 is the square root of the second invariant of the strain rate tensor, d represents 707 

the grain size, and m is the grain size exponent. Viscosity is limited in the model between 1019 and 708 

1024 Pa s. Maximum strain rates in the model reach ∼10−14 s−1, which produce a viscosity >1019 Pa s 709 

for the rheology used.  710 

To transition to an isoviscous flow law, one simply sets the activation energy and activation 711 

volume to zero, employs an exponent equal to 1, a grain size exponent of 0, and a pre-exponential 712 

factor equal to 0.5 times the desired viscosity raised to the power of minus one. For instance, for a 713 

desired viscosity of 1 x 1019 Pa s, a pre-exponential factor of 0.5 x 10-19 should be utilized. 714 

Plastic failure is determined using a pressure-dependent Drucker–Prager yield criterion (Davis 715 

and Selvadurai, 2002) (Eq. 6): 716 

 717 

𝒪𝑦 =  𝐶 𝑐𝑜𝑠 (Ø) +  𝑃 𝑠𝑖𝑛 (Ø) 718 

(Equation 6) 719 

P is the pressure, C is the cohesión, Ø is the internal angle of friction. 720 

A constant temperature (T = 293°C) is applied to the top boundary, with no heat flux across 721 

the side walls. The initial internal temperature distribution follows a lineal geothermal gradient until 722 

a temperature of 750°C is reached at the base of the model. The model uses a free-slip condition on 723 

the bottom boundary. The convergence velocity (1.2 cm/yr) is applied on the left wall. Particles in 724 

the footwall remain fixed (velocity = 0 cm/yr). 725 
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Figure 1: Finite element model setup. The moving wall is represented as a gray rectangle. 
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Figure 2: Geometrical evolution of the FE models with fault angles of 15o (a-f), 25o (g-l) and 35o (m-

r). The panels depict viscosity. Two time-steps are selected for each simulation: 0.4 and 1.0 Myr. 

Each column displays the viscosity for the cover layers: 1020, 1021, and 1022 Pa s. The moving wall is 

indicated in gray and the white line represents the bottom of the upper sedimentary layer.  
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Figure 3: Kinematic evolution of the FE models with a 15o, 25o and 35o fault angle. The panels depict 

the velocity field with instantaneous velocity vectors relative to the footwall. Two time-steps are 

selected for each simulation: 0.4 and 1.0 Myr. Each column displays the viscosity for the cover layers: 

1020, 1021 and 1022 Pa s. The moving wall is indicated in gray. 
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Figure 4: Absolute difference in velocity fields between finite element and the theoretical trishear 

models. The red and blue arrows are the velocity vectors from the trishear and finite element models, 

respectively. Black fine lines indicate the apical angle used for the trishear method (Table 2). Thick 

black line is the main reverse fault. 
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Figure 5: Angular difference between the velocity vectors of the theoretical trishear and the finite 

element model (trishear - FE). Black fine lines indicate the apical angle applied for the trishear method 

(table 2). The thick black line is the main reverse fault. Red tones indicate higher angular values in 

the trishear theoretical model, whereas blue tones represent the opposite. 
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Figure 6: The Mohr-Coulomb circle constructed based on principal stresses obtained from the finite 

element tests. The green dots represent the results of normal stress and shear stress for each triaxial 

test. The blue and green lines correspond to the best fit for triaxial tests and tests without cohesion, 

respectively. The area enclosed by the intersections of the green line and the circle indicates the 

faulting angle. Faults with angles below 23o will not undergo reactivation. In our FE simulations, with 

a 15o fault, the main thrust is not reactivated. A new fault (LVZ) is generated following the angle of 

the envelope for the basement without previous weaknesses (blue line). 
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Gray versions:  

Figure 1  
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Figure 2 

 

 

 

  

Jo
urn

al 
Pre-

pro
of



Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Highlights: 

• Fault-propagation folds were investigated using numerical models. 

• Kinematic fields were analyzed and compared to the trishear model. 

• Increasing viscosity of the layers led to a decrease in the predicted 

apical angle. 

• Simulations with a viscosity of 1022 Pa s followed the trishear 

kinematic pattern. 

• The simulations revealed a low viscosity zone when the fault angle 

was 15°. 
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